Skip to main content

Infantile Hypophosphatasia Secondary to a Novel Compound Heterozygous Mutation Presenting with Pyridoxine-Responsive Seizures

  • Case Report
  • Chapter
  • First Online:
JIMD Reports - Volume 11

Abstract

Hypophosphatasia (HPP) is a rare metabolic disease with the hallmark finding of deficient serum tissue nonspecific alkaline phosphatase (TNSALP) activity. TNSALP is primarily known for its role in mineralization; hence, HPP is characterized by defective mineralization of bone and/or teeth. TNSALP is also necessary for proper vitamin B6 metabolism and its participation as a cofactor for neurotransmitters in the central nervous system. Defective TNSALP activity in the brain can result in intractable seizures responsive to pyridoxine. The pathophysiology of pyridoxine-responsive seizures (PRS) in severe HPP remains to be clearly defined. We review the case of a 2-month-old Caucasian boy presenting with seizures refractory to conventional antiepileptic medications. Empiric treatment with favorable response to pyridoxine in conjunction with severe metabolic bone disease, extremely low serum alkaline phosphatase, elevated phosphoethanolamine, hypercalcemia, hypercalciuria, and nephrocalcinosis led to a clinical diagnosis of infantile HPP. Sequence analysis revealed compound heterozygosity of the TNSALP gene with a novel mutation in exon 9 and a previously reported mutation in exon 12. This case reminds the physician that severe infantile HPP can present with PRS as its major initial manifestation and should alert clinicians to consider HPP in their differential of PRS. In addition, despite this severe genotype, the clinical diagnosis of our patient was delayed because of minimal phenotypic features initially. This highlights that the phenotype-genotype correlation could be variable even in severe disease. This case also demonstrates that HPP should be classified as PRS and not a form of pyridoxine-dependent epilepsy (PDE) as our patient was able to stop the pyridoxine supplementation without seizure recurrence once enzyme replacement was initiated. With the advent of enzyme replacement therapy, this once fatal disease may have improved morbidity and mortality.

Competing interests: None declared

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

Alkaline phosphatase

CSF:

Cerebrospinal fluid

CT:

Computerized tomography

EEG:

Electroencephalogram

HPP:

Hypophosphatasia

HSV:

Herpes simplex virus

MRI:

Magnetic resonance imaging

PCR:

Polymerase chain reaction

PLP:

Pyridoxal-5′-phosphate

PRS:

Pyridoxine-responsive seizures

PTH:

Parathyroid hormone

TNSALP:

Tissue nonspecific alkaline phosphatase

References

  • Balasubramaniam S, Bowling F, Carpenter K et al (2010) Perinatal hypophosphatasia presenting as neonatal epileptic encephalopathy with abnormal neurotransmitter metabolism secondary to reduced co-factor pyridoxal-5'-phosphate availability. J Inherit Metab Dis. 2010 January 5

    Google Scholar 

  • Barcia JP, Strife CF, Langman CB (1997) Infantile hypophosphatasia: treatment options to control hypercalcemia, hypercalciuria, and chronic bone demineralization. J Pediatr 130(5):825–828

    Article  PubMed  CAS  Google Scholar 

  • Basura GJ, Hagland SP, Wiltse AM, Gospe SM Jr (2009) Clinical features and the management of pyridoxine-dependent and pyridoxine-responsive seizures: review of 63 North American cases submitted to a patient registry. Eur J Pediatr 168(6):697–704

    Article  PubMed  Google Scholar 

  • Baumgartner-Sigl S, Haberlandt E, Mumm S et al (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>C, p.M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40(6):1655–1661

    Article  PubMed  CAS  Google Scholar 

  • Baxter P (1999) Epidemiology of pyridoxine dependent and pyridoxine responsive seizures in the UK. Arch Dis Child 81:431–433

    Article  PubMed  CAS  Google Scholar 

  • Béthenod M, Cotte MF, Collombel C, Fréderich A, Cotte J (1967) Neonatal discovery of hypophosphatasia. Bone improvement. Fatal convulsant encephalopathy. Ann Pediatr (Paris) 14(12):835–4

    Google Scholar 

  • Cahill RA, Wenkert D, Perlman SA et al (2007) Infantile hypophosphatasia: transplantation therapy trail using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab 92(8):2923–2930

    Article  PubMed  CAS  Google Scholar 

  • Demirbilek H, Alanay Y, Alikaşifoğlu A et al (2012) Hypophosphatasia presenting with pyridoxine-responsive seizures, hypercalcemia, and pseudotumor cerebri: case report. J Clin Res Pediatr Endocrinol 4(1):34–38

    Article  PubMed  Google Scholar 

  • Di Mauro S, Manes T, Hessle L et al (2002) Kinetic characterization of hypophosphatasia mutations with physiological substrates. J Bone Miner Res 17(8):1383–1391

    Article  PubMed  Google Scholar 

  • Fleisch H, Russell RG, Straumann F (1966) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212:901–903

    Article  PubMed  CAS  Google Scholar 

  • Fonta C, Négyessy L, Renaud L, Barone P (2004) Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Cereb Cortex 14(6):595–609, Epub 2004 Mar 28

    Article  PubMed  Google Scholar 

  • Fraser D (1957) Hypophosphatasia. Am J Med 22:730–746

    Article  PubMed  CAS  Google Scholar 

  • Fraser D, Laidlaw J (1956) Treatment of hypophosphatasia with cortisone. Lancet 270(6922):553

    Article  PubMed  CAS  Google Scholar 

  • Gaalema D, Scott T, Heil S et al (2012) Differences in the profile of neonatal abstinence syndrome signs in methadone- versus buprenorphine-exposed neonates. Addiction 107(S1):53–62

    Article  PubMed  Google Scholar 

  • Gagnon C, Sima NA, Mumm S et al (2010) Lack of sustained response to teriparatide in a patient with adult hypophosphatasia. J Clin Endocrinol Metab 95(3):1007–1012

    Article  PubMed  CAS  Google Scholar 

  • Gospe SM Jr (2010) Neonatal vitamin responsive epileptic encephalopathies. Chang Gung Med J 33:1–12

    PubMed  Google Scholar 

  • Greenberg CR, Evans JA, McKendry-Smith S et al (1990) Infantile hypophosphatasia localization within chromosome region 1p36.1.1-34 and prenatal diagnosis using linked DNA markers. Am J Hum Genet 46:286–292

    PubMed  CAS  Google Scholar 

  • Greenberg CR, Taylor CL, Haworth JC et al (1993) A homoallelic Gly317➔Asp mutation in ALPL causes the perinatal (lethal) form of hypophosphatasia in Canadian mennonites. Genomics 17(1):215–217

    Article  PubMed  CAS  Google Scholar 

  • Harris H (1990) The human alkaline phosphatases: what we know and what we don’t know. Clin Chim Acta 186:133–150

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann GF, Schmitt B, Windfuhr M et al (2007) Pyridoxal 5’-phosphate may be curative in early-onset epileptic encephalopathy. J Inherit Metab Dis 30(1):96–99

    Article  PubMed  CAS  Google Scholar 

  • Litmanovitz RO, Dolfin T et al (2002) Glu274Lys/Gly309Arg mutation of the tissue-nonspecific alkaline phosphatase gene in neonatal hypophosphatasia associated with convulsions. J Inherit Metab Dis 25(1):35–40

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Miyake K, Yamamoto S et al (2011) Rescue of severe infantile hypophosphatasia mice by AAV-mediated sustained expression of soluble alkaline phosphatase. Human Gene Ther 22(11):1355–1364

    Article  CAS  Google Scholar 

  • McComb RB, Bowers GN, Posen S (1979) Alkaline phosphatase. Plenum Press, New York

    Book  Google Scholar 

  • McKee MD, Nakano Y, Masica DL, Gray JJ, Lemire I, Heft R (2011) Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J Dent Res 90(4):470–476

    Article  PubMed  CAS  Google Scholar 

  • Millán JL, Narisawa S, Lemire I et al (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23(6):777–787

    Article  PubMed  Google Scholar 

  • Mills PB, Surtees RAH, Champion MP et al (2005) Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5’-phosphate oxidase. Hum Mol Genet 14(8):1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Moore CM, Curry C, Henthorn PS et al (1999) Mild autosomal dominant hypophosphatasia: in utero presentation in two families. Am J Med Genetics 86(5):410–415

    Article  CAS  Google Scholar 

  • Mornet E (2008) Hypophosphatasia. Best Pract Res Clin Rheumatol 22:113–127

    Article  PubMed  CAS  Google Scholar 

  • Mornet E, Yvard A, Taillandier A, Fauvert D, Simon-Bouv B (2011) A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann Hum Genet 75(3):1469–1809

    Article  Google Scholar 

  • Moss DW, Eaton RH, Smith JK, Whitby LG (1967) Association of inorganic-pyrophosphatase activity with human alkaline-phosphatase preparations. Biochem J 102:53–57

    PubMed  CAS  Google Scholar 

  • Narisawa S, Wennberg C, Millán JL (2001) Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol 193(1):125–133

    Article  PubMed  CAS  Google Scholar 

  • Négyessy L, Xiao J, Kántor O et al (2011) Layer-specific activity of tissue non-specific alkaline phosphatase in the human neocortex. Neuroscience 172:406–418

    Article  PubMed  Google Scholar 

  • Nunes ML, Mugnol F, Bica I, Fiori RM (2002) Pyridoxine-dependent seizures associated with hypophosphatasia in a newborn. J Child Neurol 17(3):222–224

    Article  PubMed  Google Scholar 

  • Orimo H, Hayashi Z, Watanabe A, Hirayama T, Hirayama T, Shimada T (1994) Novel missense and frameshift mutations in the tissue-nonspecific alkaline phosphatase gene in a Japanese patient with hypophosphatasia. Hum Mol Genet 3(9):1683–1684

    Article  PubMed  CAS  Google Scholar 

  • Plecko B, Stöckler S (2009) Vitamin B6 dependent seizures. Can J Neurol Sci 36(Suppl 2):S73–S77

    PubMed  Google Scholar 

  • Plecko B, Paul K, Paschke E et al (2007) Biochemical and molecular characterization of 18 patients with pyridoxine-dependent epilepsy and mutations of the antiquitin (ALDH7A1) gene. Hum Mutat 28(1):19–26

    Article  PubMed  CAS  Google Scholar 

  • Rathbun JC (1948) Hypophosphatasia: a new developmental anomaly. Am J Dis Child 75(6):822–834

    PubMed  CAS  Google Scholar 

  • Robison R (1923) The possible significance of hexosephosphoric esters in ossification. Biochem J 17:286–293

    PubMed  CAS  Google Scholar 

  • Smilari P, Romeo DM, Palazzo P, Meli C, Sorge G (2005) Neonatal hypophosphatasia and seizures. A case report. Minerva Pediatr 57(5):319–323

    PubMed  CAS  Google Scholar 

  • Spentchian M, Merrien Y, Herasse M et al (2003) Severe hypophosphatasia: characterization of fifteen novel mutations in the ALPL gene. Hum Mutat 22(1):105–106

    Article  PubMed  CAS  Google Scholar 

  • Stockler S, Plecko B, Gospe SM Jr et al (2011) Pyridoxine dependent epilepsy and antiquitin. Clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab 104(1–2):48–60

    Article  PubMed  CAS  Google Scholar 

  • Tadokoro M, Machida H, Ohgushi H (2010) Genetic basis for skeletal disease: stem cell therapy for genetic bone disorders. Clin Calcium 20(8):1228–1235

    PubMed  Google Scholar 

  • The Tissue Nonspecific Alkaline Phosphatase Gene Mutations Database, last updated July 2011. Retrieved 2012, available from: http://www.sesep.uvsq.fr/03_hypo_mutations.php#presentation

  • Watanabe A, Karasugi T, Sawai H et al (2011) Prevalance of c.1559delT in ALPL, a common mutation resulting in the perinatal (lethal) of hypophosphatasia in Japanese and effects of the mutation on heterozygous carriers. J Hum Genet 56(2):166–168

    Article  PubMed  CAS  Google Scholar 

  • Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, MacGregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11(1):45–51

    Article  PubMed  CAS  Google Scholar 

  • Whyte MP (2010) Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann N Y Acad Sci 1192:190–200

    Article  PubMed  CAS  Google Scholar 

  • Whyte MP (2012) Hypophosphatasia. In: Thakker RV, Whyte MP, Eisman J, Igarashi T (eds) Genetics of bone biology and skeletal disease. Academic Press, London, pp 337–360

    Google Scholar 

  • Whyte MP, Valdes R, Ryan L, McAlister W (1982) Infantile hypophosphatasia: enzyme replacment therapy by intravenous infusion of alkaline phosphatase-rich plasma from patients with Paget bone disease. J Pediatr 101(3):379–386

    Article  PubMed  CAS  Google Scholar 

  • Whyte MP, Greenberg CR, Wenkert D et al (2010) Hypophosphatasia in children: enzyme replacement therapy using bone-targeted tissue-nonspecific alkaline phosphatase. ASBMR 2010 Annual Meeting, Toronto

    Google Scholar 

  • Whyte MP, Greenberg CR, Salman NJ et al (2012) Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366(10):904–913

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Orimo H, Matsumoto T et al (2011) Prolonged survival and phenotypic correction of AKp2 (−1-) hypophosphatasia mice by lentiviral gene therapy. J Bone Miner Res 26(1):135–142

    Article  PubMed  CAS  Google Scholar 

  • Zhanhua C, Gan JG, Lei L et al (2005) Protein subunit interfaces: heterodimers versus homodimers. Bioinformation 1(2):28–39

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Keith Hyland at Medical Neurogenetics, Atlanta, Georgia, for processing the CSF samples for neurotransmitters and PLP level.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arcangela L. Balest .

Editor information

Editors and Affiliations

Additional information

Communicated by: K. Michael Gibson

Appendices

Synopsis

This case reminds the physician that severe infantile HPP can present with PRS as its major initial manifestation and should alert clinicians to consider HPP in their differential of PRS.

Conflict of Interest

Drs. Belachew, Kazmerski, Libman, Goldstein, Stevens, Sperling, Balest and Ms. DeWard have no financial disclosures. Dr. Vockley discloses research support from Alexion Pharmaceuticals.

The authors attest that this is an original manuscript, and it has never been published. At this time, this manuscript is being submitted only to Journal of Inherited Metabolic Disease Reports and will not be submitted elsewhere while under consideration by this journal.

Contributor’s Statement Page

Dr. Belachew drafted the initial draft of this case report and has made a substantial contribution towards the content, outline, background, discussion, revision, editing, and finalization of this manuscript. Dr. Kazmerski has made a substantial contribution to the content, revision, editing, and finalization of this manuscript. Dr. Libman has made a substantial contribution to the diagnosis of this case, revision and editing of this manuscript. Dr. Goldstein has contributed significantly to the neurological aspect of the manuscript content and to revision and editing of this manuscript. Drs. Vockley and Stevens and Ms. Deward have contributed to the genetic discussion of this manuscript and revision and editing. Dr. Sperling has contributed to the background, content, and editing of this manuscript. Dr. Balest has made substantial contributions to the background, revision, editing, and finalization of this manuscript. All of the authors have reviewed this manuscript and given final approval for its submission for publication.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belachew, D. et al. (2013). Infantile Hypophosphatasia Secondary to a Novel Compound Heterozygous Mutation Presenting with Pyridoxine-Responsive Seizures. In: Zschocke, J., Gibson, K., Brown, G., Morava, E., Peters, V. (eds) JIMD Reports - Volume 11. JIMD Reports, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2013_217

Download citation

  • DOI: https://doi.org/10.1007/8904_2013_217

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37327-5

  • Online ISBN: 978-3-642-37328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics