Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 430))

Abstract

Biomedical research aiming to understand the molecular basis of human lung tissue development, homeostasis and disease, or to develop new therapies for human respiratory diseases, requires models that faithfully recapitulate the human condition. This has stimulated biologists and engineers to develop in vitro organotypic models mimicking human respiratory tissues. In this chapter, we provide examples of different types of model systems ranging from simple unicellular cultures to more complex multicellular systems. The models contain, in varying degree, cell types present in real tissue in combination with different extracellular matrix components that can critically affect cell phenotype and function. We also describe how organotypic respiratory models can be combined with human innate immune cells, to better recapitulate tissue inflammation, a key component in, for example, infectious diseases. These models have the potential to provide new insights into lung physiology, tissue infection and inflammation, disease mechanisms, as well as provide a platform for identification of novel targets and screening of candidate drugs in human lung disorders.

Current topics in Microbiology and Immunology,

“Three-dimensional human organotypic models for biomedical research”

Eds Rino Rappuoli and Fabio Bagnoli

Human organotypic respiratory models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B, Hess PR, Jakus Z, Kuligowski M, Fletcher AL, Elpek KG et al (2012) Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 37:276–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andreoli C, Gigante D, Nunziata A (2003) A review of in vitro methods to assess the biological activity of tobacco smoke with the aim of reducing the toxicity of smoke. Toxicol in Vitro 17:587–594

    CAS  PubMed  Google Scholar 

  • Balharry D, Sexton K, BeruBe KA (2008) An in vitro approach to assess the toxicity of inhaled tobacco smoke components: nicotine, cadmium, formaldehyde and urethane. Toxicology 244:66–76

    CAS  PubMed  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    CAS  PubMed  Google Scholar 

  • Barkal LJ, Procknow CL, Alvarez-Garcia YR, Niu M, Jimenez-Torres JA, Brockman-Schneider RA, Gern JE, Denlinger LC, Theberge AB, Keller NP et al (2017) Microbial volatile communication in human organotypic lung models. Nat Commun 8:1770

    PubMed  PubMed Central  Google Scholar 

  • Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, Lee HH, Alves SE, Salmon M, Ferrante TC, Weaver JC et al (2016) Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 13:151–157

    CAS  PubMed  Google Scholar 

  • Birkness KA, Deslauriers M, Bartlett JH, White EH, King CH, Quinn FD (1999) An in vitro tissue culture bilayer model to examine early events in Mycobacterium tuberculosis infection. Infect Immun 67:653–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99:31–68

    CAS  PubMed  Google Scholar 

  • Black AF, Bouez C, Perrier E, Schlotmann K, Chapuis F, Damour O (2005) Optimization and characterization of an engineered human skin equivalent. Tissue Eng 11:723–733

    CAS  PubMed  Google Scholar 

  • Booth JL, Coggeshall KM, Gordon BE, Metcalf JP (2004) Adenovirus type 7 induces interleukin-8 in a lung slice model and requires activation of Erk. J Virol 78:4156–4164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Sugimoto C, Arainga M, Alvarez X, Didier ES, Kuroda MJ (2014) In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: implications for understanding lung disease in humans. J Immunol 192:2821–2829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carterson AJ, Honer zu Bentrup K, Ott CM, Clarke MS, Pierson DL, Vanderburg CR, Buchanan KL, Nickerson CA, Schurr MJ (2005) A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infect Immun 73, 1129–1140

    Google Scholar 

  • Chandorkar P, Posch W, Zaderer V, Blatzer M, Steger M, Ammann CG, Binder U, Hermann M, Hortnagl P, Lass-Florl C, Wilflingseder D (2017) Fast-track development of an in vitro 3D lung/immune cell model to study Aspergillus infections. Sci Rep 7:11644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YW, Huang SX, de Carvalho A, Ho SH, Islam MN, Volpi S, Notarangelo LD, Ciancanelli M, Casanova JL, Bhattacharya J et al (2017) A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol 19:542–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choe MM, Sporn PH, Swartz MA (2006a) Extracellular matrix remodeling by dynamic strain in a three-dimensional tissue-engineered human airway wall model. Am J Respir Cell Mol Biol 35:306–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choe MM, Tomei AA, Swartz MA (2006b) Physiological 3D tissue model of the airway wall and mucosa. Nat Protoc 1:357–362

    PubMed  Google Scholar 

  • Chu HW, Rios C, Huang C, Wesolowska-Andersen A, Burchard EG, O’Connor BP, Fingerlin TE, Nichols D, Reynolds SD, Seibold MA (2015) CRISPR-Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18. Gene Ther 22:822–829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clevers H (2016) Modeling development and disease with organoids. Cell 165:1586–1597

    CAS  PubMed  Google Scholar 

  • Condon TV, Sawyer RT, Fenton MJ, Riches DW (2011) Lung dendritic cells at the innate-adaptive immune interface. J Leukoc Biol 90:883–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cozens AL, Yezzi MJ, Kunzelmann K, Ohrui T, Chin L, Eng K, Finkbeiner WE, Widdicombe JH, Gruenert DC (1994) CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10:38–47

    CAS  PubMed  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712

    CAS  PubMed  Google Scholar 

  • Danahay H, Pessotti AD, Coote J, Montgomery BE, Xia D, Wilson A, Yang H, Wang Z, Bevan L, Thomas C et al (2015) Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep 10:239–252

    CAS  PubMed  Google Scholar 

  • Deslee G, Dury S, Perotin JM, Al Alam D, Vitry F, Boxio R, Gangloff SC, Guenounou M, Lebargy F, Belaaouaj A (2007) Bronchial epithelial spheroids: an alternative culture model to investigate epithelium inflammation-mediated COPD. Respir Res 8:86

    PubMed  PubMed Central  Google Scholar 

  • Drewitz M, Helbling M, Fried N, Bieri M, Moritz W, Lichtenberg J, Kelm JM (2011) Towards automated production and drug sensitivity testing using scaffold-free spherical tumor microtissues. Biotechnol J 6:1488–1496

    CAS  PubMed  Google Scholar 

  • Fahy JV, Dickey BF (2010) Airway mucus function and dysfunction. N Engl J Med 363:2233–2247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18:246–254

    PubMed  Google Scholar 

  • Fessart D, Begueret H, Delom F (2013) Three-dimensional culture model to distinguish normal from malignant human bronchial epithelial cells. Eur Respir J 42:1345–1356

    PubMed  Google Scholar 

  • Gao X, Bali AS, Randell SH, Hogan BL (2015) GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. J Cell Biol 211:669–682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Spagnoli GC, Martin I, Ploegert S, Demougin P, Heberer M, Reschner A (2005) Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol 204:522–531

    CAS  PubMed  Google Scholar 

  • Godiska R, Chantry D, Raport CJ, Sozzani S, Allavena P, Leviten D, Mantovani A, Gray PW (1997) Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J Exp Med 185:1595–1604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez RF, Allen L, Gonzales L, Ballard PL, Dobbs LG (2010) HTII-280, a biomarker specific to the apical plasma membrane of human lung alveolar type II cells. J Histochem Cytochem 58:891–901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    CAS  PubMed  Google Scholar 

  • Guilliams M, Lambrecht BN, Hammad H (2013) Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol 6:464–473

    CAS  PubMed  Google Scholar 

  • Gunzer M, Friedl P, Niggemann B, Brocker EB, Kampgen E, Zanker KS (2000) Migration of dendritic cells within 3-D collagen lattices is dependent on tissue origin, state of maturation, and matrix structure and is maintained by proinflammatory cytokines. J Leukoc Biol 67:622–629

    CAS  PubMed  Google Scholar 

  • Guo L, Zhou Y, Wang S, Wu Y (2014) Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. J Cell Mol Med 18:2009–2019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammad H, Lambrecht BN (2008) Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8:193–204

    CAS  PubMed  Google Scholar 

  • Harrington H, Cato P, Salazar F, Wilkinson M, Knox A, Haycock JW, Rose F, Aylott JW, Ghaemmaghami AM (2014) Immunocompetent 3D model of human upper airway for disease modeling and in vitro drug evaluation. Mol Pharm 11:2082–2019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hegab AE, Arai D, Gao J, Kuroda A, Yasuda H, Ishii M, Naoki K, Soejima K, Betsuyaku T (2015) Mimicking the niche of lung epithelial stem cells and characterization of several effectors of their in vitro behavior. Stem Cell Res 15:109–121

    CAS  PubMed  Google Scholar 

  • Heijink IH, Brandenburg SM, Noordhoek JA, Postma DS, Slebos DJ, van Oosterhout AJ (2010) Characterisation of cell adhesion in airway epithelial cell types using electric cell-substrate impedance sensing. The Eur Respir J 35:894–903

    CAS  PubMed  Google Scholar 

  • Hieshima K, Imai T, Baba M, Shoudai K, Ishizuka K, Nakagawa T, Tsuruta J, Takeya M, Sakaki Y, Takatsuki K et al (1997) A novel human CC chemokine PARC that is most homologous to macrophage-inflammatory protein-1 alpha/LD78 alpha and chemotactic for T lymphocytes, but not for monocytes. J Immunol 159:1140–1149

    CAS  PubMed  Google Scholar 

  • Ho WJ, Pham EA, Kim JW, Ng CW, Kim JH, Kamei DT, Wu BM (2010) Incorporation of multicellular spheroids into 3-D polymeric scaffolds provides an improved tumor model for screening anticancer drugs. Cancer Sci 101:2637–2643

    CAS  PubMed  Google Scholar 

  • Holmes AM, Solari R, Holgate ST (2011) Animal models of asthma: value, limitations and opportunities for alternative approaches. Drug Discov Today 16:659–670

    PubMed  Google Scholar 

  • Htwe SS, Harrington H, Knox A, Rose F, Aylott J, Haycock JW, Ghaemmaghami AM (2015) Investigating NF-kappaB signaling in lung fibroblasts in 2D and 3D culture systems. Respir Res 16:144

    PubMed  PubMed Central  Google Scholar 

  • Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, Thorneloe KS, McAlexander MA, Ingber DE (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4:159ra147

    Google Scholar 

  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    CAS  PubMed  Google Scholar 

  • Imai T, Yoshida T, Baba M, Nishimura M, Kakizaki M, Yoshie O (1996) Molecular cloning of a novel T cell-directed CC chemokine expressed in thymus by signal sequence trap using Epstein-Barr virus vector. J Biol Chem 271:21514–21521

    CAS  PubMed  Google Scholar 

  • Ishizumi T, McWilliams A, MacAulay C, Gazdar A, Lam S (2010) Natural history of bronchial preinvasive lesions. Cancer Metastasis Rev 29:5–14

    PubMed  PubMed Central  Google Scholar 

  • Jager J, Marwitz S, Tiefenau J, Rasch J, Shevchuk O, Kugler C, Goldmann T, Steinert M (2014) Human lung tissue explants reveal novel interactions during Legionella pneumophila infections. Infect Immun 82:275–285

    PubMed  PubMed Central  Google Scholar 

  • Kapoor N, Pawar S, Sirakova TD, Deb C, Warren WL, Kolattukudy PE (2013) Human granuloma in vitro model, for TB dormancy and resuscitation. PLoS ONE 8:e53657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ketterer MR, Shao JQ, Hornick DB, Buscher B, Bandi VK, Apicella MA (1999) Infection of primary human bronchial epithelial cells by Haemophilus influenzae: macropinocytosis as a mechanism of airway epithelial cell entry. Infect Immun 67:4161–4170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Lee H, Lee YK, Nam JM, Levchenko A (2010) Biomimetic nanopatterns as enabling tools for analysis and control of live cells. Adv Mater 22:4551–4566

    CAS  PubMed  Google Scholar 

  • Kleinman HK, Philp D, Hoffman MP (2003) Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol 14:526–532

    CAS  PubMed  Google Scholar 

  • Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9:273–285

    CAS  PubMed  Google Scholar 

  • Lambrecht BN, Hammad H (2009) Biology of lung dendritic cells at the origin of asthma. Immunity 31:412–424

    CAS  PubMed  Google Scholar 

  • Lin H, Li H, Cho HJ, Bian S, Roh HJ, Lee MK, Kim JS, Chung SJ, Shim CK, Kim DD (2007) Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J Pharm Sci 96:341–350

    CAS  PubMed  Google Scholar 

  • Loffler B, Hussain M, Grundmeier M, Bruck M, Holzinger D, Varga G, Roth J, Kahl BC, Proctor RA, Peters G (2010) Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS pathogens 6:e1000715

    Google Scholar 

  • Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mairpady Shambat S, Chen P, Nguyen Hoang AT, Bergsten H, Vandenesch F, Siemens N, Lina G, Monk IR, Foster TJ, Arakere G et al (2015) Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology. Dis Model Mech 8:1413–1425

    PubMed  PubMed Central  Google Scholar 

  • Mishra DK, Sakamoto JH, Thrall MJ, Baird BN, Blackmon SH, Ferrari M, Kurie JM, Kim MP (2012) Human lung cancer cells grown in an ex vivo 3D lung model produce matrix metalloproteinases not produced in 2D culture. PLoS ONE 7:e45308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nam KH, Smith AS, Lone S, Kwon S, Kim DH (2015) Biomimetic 3D tissue models for advanced high-throughput drug screening. J Lab Autom 20:201–215

    CAS  PubMed  Google Scholar 

  • Nguyen Hoang AT, Chen P, Bjornfot S, Hogstrand K, Lock JG, Grandien A, Coles M, Svensson M (2014) Technical Advance: live-imaging analysis of human dendritic cell migrating behavior under the influence of immune-stimulating reagents in an organotypic model of lung. J Leukoc Biol 96:481–489

    PubMed  PubMed Central  Google Scholar 

  • Nguyen Hoang AT, Chen P, Juaréz J, Sachamitr P, Billing B, Bosnjak L, Dahlén B, Coles M, Svensson M (2012) Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa. Am J Physiol—Lung Cell Mol Physiol 302:226–237

    Google Scholar 

  • Nicholas B, Staples KJ, Moese S, Meldrum E, Ward J, Dennison P, Havelock T, Hinks TS, Amer K, Woo E et al (2015) A novel lung explant model for the ex vivo study of efficacy and mechanisms of anti-influenza drugs. J Immunol 194:6144–6154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    CAS  PubMed  Google Scholar 

  • Parasa VR, Rahman MJ, Ngyuen Hoang AT, Svensson M, Brighenti S, Lerm M (2014) Modeling Mycobacterium tuberculosis early granuloma formation in experimental human lung tissue. Dis Model Mech 7:281–288

    PubMed  Google Scholar 

  • Pezzulo AA, Starner TD, Scheetz TE, Traver GL, Tilley AE, Harvey BG, Crystal RG, McCray PB Jr, Zabner J (2011) The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am J Physiol Lung Cell Mol Physiol 300:L25–L31

    CAS  PubMed  Google Scholar 

  • Pluddemann A, Mukhopadhyay S, Gordon S (2011) Innate immunity to intracellular pathogens: macrophage receptors and responses to microbial entry. Immunol Rev 240:11–24

    CAS  PubMed  Google Scholar 

  • Puissegur MP, Botanch C, Duteyrat JL, Delsol G, Caratero C, Altare F (2004) An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell Microbiol 6:423–433

    CAS  PubMed  Google Scholar 

  • Roskelley CD, Desprez PY, Bissell MJ (1994) Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc Natl Acad Sci USA 91:12378–12382

    CAS  PubMed  Google Scholar 

  • Schutyser E, Richmond A, Van Damme J (2005) Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. J Leukoc Biol 78:14–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Anderson SA, Schoop R, Hudson JB (2009) Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antiviral Res 83:165–170

    CAS  PubMed  Google Scholar 

  • Shaykhiev R, Zuo WL, Chao I, Fukui T, Witover B, Brekman A, Crystal RG (2013) EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype. Proc Natl Acad Sci U S A 110:12102–12107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundstrom KB, Nguyen Hoang AT, Gupta S, Ahlm C, Svensson M, Klingstrom J (2016) Andes hantavirus-infection of a 3D human lung tissue model reveals a late peak in progeny virus production followed by increased levels of proinflammatory cytokines and VEGF-A. PLoS ONE 11:e0149354

    PubMed  PubMed Central  Google Scholar 

  • Svensson M, Maroof A, Ato M, Kaye PM (2004) Stromal cells direct local differentiation of regulatory dendritic cells. Immunity 21:805–816

    CAS  PubMed  Google Scholar 

  • Switalla S, Lauenstein L, Prenzler F, Knothe S, Forster C, Fieguth HG, Pfennig O, Schaumann F, Martin C, Guzman CA et al (2010) Natural innate cytokine response to immunomodulators and adjuvants in human precision-cut lung slices. Toxicol Appl Pharmacol 246:107–115

    CAS  PubMed  Google Scholar 

  • Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    CAS  PubMed  Google Scholar 

  • Tralau T, Luch A (2012) Drug-mediated toxicity: illuminating the ‘bad’ in the test tube by means of cellular assays? Trends Pharmacol Sci 33:353–364

    CAS  PubMed  Google Scholar 

  • Ulrich M, Berger J, Moller JG, Doring G (2005) Moxifloxacin and ciprofloxacin protect human respiratory epithelial cells against Streptococcus pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Haemophilus influenzae in vitro. Infection 33(Suppl 2):50–54

    CAS  PubMed  Google Scholar 

  • Ulrich M, Doring G (2004) Three-dimensional human airway epithelial cell cultures. J Cyst Fibros 3(Suppl 2):55–57

    CAS  PubMed  Google Scholar 

  • White ES (2015) Lung extracellular matrix and fibroblast function. Ann Am Thorac Soc 12(Suppl 1):S30–S33

    PubMed  PubMed Central  Google Scholar 

  • Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P, Bellon G, Berger J, Weiss T et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wrenshall L (2003) Role of the microenvironment in immune responses to transplantation. Springer Semin Immunopathol 25:199–213

    CAS  PubMed  Google Scholar 

  • Xu Z, Gao Y, Hao Y, Li E, Wang Y, Zhang J, Wang W, Gao Z, Wang Q (2013) Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 34:4109–4117

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Gotoh S, Korogi Y, Seki M, Konishi S, Ikeo S, Sone N, Nagasaki T, Matsumoto H, Muro S et al (2017) Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat Methods 14:1097–1106

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work is supported by grants from the Karolinska Institutet, Stockholm County Council, and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias Svensson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Svensson, M., Chen, P. (2018). Human Organotypic Respiratory Models. In: Bagnoli, F., Rappuoli, R. (eds) Three Dimensional Human Organotypic Models for Biomedical Research. Current Topics in Microbiology and Immunology, vol 430. Springer, Cham. https://doi.org/10.1007/82_2018_91

Download citation

Publish with us

Policies and ethics