Skip to main content

Syngas Fermentation for Polyhydroxyalkanoate Production in Rhodospirillum rubrum

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Bioconversion of organic waste into value-added products by a process called syngas fermentation is gaining considerable interest during the last years. Syngas is a gaseous mixture composed mainly of hydrogen and carbon monoxide and smaller quantities of other gases like CO2 that can be fermented by Rhodospirillum rubrum, a natural producer of polyhydroxybutyrate (PHB). R. rubrum is a highly versatile, purple, non-sulfur bacterium that can grow in a broad range of anaerobic and aerobic conditions. In anaerobiosis, it can utilize CO as carbon and energy source in the presence or absence of light. When exposed to CO, CO dehydrogenase, which catalyzes oxidation of CO into CO2, is induced. Part of the CO2 produced is assimilated into cell material and the remaining CO2, along with the H2, is released into the environment. The protocol below provides detailed information of PHB production during syngas fermentation by R. rubrum at lab scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Latif H, Zeidan AA, Nielsen AT, Zengler K (2014) Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 27:79–87

    Article  CAS  PubMed  Google Scholar 

  2. Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101(13):5013–5022

    Article  CAS  PubMed  Google Scholar 

  3. Belgiorno V, De Feo G, Della Rocca C, Napoli RMA (2003) Energy from gasification of solid wastes. Waste Manag 23(1):1–15

    Article  CAS  PubMed  Google Scholar 

  4. Munasinghe PC, Khanal SK (2010) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog 26(6):1616–1621

    Article  CAS  PubMed  Google Scholar 

  5. Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2015) Comparing the composition of the synthesis-gas obtained from the pyrolysis of different organic residues for a potential use in the synthesis of bioplastics. J Anal Appl Pyrolysis 111:55–63

    Article  CAS  Google Scholar 

  6. Younesi H, Najafpour G, Mohamed AR (2005) Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem Eng J 27(2):110–119

    Article  CAS  Google Scholar 

  7. Do YS, Smeenk J, Broer KM et al (2007) Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-beta-hydroxyalkanoate. Biotechnol Bioeng 97(2):279–286

    Article  CAS  PubMed  Google Scholar 

  8. Najafpour GD, Younesi H (2007) Bioconversion of synthesis gas to hydrogen using a light-dependent photosynthetic bacterium Rhodospirillum rubrum. World J Microbiol Biotechnol 23(2):275–284

    Article  CAS  Google Scholar 

  9. Kim Y-K, Park SE, Lee H, Yun JY (2014) Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Bioresour Technol 159:446–450

    Article  CAS  PubMed  Google Scholar 

  10. Klasson KT, Gupta A, Clausen EC, Gaddy JL (1993) Evaluation of mass-transfer and kinetic parameters for Rhodospirillum rubrum in a continuous stirred tank reactor. Appl Biochem Biotechnol 39–40(1):549–557

    Article  Google Scholar 

  11. Kerby RL, Hong SS, Ensign SA et al (1992) Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J Bacteriol 174(16):5284–5294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Uffen RL (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl Acad Sci U S A 73(9):3298–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buchanan BB, Evans MC (1965) The synthesis of alpha-ketoglutarate from succinate and carbon dioxide by a subcellular preparation of a photosynthetic bacterium. Proc Natl Acad Sci U S A 54(4):1212–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buchanan BB, Evans MC, Arnon DI (1967) Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum. Arch Mikrobiol 59(1):32–40

    Article  CAS  PubMed  Google Scholar 

  15. Kerby RL, Ludden PW, Roberts GP (1995) Carbon monoxide-dependent growth of Rhodospirillum rubrum. J Bacteriol 177(8):2241–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Revelles O, Millard P, Nougayred JP et al (2013) The carbon storage regulator (Csr) system exerts a nutrient-specific control over central metabolism in Escherichia coli strain Nissle 1917. PLoS One 8(6):e66386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    CAS  PubMed  PubMed Central  Google Scholar 

  18. de Eugenio LI, Escapa IF, Dinjaski N et al (2010) The turnover of medium‐chain‐length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ Microbiol 12(1):207–221

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The design of this protocol was supported by the project European Commission SYNPOL no. 311815 [http:\crwww.sympol.org]. We are indebted to Prof. Jose Luis García, the SYNPOL coordinator, for the helpful discussions about this technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Revelles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Revelles, O., Calvillo, I., Prieto, A., Prieto, M.A. (2015). Syngas Fermentation for Polyhydroxyalkanoate Production in Rhodospirillum rubrum . In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_168

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_168

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53113-6

  • Online ISBN: 978-3-662-53115-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics