Skip to main content

Flexible Leaflet Polymeric Heart Valves

  • Chapter
  • First Online:
Cardiovascular and Cardiac Therapeutic Devices

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 15))

Abstract

Lifelong function and durability without the need for anticoagulation remains the holy grail of replacement heart valves. The use of polymers to produce flexible leaflet valves that have the positive attributes of current commercial bioprosthetic and mechanical valve types without any of their drawbacks, has been a focus of research since the mid 1950s. Although many different polymers have been considered, thermoplastic polyurethanes were by far the most prevalent due to their processability, general chemico-physical properties, and advances in their formulation that resulted in improved biocompatibility and stability. While accelerated in vitro durability of 600–1,000 million cycles has been achieved using polycarbonate urethanes, resistance to degradation, calcification and thrombosis in vivo has been shown with a new generation of polysiloxane-based polyurethanes. Despite these advances, however, polymeric valves have remained relegated to use in temporary ventricular assist devices for bridging heart failure to transplantation, where decreased exposure and resultant requirements are less stringent than with permanently implanted devices. As recent studies suggest a greater degree of instability in thermoplastic materials than hitherto believed, the remaining challenge remains the achievement of a combination of durability and biocompatibility in valve design and polymer formulation. This would allow polymeric valves to become a clinical reality for surgical implantation, as well as suitable candidates for use in applications where minimally invasive, transcatheter procedures are used to replace diseased valves. As polymers are amenable to relatively inexpensive mass production techniques, attainment of this goal could potentially benefit millions of patients in developing and emerging countries, who currently have no access to treatment of rheumatic heart disease so prevalent in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yacoub, M.H., Takkenberg, J.J.: Will heart valve tissue engineering change the world? Nat. Clin. Pract. Cardiovasc. Med. 2, 60–61 (2005)

    Google Scholar 

  2. Zilla, P., Brink, J., Human, P., Bezuidenhout, D.: Prosthetic heart valves: catering for the few. Biomaterials 29, 385–406 (2008)

    Google Scholar 

  3. Butany, J., Fayet, C., Ahluwalia, M.S., Blit, P., Ahn, C., Munroe, C., et al.: Biological replacement heart valves. Identification and evaluation. Cardiovasc. Pathol. 12, 119–139 (2003)

    Google Scholar 

  4. Kidane, A.G., Burriesci, G., Cornejo, P., Dooley, A., Sarkar, S., Bonhoeffer, P., et al.: Current developments and future prospects for heart valve replacement therapy. J. Biomed. Mater. Res. B Appl. Biomater. 88, 290–303 (2009)

    Google Scholar 

  5. Butany, J., Ahluwalia, M.S., Munroe, C., Fayet, C., Ahn, C., Blit, P., et al.: Mechanical heart valve prostheses: identification and evaluation (erratum). Cardiovasc. Pathol. 12, 322–344 (2003)

    Google Scholar 

  6. Chandran, K.B., Fatemi, R., Schoephoerster, R., Wurzel, D., Hansen, G., Pantalos, G., et al.: In vitro comparison of velocity profiles and turbulent shear distal to polyurethane trileaflet and pericardial prosthetic valves. Artif. Organs 13, 148–154 (1989)

    Google Scholar 

  7. Senthilnathan, V., Treasure, T., Grunkemeier, G., Starr, A.: Heart valves: which is the best choice? Cardiovasc. Surg. 7, 393–397 (1999)

    Google Scholar 

  8. Pibarot, P., Dumesnil, J.G.: Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119, 1034–1048 (2009)

    Google Scholar 

  9. Rodes-Cabau, J.: Transcatheter aortic valve implantation: current and future approaches. Nat. Rev. Cardiol. 9, 15–29 (2011)

    Google Scholar 

  10. Davidson, M.J., White, J.K., Baim, D.S.: Percutaneous therapies for valvular heart disease. Cardiovasc. Pathol. 15, 123–129 (2006)

    Google Scholar 

  11. Ghanbari, H., Kidane, A.G., Burriesci, G., Bonhoeffer, P., Seifalian, A.M.: Percutaneous heart valve replacement: an update. Trends Cardiovasc. Med. 18, 117–125 (2008)

    Google Scholar 

  12. Hollmer, M.: Edwards wins broader FDA approval for Sapien heart valve. Fierce Medical Devices, FierceMarkets (2012)

    Google Scholar 

  13. Award for TTK Chitra heart valve prosthesis. The Hindu (online) 15 May 2001.http://hindu.com/2001/05/15/stories/0615000b.htm Accessed 28 June 2013.

  14. Raj, N.: Indigenous heart valve makes a difference. The Hindu (online) 2009. http://www.thehindu.com/opinion/op-ed/article69694.ece. Accessed 28 June 2013.

  15. Indiamart. http://www.indiamart.com/ttkh-ltd/products.html. Accessed 28 June 2013.

  16. Muralidharan, S., Muthubaskeran, V., Chandrasekar, P.: Ten years outcome of Chitra heart valves. Indian J Thorac Cardiovasc Surg. 27, 24–27 (2011)

    Google Scholar 

  17. Sankarkumar, R., Bhuvaneshwar, G.S., Magotra, R., Muralidharan, S., Rajan, R.S., Saha, D., et al.: Chitra heart valve: results of a multicenter clinical study. J. Heart Valve Dis. 10, 619–627 (2001)

    Google Scholar 

  18. Connell, J.: Medical Tourism. CABI (2011)

    Google Scholar 

  19. Lunt, N., Smith, R., Exworthy, M., Green, S., Horsfall, D., Mannion, R.: Medical Tourism: Treatments, Markets and Health System Implications: A Scoping Review. Organisation for Economic Co-operation and Development (OECD) (2011)

    Google Scholar 

  20. Filova, E., Straka, F., Mirejovsky, T., Masin, J., Bacakova, L.: Tissue-engineered heart valves. Physiol. Res. 58(Suppl 2), S141–S158 (2009)

    Google Scholar 

  21. Schoen, F.J.: Heart valve tissue engineering: quo vadis? Curr. Opin. Biotechnol. 22, 698–705 (2011)

    Google Scholar 

  22. Mendelson, K., Schoen, F.J.: Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann. Biomed. Eng. 34, 1799–1819 (2006)

    Google Scholar 

  23. Fare, S., Brunella, M.F., Bruschi, G., Vitali, E.: Ex-vivo characterization of three Bjork-Shiley Delrin heart valves. J. Heart Valve Dis. 17, 325–331 (2008)

    Google Scholar 

  24. Flege Jr, J.B., Melrose, D.G., Bentall, H.H.: Another prosthetic aortic valve. A preliminary report. Ann. Thorac. Surg. 2, 623–625 (1966)

    Google Scholar 

  25. Akutsu, T., Dreyer, B., Kolff, W.J.: Polyurethane artificial heart valves in animals. J. Appl. Physiol. 14, 1045–1048 (1959)

    Google Scholar 

  26. Roe, B.B., Moore, D.: Design and fabrication of prosthetic valves. Exp. Med. Surg. 16, 177–182 (1958)

    Google Scholar 

  27. Braunwald, N.S., Cooper, T., Morrow, A.G.: Complete replacement of the mitral valve. Successful clinical application of a flexible polyurethane prosthesis. J. Thorac. Cardiovasc. Surg. 40, 1–11 (1960)

    Google Scholar 

  28. Braunwald, N.S.: It will work: the first successful mitral valve replacement. Ann. Thorac. Surg. 48, S1–S3 (1989)

    Google Scholar 

  29. Roe, B.B.: Late follow-up studies on flexible leaflet prosthetic valves. J. Thorac. Cardiovasc. Surg. 58, 59–61 (1969)

    Google Scholar 

  30. Roe, B.B., Kelly Jr, P.B., Myers, J.L., Moore, D.W.: Tricuspid leaflet aortic valve prosthesis. Circulation 33, I124–I130 (1966)

    Google Scholar 

  31. Van de Wal, H.J., Bennink, G.B., Haanschoten, M.C., Meijboom, E.J.: Autologous tissue cardiac valve: implantation in children. J. Thorac. Cardiovasc. Surg. 112, 846–848 (1996)

    Google Scholar 

  32. Grabenwoger, M., Fitzal, F., Gross, C., Hutschala, D., Bock, P., Brucke, P., et al.: Different modes of degeneration in autologous and heterologous heart valve prostheses. J. Heart Valve Dis. 9, 104–109; discussion 110–111 (2000)

    Google Scholar 

  33. Colas, A., Curtis, J.: Silicone biomaterials: history and chemistry. In: Rattner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (eds.) Biomaterials Science: An Introduction to Materials in Medicine, 2nd edn. Elsevier, San Diego (2004)

    Google Scholar 

  34. Roe, B.B., Owsley, J.W., Boudoures, P.C.: Experimental results with a prosthetic aortic valve. J. Thorac. Surg. 36, 563–570 (1958)

    Google Scholar 

  35. Roe, B.B., Burke, M.F., Zebner Jr, H.: The subcoronary implantation of a flexible tricuspid aortic valve prosthesis. J. Thorac. Cardiovasc. Surg. 40, 561–567 (1960)

    Google Scholar 

  36. Mohri, H., Hessel 2nd, E.A., Nelson, R.J., Anderson, H.N., Dillard, D.H., Merendino, K.A.: Design and durability test of Silastic trileaflet aortic valve prostheses. J. Thorac. Cardiovasc. Surg. 65, 576–582 (1973)

    Google Scholar 

  37. Gerring, E.L., Bellhouse, B.J., Bellhouse, F.H., Haworth, W.S.: Long term animal trials of the Oxford aortic/pulmonary valve prosthesis without anticoagulants. Trans. Am. Soc. Artif. Intern. Organs 20(B), 703–707 (1974)

    Google Scholar 

  38. Chetta, G.E., Lloyd, J.R.: The design, fabrication and evaluation of a trileaflet prosthetic heart valve. J. Biomech. Eng. 102, 34–41 (1980)

    Google Scholar 

  39. Muller Jr, W.H., Warren, W.D., Dammann Jr, J.F., Beckwith, J.R., Wood Jr, J.E.: Surgical relief of aortic insufficiency by direct operation on the aortic valve. Circulation 21, 587–597 (1960)

    Google Scholar 

  40. Braunwald, N.S., Morrow, A.G.: A late evaluation of flexible Teflon prostheses utilized for total aortic valve replacement. Postoperative clinical, hemodynamic, and pathological assessments. J. Thorac. Cardiovasc. Surg. 49, 485–496 (1965)

    Google Scholar 

  41. Nistal, F., Garcia-Martinez, V., Arbe, E., Fernandez, D., Artinano, E., Mazorra, F., et al.: In vivo experimental assessment of polytetrafluoroethylene trileaflet heart valve prosthesis. J. Thorac. Cardiovasc. Surg. 99, 1074–1081 (1990)

    Google Scholar 

  42. Ando, M., Takahashi, Y.: Ten-year experience with handmade trileaflet polytetrafluoroethylene valved conduit used for pulmonary reconstruction. J. Thorac. Cardiovasc. Surg. 137, 124–131 (2009)

    Google Scholar 

  43. Chiappini, B., Sanchez, A., Noirhomme, P., Verhelst, R., Rubay, J., Poncelet, A., et al.: Replacement of chordae tendineae with polytetrafluoroethylene (PTFE) sutures in mitral valve repair: early and long-term results. J. Heart Valve Dis. 15, 657–663; discussion 663 (2006)

    Google Scholar 

  44. Tomita, Y., Yasui, H., Iwai, T., Nishida, T., Tatewaki, H., Morita, S., et al.: Surgical application for a prolapse of the anterior mitral leaflet by replacing artificial chordae with polytetrafluoroethylene grafts. Surg. Today 35, 812–818 (2005)

    Google Scholar 

  45. Coury, A., Slaikeu, P., Cahalan, P., Stokes, K.: Medical applications of implantable polyurethanes: current issues. Prog. Rubber Plast. Technol. 3, 24–37 (1987)

    Google Scholar 

  46. Kidane, A.G., Burriesci, G., Edirisinghe, M., Ghanbari, H., Bonhoeffer, P., Seifalian, A.M.: A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomater. 5, 2409–2417 (2009)

    Google Scholar 

  47. Braunwald, E.: Nina Starr Braunwald: some reflections on the first woman heart surgeon. Ann. Thorac. Surg. 71, S6–S7 (2001)

    Google Scholar 

  48. Boretos, J.W., Pierce, W.S.: Segmented polyurethane: a new elastomer for biomedical applications. Science 158, 1481–1482 (1967)

    Google Scholar 

  49. Hilbert, S.L., Ferrans, V.J., Tomita, Y., Eidbo, E.E., Jones, M.: Evaluation of explanted polyurethane trileaflet cardiac valve prostheses. J. Thorac. Cardiovasc. Surg. 94, 419–429 (1987)

    Google Scholar 

  50. Wisman, C.B., Pierce, W.S., Donachy, J.H., Pae, W.E., Myers, J.L., Prophet, G.A.: A polyurethane trileaflet cardiac valve prosthesis: in vitro and in vivo studies. Trans. Am. Soc. Artif. Intern. Organs 28, 164–168 (1982)

    Google Scholar 

  51. Kütting, M., Roggenkamp, J., Urban, U., Schmitz-Rode, T., Steinseifer, U.: Polyurethane heart valves: past, present and future. Expert Rev. Med. Devices 8, 227–233 (2011)

    Google Scholar 

  52. Ghista, D.N., Reul, H.: Optimal prosthetic aortic leaflet valve: design parametric and longevity analyses: development of the Avcothane-51 leaflet valve based on the optimum design analysis. J. Biomech. 10, 313–324 (1977)

    Google Scholar 

  53. Jansen, J., Reul, H.: A synthetic three-leaflet valve. J. Med. Eng. Technol. 16, 27–33 (1992)

    Google Scholar 

  54. Jansen, J., Willeke, S., Reiners, B., Harbott, P., Reul, H., Rau, G.: New J-3 flexible-leaflet polyurethane heart valve prosthesis with improved hydrodynamic performance. Int. J. Artif. Organs 14, 655–660 (1991)

    Google Scholar 

  55. Daebritz, S.H., Fausten, B., Hermanns, B., Franke, A., Schroeder, J., Groetzner, J., et al.: New flexible polymeric heart valve prostheses for the mitral and aortic positions. Heart Surg. Forum 7, E525–E532 (2004)

    Google Scholar 

  56. Daebritz, S.H., Fausten, B., Hermanns, B., Schroeder, J., Groetzner, J., Autschbach, R., et al.: Introduction of a flexible polymeric heart valve prosthesis with special design for aortic position. Eur. J. Cardiothorac. Surg. 25, 946–952 (2004)

    Google Scholar 

  57. Daebritz, S.H., Sachweh, J.S., Hermanns, B., Fausten, B., Franke, A., Groetzner, J., et al.: Introduction of a flexible polymeric heart valve prosthesis with special design for mitral position. Circulation 108(Suppl 1):II134–II139 (2003)

    Google Scholar 

  58. Sachweh, J.S., Daebritz, S.H.: Novel “biomechanical” polymeric valve prostheses with special design for aortic and mitral position: a future option for pediatric patients? ASAIO J. 52, 575–580 (2006)

    Google Scholar 

  59. Bernacca, G.M., Mackay, T.G., Gulbransen, M.J., Donn, A.W., Wheatley, D.J.: Polyurethane heart valve durability: effects of leaflet thickness and material. Int. J. Artif. Organs 20, 327–331 (1997)

    Google Scholar 

  60. Bernacca, G.M., Mackay, T.G., Wilkinson, R., Wheatley, D.J.: Calcification and fatigue failure in a polyurethane heart value. Biomaterials 16, 279–285 (1995)

    Google Scholar 

  61. Bernacca, G.M., Mackay, T.G., Wilkinson, R., Wheatley, D.J.: Polyurethane heart valves: fatigue failure, calcification, and polyurethane structure. J. Biomed. Mater. Res. 34, 371–379 (1997)

    Google Scholar 

  62. Bernacca, G.M., O’Connor, B., Williams, D.F., Wheatley, D.J.: Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young’s modulus and leaflet thickness. Biomaterials 23, 45–50 (2002)

    Google Scholar 

  63. Bernacca, G.M., Straub, I., Wheatley, D.J.: Mechanical and morphological study of biostable polyurethane heart valve leaflets explanted from sheep. J. Biomed. Mater. Res. 61, 138–145 (2002)

    Google Scholar 

  64. Mackay, T.G., Wheatley, D.J., Bernacca, G.M., Fisher, A.C., Hindle, C.S.: New polyurethane heart valve prosthesis: design, manufacture and evaluation. Biomaterials 17, 1857–1863 (1996)

    Google Scholar 

  65. Wheatley, D.J., Bernacca, G.M., Tolland, M.M., O’Connor, B., Fisher, J., Williams, D.F.: Hydrodynamic function of a biostable polyurethane flexible heart valve after six months in sheep. Int. J. Artif. Organs 24, 95–101 (2001)

    Google Scholar 

  66. Wheatley, D.J., Raco, L., Bernacca, G.M., Sim, I., Belcher, P.R., Boyd, J.S.: Polyurethane: material for the next generation of heart valve prostheses? Eur. J. Cardiothorac. Surg. 17, 440–448 (2000)

    Google Scholar 

  67. Butterfield, M., Wheatley, D.J., Williams, D.F., Fisher, J.: A new design for polyurethane heart valves. J. Heart Valve Dis. 10, 105–110 (2001)

    Google Scholar 

  68. D’Souza, S.S., Butterfield, M., Fisher, J.: Kinematics of synthetic flexible leaflet heart valves during accelerated testing. J. Heart Valve Dis. 12, 110–119; discussion 119–120

    Google Scholar 

  69. Chaffin, K., Buckalew, A., Schley, J., Chen, X., Jolly, M., Alketout, J., et al.: Influence of water on the structure and properties of PDMS-containing multiblock polyurethanes. Macromolecules 45, 9110–9120 (2012)

    Google Scholar 

  70. Leo, H.L., Dasi, L.P., Carberry, J., Simon, H.A., Yoganathan, A.P.: Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann. Biomed. Eng. 34, 936–952 (2006)

    Google Scholar 

  71. Leo, H.L., Simon, H., Carberry, J., Lee, S.C., Yoganathan, A.P.: A comparison of flow field structures of two tri-leaflet polymeric heart valves. Ann. Biomed. Eng. 33, 429–443 (2005)

    Google Scholar 

  72. Leat, M.E., Fisher, J.: A synthetic leaflet heart valve with improved opening characteristics. Med. Eng. Phys. 16, 470–476 (1994)

    Google Scholar 

  73. Leat, M.E., Fisher, J.: The influence of manufacturing methods on the function and performance of a synthetic leaflet heart valve. Proc. Inst. Mech. Eng. H 209, 65–69 (1995)

    Google Scholar 

  74. Clift, S.E., Fisher, J.: Finite element stress analysis of a new design of synthetic leaflet heart valve. Proc. Inst. Mech. Eng. H 210, 267–272 (1996)

    Google Scholar 

  75. Ghanbari, H., Kidane, A.G., Burriesci, G., Ramesh, B., Darbyshire, A., Seifalian, A.M.: The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve. Acta Biomater. 6, 4249–4260 (2010)

    Google Scholar 

  76. Burriesci, G., Marincola, F.C., Zervides, C.: Design of a novel polymeric heart valve. J. Med. Eng. Technol. 34, 7–22 (2010)

    Google Scholar 

  77. Rahmani, B., Tzamtzis, S., Ghanbari, H., Burriesci, G., Seifalian, A.M.: Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. J. Biomech. 45, 1205–1211 (2012)

    Google Scholar 

  78. Gallocher, S.L., Aguirre, A.F., Kasyanov, V., Pinchuk, L., Schoephoerster, R.T.: A novel polymer for potential use in a trileaflet heart valve. J. Biomed. Mater. Res. B Appl. Biomater. 79, 325–334 (2006)

    Google Scholar 

  79. Pinchuk, L., Wilson, G.J., Barry, J.J., Schoephoerster, R.T., Parel, J.M., Kennedy, J.P.: Medical applications of poly(styrene-block-isobutylene-block-styrene) (“SIBS”). Biomaterials 29, 448–460 (2008)

    Google Scholar 

  80. Yin, W., Gallocher, S., Pinchuk, L., Schoephoerster, R.T., Jesty, J., Bluestein, D.: Flow-induced platelet activation in a St. Jude mechanical heart valve, a trileaflet polymeric heart valve, and a St. Jude tissue valve. Artif. Organs 29, 826–831 (2005)

    Google Scholar 

  81. Wang, Q., McGoron, A.J., Bianco, R., Kato, Y., Pinchuk, L., Schoephoerster, R.T.: In-vivo assessment of a novel polymer (SIBS) trileaflet heart valve. J. Heart Valve Dis. 19, 499–505 (2010)

    Google Scholar 

  82. Claiborne, T.E., Girdhar, G., Gallocher-Lowe, S., Sheriff, J., Kato, Y.P., Pinchuk, L., et al.: Thrombogenic potential of Innovia polymer valves versus Carpentier-Edwards Perimount Magna aortic bioprosthetic valves. ASAIO J. 57, 26–31 (2011)

    Google Scholar 

  83. Claiborne, T.E.: Optimization and Verification of a Novel Trileaflet Polymeric Prosthetic Heart Valve. Stony Brook University, Stony Brook (2012)

    Google Scholar 

  84. Claiborne, T.E., Sheriff, J., Kütting, M., Steinseifer, U., Slepian, M.J., Bluestein, D.: In vitro evaluation of a novel hemodynamically optimized trileaflet polymeric prosthetic heart valve. J. Biomech. Eng. 135, 021021 (2013)

    Google Scholar 

  85. Claiborne, T.E., Xenos, M., Sheriff, J., Chiu, W.C., Soares, J., Alemu, Y., et al.: Toward optimization of a novel trileaflet polymeric prosthetic heart valve via device thrombogenicity emulation. ASAIO J. 59, 275–283 (2013)

    Google Scholar 

  86. Cacciola, G., Peters, G.W., Baaijens, F.P.: A synthetic fiber-reinforced stentless heart valve. J. Biomech. 33, 653–658 (2000)

    Google Scholar 

  87. Cacciola, G., Peters, G.W., Schreurs, P.J.: A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J. Biomech. 33, 521–530 (2000)

    Google Scholar 

  88. Jiang, H., Campbell, G., Boughner, D., Wan, W.K., Quantz, M.: Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Med. Eng. Phys. 26, 269–277 (2004)

    Google Scholar 

  89. Mohammadi, H.: Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanical behaviour. Proc. Inst. Mech. Eng. H 225, 718–722 (2011)

    Google Scholar 

  90. Mohammadi, H., Boughner, D., Millon, L.E., Wan, W.K.: Design and simulation of a poly(vinyl alcohol)-bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis. Proc. Inst. Mech. Eng. H 223, 697–711 (2009)

    Google Scholar 

  91. Mohammadi, H., Mequanint, K.: Prosthetic aortic heart valves: modeling and design. Med. Eng. Phys. 33, 131–147 (2011)

    Google Scholar 

  92. Thunberg, C.A., Gaitan, B.D., Arabia, F.A., Cole, D.J., Grigore, A.M.: Ventricular assist devices today and tomorrow. J. Cardiothorac. Vasc. Anesth. 24, 656–680 (2010)

    Google Scholar 

  93. Garbade, J., Bittner, H.B., Barten, M.J., Mohr, F.W.: Current trends in implantable left ventricular assist devices. Cardiol. Res. Pract. 2011, 290561 (2011)

    Google Scholar 

  94. Zimmerman, H., Covington, D., Smith, R., Copeland, J.: Mechanical support and medical therapy reverse heart failure in infants and children. Artif. Organs 34, 885–890 (2010)

    Google Scholar 

  95. Drews, T., Loebe, M., Hennig, E., Kaufmann, F., Muller, J., Hetzer, R.: The ‘Berlin Heart’ assist device. Perfusion 15, 387–396 (2000)

    Google Scholar 

  96. Hetzer, R., Alexi-Meskishvili, V., Weng, Y., Hubler, M., Potapov, E., Drews, T., et al.: Mechanical cardiac support in the young with the Berlin Heart EXCOR pulsatile ventricular assist device: 15 years’ experience. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 9, 99–108 (2006)

    Google Scholar 

  97. Thuaudet, S.: The Medos ventricular assist device system. Perfusion 15, 337–343 (2000)

    Google Scholar 

  98. Mecora® Medizintechnik Aachen. http://www.mecora.de/en/Produkte/Produkte.html Accessed 28 June 2013.

  99. Arabia, F.A., Tsau, P.H., Smith, R.G., Nolan, P.E., Paramesh, V., Bose, R.K., et al.: Pediatric bridge to heart transplantation: application of the Berlin Heart, Medos and Thoratec ventricular assist devices. J. Heart Lung Transplant. 25, 16–21 (2006)

    Google Scholar 

  100. Bermudez, C., Minakata, K., Kormos, R.: Options for advanced mechanical support for cardiogenic shock complicating cardiac reoperations. In: Schaff, H., Svenson, L., Machiraju, V. (eds.) Redo Cardiac Surgery in Adults, 2nd edn, pp. 73–74. Springer, New York (2012)

    Google Scholar 

  101. Anderson, M., Smedira, N., Samuels, L., Madani, M., Naka, Y., Acker, M., et al.: Use of the AB5000 ventricular assist device in cardiogenic shock after acute myocardial infarction. Ann. Thorac. Surg. 90, 706–712 (2000)

    Google Scholar 

  102. Morris, R.J.: Total artificial heart—concepts and clinical use. Semin. Thorac. Cardiovasc. Surg. 20, 247–254 (2008)

    Google Scholar 

  103. Gray Jr, N.A., Selzman, C.H.: Current status of the total artificial heart. Am. Heart J. 152, 4–10 (2006)

    Google Scholar 

  104. Bernstein, O., Haddy, S.: Three-dimensional transesophageal echocardiography of a Medtronic Hall-type tilting disk valve. Echocardiography 29, E129–E130 (2012)

    Google Scholar 

  105. Reuters.: UPDATE 1-Aortech licenses heart valve to SynCardia (2009)

    Google Scholar 

  106. Samuels, L.E., Holmes, E.C., Garwood, P., Ferdinand, F.: Initial experience with the Abiomed AB5000 ventricular assist device system. Ann. Thorac. Surg. 80, 309–312 (2005)

    Google Scholar 

  107. Ward, R.S., Nyilas, E.: Production of biomedical polymers I: Silicone/urethane synergy in avcothane elastomers. In: Carraher, C.E. Jr. (ed.) Organometallic Polymers, pp. 219–222. Academic Press, Salt Lake (1978)

    Google Scholar 

  108. Imachi, K., Fujimasa, I., Mabuchi, K., Chinzei, T., Abe, Y., Maeda, K., et al.: A newly designed jellyfish valve for an artificial heart blood pump. ASAIO Trans. 34, 726–728 (1988)

    Google Scholar 

  109. Imachi, K., Mabuchi, K., Chinzei, T., Abe, Y., Imanishi, K., Suzukawa, M., et al.: Blood compatibility of the jellyfish valve without anticoagulant. ASAIO Trans. 37, M220–M222 (1991)

    Google Scholar 

  110. Iwasaki, K., Umezu, M., Imachi, K., Iijima, K., Fujimoto, T.: Design improvement of the jellyfish valve for long-term use in artificial hearts. Int. J. Artif. Organs 24, 463–469 (2001)

    Google Scholar 

  111. Iwasaki, K., Umezu, M., Iijima, K., Imachi, K.: Implications for the establishment of accelerated fatigue test protocols for prosthetic heart valves. Artif. Organs 26, 420–429 (2002)

    Google Scholar 

  112. Kolff, W.J., Yu, L.S.: The return of elastomer valves. Ann. Thorac. Surg. 48, S98–S99 (1989)

    Google Scholar 

  113. Sacristan, E., Corona, F., Suarez, B., Rodriguez, G., Duenas, B., Gorzelewski, A., et al.: Development of a universal second generation pneumatic ventricular assist device and drive unit. In: Proceedings of the 25th Annual International Conference of the IEEE, pp. 427–430 (2003)

    Google Scholar 

  114. Garcia, J., Sacristan, E.: Trileaflet valve hydrodynamic resistance assessment. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 1393–1396 (2008)

    Google Scholar 

  115. Garcia, J., Kadem, L., Pibarot, P.: Silicone rubber trileaflet valve assessment using cardiovascular magnetic resonance imaging. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5169–5172 (2010)

    Google Scholar 

  116. Kiraly, R., Yozu, R., Hillegass, D., Harasaki, H., Murabayashi, S., Snow, J., et al.: Hexsyn trileaflet valve: application to temporary blood pumps. Artif. Organs 6, 190–197 (1982)

    Google Scholar 

  117. Hollman, A.: An early percutaneous catheter-mounted valve. Heart 97, 1596 (2011)

    Google Scholar 

  118. Cribier, A.: Development of transcatheter aortic valve implantation (TAVI): a 20-year odyssey. Arch. Cardiovasc. Dis. 105, 146–152 (2012)

    Google Scholar 

  119. Rowe, S., Bash, B.: Edwards in Israel: how it all began. Innovations in cardiovascular interventions. Tel Aviv, Israel (2012)

    Google Scholar 

  120. Attmann, T., Steinseifer, U., Cremer, J., Lutter, G.: Percutaneous valve replacement: a novel low-profile polyurethane valved stent. Eur. J. Cardiothorac. Surg. 30, 379 (2006)

    Google Scholar 

  121. Metzner, A., Iino, K., Steinseifer, U., Uebing, A., de Buhr, W., Cremer, J., et al.: Percutaneous pulmonary polyurethane valved stent implantation. J. Thorac. Cardiovasc. Surg. 139, 748–752 (2010)

    Google Scholar 

  122. Sochman, J., Peregrin, J.H., Pavcnik, D., Timmermans, H., Rosch, J.: Percutaneous transcatheter aortic disc valve prosthesis implantation: a feasibility study. Cardiovasc. Intervent. Radiol. 23, 384–388 (2000)

    Google Scholar 

  123. Hashimoto, M., Kaminou, T., Ohuchi, Y., Nakamura, K., Sugiura, K., Adachi, A., et al.: Development of a re-positionable aortic stent-valve: a preliminary study in swine. J. Interv. Cardiol. 21, 432–440 (2008)

    Google Scholar 

  124. Claiborne, T.E., Bluestein, D., Schoephoerster, R.T.: Development and evaluation of a novel artificial catheter-deliverable prosthetic heart valve and method for in vitro testing. Int. J. Artif. Organs 32, 262–271 (2009)

    Google Scholar 

  125. Kuan, Y., Dasi, L., Yoganathan, A.P., Leo, H.: Recent advances in polymeric heart valve research. Int. J. Biomater. Res. Eng. 1, 1–17 (2011)

    Google Scholar 

  126. Ghista, D.N.: Toward an optimum prosthetic trileaflet aortic-valve design. Med. Biol. Eng. 14, 122–129 (1976)

    Google Scholar 

  127. Thubrikar, M.J.: The Aortic Valve. CRC Press, Boca Raton (1990)

    Google Scholar 

  128. Mercer, J.L., Benedicty, M., Bahnson, H.T.: The geometry and construction of the aortic leaflet. J. Thorac. Cardiovasc. Surg. 65, 511–518 (1973)

    Google Scholar 

  129. Hamid, M.S., Sabbah, H.N., Stein, P.D.: Influence of stent height upon stresses on the cusps of closed bioprosthetic valves. J. Biomech. 19, 759–769 (1986)

    Google Scholar 

  130. Chong, P., Wieting, D., Hwang, H., Kennedy, J.: Stress analysis of normal human aortic valve leaflets during diastole. Artif. Cells Blood Substit. Biotechnol. 1, 307–321 (1973)

    Google Scholar 

  131. Kim, I., Kim, J., Jung, D., Kim, C.S., Min, B.G.: Development of polymer prosthetic heart valve—fabrication and in vitro test. Seoul J. Med. 32, 35–42 (1991)

    Google Scholar 

  132. Lockie, K.J., Butterfield, M., Fisher, J., Juster, N.P., Watterson, K., Davies, G.A.: Geometry of homograft valve leaflets: effect of dilation of the aorta and the aortic root. Ann. Thorac. Surg. 56, 125–130 (1993)

    Google Scholar 

  133. Swanson, M., Clark, R.E.: Dimensions and geometric relationships of the human aortic valve as a function of pressure. Circ. Res. 35, 871–882 (1974)

    Google Scholar 

  134. Vesely, I.: The evolution of bioprosthetic heart valve design and its impact on durability. Cardiovasc. Pathol. 12, 277–286 (2003)

    Google Scholar 

  135. Peskin, C.S., McQueen, D.M.: Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets. Am. J. Physiol. 266, H319–H328 (1994)

    Google Scholar 

  136. Mohammadi, H., Bahramian, F., Wan, W.: Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method. Med. Eng. Phys. 31, 1110–1117 (2009)

    Google Scholar 

  137. Gallocher, S.: Durability Assessment of Polymer Trileaflet Heart Valves. Florida International University, Miami (2007)

    Google Scholar 

  138. Iwasaki, K., Umezu, M., Iijima, K., Inoue, A., Imachi, K., Ye, C.X.: Development of a polymer bileaflet valve to realize a low-cost pulsatile blood pump. Artif. Organs 27, 78–83 (2003)

    Google Scholar 

  139. Imachi, K., Mabuchi, K., Chinzei, T., Abe, Y., Imanishi, K., Yonezawa, T., et al.: In vitro and in vivo evaluation of a jellyfish valve for practical use. ASAIO Trans. 35, 298–301 (1989)

    Google Scholar 

  140. Smock, D.: Polycarbonate-urethane provides toughness for implanted valve. Plastics Today (2012)

    Google Scholar 

  141. Reade, L.: Nanocages for flexible heart valves. Materials World Magazine (2009)

    Google Scholar 

  142. Escobedo, C., Tovar, F., Vila, A., Garcia, J., Suarez, B., Corona, F., et al.: Hydrodynamic effects of the partial opening of a trileaflet valve. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 2896–2899 (2006)

    Google Scholar 

  143. Sperati, C.A.: Fluorocarbon polymers, polytetrafluoroethylene (PTFE). In: Rubin, I.I. (ed.) Handbook of Plastic Materials and Technology, pp. 117–129. Wiley, New York (1990)

    Google Scholar 

  144. Coury, A., Stokes, K., Cahalan, P., Slaikeu, P.: Biostability considerations for implantable polyurethanes. Life Support Syst. 5, 25–39 (1987)

    Google Scholar 

  145. Bezuidenhout, D., Zilla, P.: Vascular grafts. In: Wnek, G., Bowlin, G. (eds.) Encyclopaedia of Biomaterials and Biomedical Engineering. Marcel Dekker, New York (2004)

    Google Scholar 

  146. Imamura, E., Kaye, M.P.: Function of expanded-polytetrafluoroethylene laminated trileaflet valves in animals. Mayo Clin. Proc. 52, 770–775 (1977)

    Google Scholar 

  147. Imamura, E., Kaye, M.P., Davis, G.D.: Radiographic assessment of leaflet motion of Gore-Tex laminate trileaflet valves and Hancock xenograft in tricuspid position of dogs. Circulation 56, 1053–1058 (1977)

    Google Scholar 

  148. Ando, M., Imai, Y., Takanashi, Y., Hoshino, S., Seo, K., Terada, M.: Fate of trileaflet equine pericardial extracardiac conduit used for the correction of anomalies having pulmonic ventricle-pulmonary arterial discontinuity. Ann. Thorac. Surg. 64, 154–158 (1997)

    Google Scholar 

  149. Whiffen, J.D., Young, W.P., Gott, V.L.: Stability of the thrombus-resistant graphite-benzalkonium-heparin surface in an anti-heparin environment. J. Thorac. Cardiovasc. Surg. 48, 317–322 (1964)

    Google Scholar 

  150. Bernacca, G.M., Wheatley, D.J.: Surface modification of polyurethane heart valves: effects on fatigue life and calcification. Int. J. Artif. Organs 21, 814–819 (1998)

    Google Scholar 

  151. Han, D.K., Park, K., Park, K.D., Ahn, K.D., Kim, Y.H.: In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft. Artif. Organs 30, 955–959 (2006)

    Google Scholar 

  152. Kim, Y.H., Han, D.K., Park, K.D., Kim, S.H.: Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept. Biomaterials 24, 2213–2223 (2003)

    Google Scholar 

  153. Pedersen, C.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967)

    Google Scholar 

  154. Hamon, R.F., Khan, A.S., Chow, A.: The cation-chelation mechanism of metal-ion sorption by polyurethanes. Talanta 29, 313–326 (1982)

    Google Scholar 

  155. Harasaki, H., Gerrity, R., Kiraly, R., Jacobs, G., Nose, Y.: Calcification in blood pumps. Trans. Am. Soc. Artif. Intern. Organs 25, 305–310 (1979)

    Google Scholar 

  156. Alferiev, I., Stachelek, S.J., Lu, Z., Fu, A.L., Sellaro, T.L., Connolly, J.M., et al.: Prevention of polyurethane valve cusp calcification with covalently attached bisphosphonate diethylamino moieties. J. Biomed. Mater. Res. A 66, 385–395 (2003)

    Google Scholar 

  157. Alferiev, I., Vyavahare, N., Song, C., Connolly, J., Hinson, J.T., Lu, Z., et al.: Bisphosphonate derivatized polyurethanes resist calcification. Biomaterials 22, 2683–2693 (2001)

    Google Scholar 

  158. Whalen, R.L., Snow, J.L., Harasaki, H., Nose, Y.: Mechanical strain and calcification in blood pumps. Trans. Am. Soc. Artif. Intern. Organs 26, 487–492 (1980)

    Google Scholar 

  159. Imachi, K., Chinzei, T., Abe, Y., Mabuchi, K., Matsuura, H., Karita, T., et al.: A new hypothesis on the mechanism of calcification formed on a blood-contacted polymer surface. J. Artif. Organs 4, 74–82 (2001)

    Google Scholar 

  160. Levy, R.J., Wolfrum, J., Schoen, F.J., Hawley, M.A., Lund, S.A., Langer, R.: Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science 228, 190–192 (1985)

    Google Scholar 

  161. Joshi, R.R., Frautschi, J.R., Phillips Jr, R.E., Levy, R.J.: Phosphonated polyurethanes that resist calcification. J. Appl. Biomater. (an official journal of the Society for Biomaterials) 5, 65–77 (1994)

    Google Scholar 

  162. Vyavahare, N., Chen, W., Joshi, R., Lee, C.-H., Hirsch, D., Levy, J.G., et al.: Current progress in anticalcification for bioprosthetic and polymeric heart valves. Cardiovasc. Pathol. 6, 219–229 (1997)

    Google Scholar 

  163. Stachelek, S.J., Alferiev, I., Choi, H., Kronsteiner, A., Uttayarat, P., Gooch, K.J., et al.: Cholesterol-derivatized polyurethane: characterization and endothelial cell adhesion. J. Biomed. Mater. Res. A 72, 200–212 (2005)

    Google Scholar 

  164. Stachelek, S.J., Alferiev, I., Connolly, J.M., Sacks, M., Hebbel, R.P., Bianco, R., et al.: Cholesterol-modified polyurethane valve cusps demonstrate blood outgrowth endothelial cell adhesion post-seeding in vitro and in vivo. Ann. Thorac. Surg. 81, 47–55 (2006)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Art Coury for advice, suggestions and helpful discussions during the finalization of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deon Bezuidenhout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bezuidenhout, D., Zilla, P. (2013). Flexible Leaflet Polymeric Heart Valves. In: Franz, T. (eds) Cardiovascular and Cardiac Therapeutic Devices. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2013_166

Download citation

  • DOI: https://doi.org/10.1007/8415_2013_166

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53835-3

  • Online ISBN: 978-3-642-53836-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics