Skip to main content

Tackling Threats and Future Problems of Multidrug-Resistant Bacteria

  • Chapter
  • First Online:
How to Overcome the Antibiotic Crisis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 398))

Abstract

With the advent of the antibiotic era, the overuse and inappropriate consumption and application of antibiotics have driven the rapid emergence of multidrug-resistant pathogens. Antimicrobial resistance increases the morbidity, mortality, length of hospitalization and healthcare costs. Among Gram-positive bacteria, Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) Mycobacterium tuberculosis, and among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBLs)-producing bacteria have become a major global healthcare problem in the 21st century. The pressure to use antibiotics guarantees that the spread and prevalence of these as well as of future emerging multidrug-resistant pathogens will be a persistent phenomenon. The unfeasibility of reversing antimicrobial resistance back towards susceptibility and the critical need to treat bacterial infection in modern medicine have burdened researchers and pharmaceutical companies to develop new antimicrobials effective against these difficult-to-treat multidrug-resistant pathogens. However, it can be anticipated that antibiotic resistance will continue to develop more rapidly than new agents to treat these infections become available and a better understanding of the molecular, evolutionary and ecological mechanisms governing the spread of antibiotic resistance is needed. The only way to curb the current crisis of antimicrobial resistance will be to develop entirely novel strategies to fight these pathogens such as combining antimicrobial drugs with other agents that counteract and obstruct the antibiotic resistant mechanisms expressed by the pathogen. Furthermore, as many antibiotics are often inappropriately prescribed, a more personalized approach based on precise diagnosis tools will ensure that proper treatments can be promptly applied leading to more targeted and effective therapies. However, in more general terms, also the overall use and release of antibiotics in the environment needs to be better controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CA-MRSA:

Community-acquired methicillin-resistant Staphylococcus aureus

CDC:

Center for Disease Control and Prevention

CRE:

Carbapenem-resistant Enterobacteriacea

DOTS:

Direct Observed Treatment Short-Course

ESBL:

Extended spectrum β-lactamase

ESKAPE:

Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.

FDA:

Food and Drug Administration

H-MRSA:

Hospital-acquired methicillin-resistant Staphylococcus aureus

hVISA:

Heterogeneous vancomycin-intermediate Staphylococcus aureus

IDSA:

Infectious Diseases Society of America

IMP:

Metallo-β-lactamase active on imipenem

KPC:

Klebsiella pneumoniae carbapenemases

LPS:

Lipopolysaccharide

MDR:

Multidrug-resistant

MDR-TB:

Multidrug-resistant tuberculosis

MIC:

Minimum inhibitory concentration

MRAB:

Multidrug-resistant Acinetobacter baumannii

MRSA:

Methicillin-resistant Staphylococcus aureus

MSSA:

Methicillin-susceptible Staphylococcus aureus

MYSTIC:

Meropenem Yearly Susceptibility Test Information Collection

NDM:

New Delhi β-lactamase

PBP2a:

Penicillin-binding protein 2a

PDR:

Pandrug-resistant

SIM:

Seoul imipenemase

SME:

Serratia marcescens enzyme

TDR-TB:

Totally drug-resistant tuberculosis

VIM:

Verona integron-encoded metallo-β-lactamase

VISA:

Vancomycin intermediate-resistant Staphylococcus aureus

VRSA:

Vancomycin-resistant Staphylococcus aureus

WHO:

World Health Organization

XDR:

Extensive drug resistant

XDR-TB:

Extensive drug resistant tuberculosis

References

  • Abubakar I, Zignol M, Falzon D, Raviglione M, Ditiu L, Masham S, Adetifa I, Ford N, Cox H, Lawn SD, Marais BJ, McHugh TD, Mwaba P, Bates M, Lipman M, Zijenah L, Logan S, McNerney R, Zumla A, Sarda K, Nahid P, Hoelscher M, Pletschette M, Memish ZA, Kim P, Hafner R, Cole S, Migliori GB, Maeurer M, Schito M, Zumla A (2013) Drug-resistant tuberculosis: time for visionary political leadership. Lancet Infect Dis 13(6):529–539

    Article  PubMed  Google Scholar 

  • Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, Bonomo RA (2009) Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother 53(9):3628–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida Da Silva PE, Palomino JC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66(7):1417–1430

    Article  CAS  PubMed  Google Scholar 

  • Ambler RP (1980) The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 289(1036):321–331

    Article  CAS  PubMed  Google Scholar 

  • Arthur M, Reynolds P, Courvalin P (1996) Glycopeptide resistance in enterococci. Trends Microbiol 4(10):401–407

    Article  CAS  PubMed  Google Scholar 

  • Azimian A, Havaei SA, Fazeli H, Naderi M, Ghazvini K, Samiee SM, Soleimani M, Peerayeh SN (2012) Genetic characterization of a vancomycin-resistant Staphylococcus aureus isolate from the respiratory tract of a patient in a university hospital in northeastern Iran. J Clin Microbiol 50(11):3581–3585

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263(5144):227–230

    Article  CAS  PubMed  Google Scholar 

  • Barber M, Rozwadowska-Dowzenko M (1948) Infection by penicillin-resistant staphylococci. Lancet 2(6530):641–644

    Article  CAS  PubMed  Google Scholar 

  • Bassetti M, Merelli M, Temperoni C, Astilean A (2013) New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob 12:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bastos ML, Hussain H, Weyer K, Garcia-Garcia L, Leimane V, Leung CC, Narita M, Pena JM, Ponce-de-Leon A, Seung KJ, Shean K, Sifuentes-Osornio J, Van der Walt M, Van der Werf TS, Yew WW, Menzies D (2014), Collaborative Group for Meta-analysis of Individual Patient Data in M-T Treatment outcomes of patients with multidrug-resistant and extensively drug-resistant tuberculosis according to drug susceptibility testing to first- and second-line drugs: an individual patient data meta-analysis. Clin Infect Dis 59(10):1364–1374

    Google Scholar 

  • Bayer AS, Schneider T, Sahl HG (2013) Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci 1277:139–158

    Article  CAS  PubMed  Google Scholar 

  • Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M, Hornsey M, Dhanji H, Chart H, Bou G, Livermore DM, Woodford N (2011) Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 55(7):3370–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergogne-Berezin E, Towner KJ (1996) Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9(2):148–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bondi A Jr, Dietz CC (1945) Penicillin resistant staphylococci. Proc Soc Exp Biol Med 60:55–58

    Article  CAS  PubMed  Google Scholar 

  • Bonnet R (2004) Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48(1):1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bootsma MC, Diekmann O, Bonten MJ (2006) Controlling methicillin-resistant Staphylococcus aureus: quantifying the effects of interventions and rapid diagnostic testing. Proc Nati Acad Sci USA 103(14):5620–5625

    Article  CAS  Google Scholar 

  • Bush K, Fisher JF (2011) Epidemiological expansion, structural studies, and clinical challenges of new beta-lactamases from gram-negative bacteria. Ann Rev Microbiol 65:455–478

    Article  CAS  Google Scholar 

  • Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39(6):1211–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Chai D, Wang R, Liang B, Bai N (2012) Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother 67(7):1607–1615

    Article  CAS  PubMed  Google Scholar 

  • Canton R (2009) Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Microbiol Infect 15(Suppl 1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Canton R, Gonzalez-Alba JM, Galan JC (2012) CTX-M enzymes: origin and diffusion. Front Microbiol 3:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlet J, Collignon P, Goldmann D, Goossens H, Gyssens IC, Harbarth S, Jarlier V, Levy SB, N’Doye B, Pittet D, Richtmann R, Seto WH, van der Meer JW, Voss A (2011) Society’s failure to protect a precious resource: antibiotics. Lancet 378(9788):369–371

    Article  PubMed  Google Scholar 

  • Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D, Participants of the 3rd World Healthcare-Associated Infections Forum (2012) Ready for a world without antibiotics? The pensieres antibiotic resistance call to action. Antimicrob Resist Infect Control 1(1):11

    Google Scholar 

  • Chambers HF (1997) Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 10(4):781–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers HF (2001) The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis 7(2):178–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clermont O, Lavollay M, Vimont S, Deschamps C, Forestier C, Branger C, Denamur E, Arlet G (2008) The CTX-M-15-producing Escherichia coli diffusing clone belongs to a highly virulent B2 phylogenetic subgroup. J Antimicrob Chemother 61(5):1024–1028

    Article  CAS  PubMed  Google Scholar 

  • Cohn DL, Bustreo F, Raviglione MC (1997) Drug-resistant tuberculosis: review of the worldwide situation and the WHO/IUATLD global surveillance project. International union against tuberculosis and lung disease. Clin Infect Dis 24(1):S121–130

    Google Scholar 

  • Cormican M, Vellinga A (2012) Existing classes of antibiotics are probably the best we will ever have. BMJ 344:e3369

    Article  PubMed  Google Scholar 

  • Cotroneo N, Harris R, Perlmutter N, Beveridge T, Silverman JA (2008) Daptomycin exerts bactericidal activity without lysis of Staphylococcus aureus. Antimicrob Agents Chemother 52(6):2223–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courvalin P (2006) Vancomycin resistance in gram-positive cocci. Clin Infect Dis 42(Suppl 1):S25–34

    Article  CAS  PubMed  Google Scholar 

  • Crofton J (1959) Chemotherapy of pulmonary tuberculosis. BMJ 1(5138):1610–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofton J, Mitchison DA (1948) Streptomycin resistance in pulmonary tuberculosis. BMJ 2(4588):1009–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel TM (2006) The history of tuberculosis. Respir Med 100(11):1862–1870

    Article  PubMed  Google Scholar 

  • David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23(3):616–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis SD, Iannetta A, Wedgwood RJ (1971) Activity of colistin against Pseudomonas aeruginosa: inhibition by calcium. J Infect Dis 124(6):610–612

    Article  CAS  PubMed  Google Scholar 

  • de Kraker ME, Davey PG, Grundmann H, BURDEN study group (2011) Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med 8(10):e1001104

    Google Scholar 

  • DeLeo FR, Chambers HF (2009) Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119(9):2464–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLeo FR, Otto M, Kreiswirth BN, Chambers HF (2010) Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375(9725):1557–1568

    Article  PubMed  PubMed Central  Google Scholar 

  • Doi Y, Paterson DL (2015) Carbapenemase-producing Enterobacteriaceae. Semin Respir Crit Care Med 36(1):74–84

    Google Scholar 

  • Dolejska M, Villa L, Poirel L, Nordmann P, Carattoli A (2013) Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. J Antimicrob Chemother 68(1):34–39

    Article  CAS  PubMed  Google Scholar 

  • Dortet L, Nordmann P, Poirel L (2012) Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in Enterobacteriaceae and Acinetobacter baumannii. Antimicrob Agents Chemother 56(4):1693–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dortet L, Poirel L, Nordmann P (2014) Worldwide dissemination of the NDM-type carbapenemases in gram-negative bacteria. Biomed Res Int 2014:249856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Sayed-Ahmed MA, Amin MA, Tawakol WM, Loucif L, Bakour S, Rolain JM (2015) High prevalence of bla(NDM-1) carbapenemase-encoding gene and 16S rRNA armA methyltransferase gene among Acinetobacter baumannii clinical Isolates in Egypt. Antimicrob Agents Chemother 59(6):3602–3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci USA 99(11):7687–7692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Centre for Disease Prevention and Control (2013) EARSS Annual Reports. In http://ecdc.europa.eu/en/publications/_layouts/forms/Publication_DispForm.aspx?List=4f55ad51-4aed-4d32-b960-af70113dbb90&ID=1205. Accessed 22 Oct 2015

  • Evans BA, Hamouda A, Amyes SG (2013) The rise of carbapenem-resistant Acinetobacter baumannii. Curr Pharm Des 19(2):223–238

    Article  CAS  PubMed  Google Scholar 

  • Falagas ME, Bliziotis IA (2007) Pandrug-resistant gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents 29(6):630–636

    Article  CAS  PubMed  Google Scholar 

  • Falagas ME, Kasiakou SK (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40(9):1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Falagas ME, Bliziotis IA, Kasiakou SK, Samonis G, Athanassopoulou P, Michalopoulos A (2005) Outcome of infections due to pandrug-resistant (PDR) gram-negative bacteria. BMC Infect Dis 5:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Falagas ME, Karveli EA, Siempos II, Vardakas KZ (2008) Acinetobacter infections: a growing threat for critically ill patients. Epidemiol Infect 136(8):1009–1019

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Cuenca F, Martinez-Martinez L, Conejo MC, Ayala JA, Perea EJ, Pascual A (2003) Relationship between beta-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. J Antimicrob Chemother 51(3):565–574

    Article  CAS  PubMed  Google Scholar 

  • Finland M (1955) Emergence of antibiotic-resistant bacteria. N Engl J Med 253(21):909–922

    Article  CAS  PubMed  Google Scholar 

  • Fournier PE, Richet H (2006) The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 42(5):692–699

    Article  PubMed  Google Scholar 

  • Fowler VG Jr, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, Levine DP, Chambers HF, Tally FP, Vigliani GA, Cabell CH, Link AS, DeMeyer I, Filler SG, Zervos M, Cook P, Parsonnet J, Bernstein JM, Price CS, Forrest GN, Fatkenheuer G, Gareca M, Rehm SJ, Brodt HR, Tice A, Cosgrove SE, S. aureus Endocarditis and Bacteremia Study Group (2006) Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355(7):653–665

    Google Scholar 

  • Fox W, Ellard GA, Mitchison DA (1999) Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int J Tuberc Lung Dis 3(10 Suppl 2):S231–279

    CAS  PubMed  Google Scholar 

  • Gales AC, Jones RN, Sader HS (2006) Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001-2004). Clin Microbiol Infect 12(4):315–321

    Article  CAS  PubMed  Google Scholar 

  • Garcia de Viedma D, del Sol Diaz Infantes M, Lasala F, Chaves F, Alcala L, Bouza E (2002) New real-time PCR able to detect in a single tube multiple rifampin resistance mutations and high-level isoniazid resistance mutations in Mycobacterium tuberculosis. J Clin Microbiol 40(3):988–995

    Google Scholar 

  • Gardete S, Tomasz A (2014) Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest 124(7):2836–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaziou P, Floyd K, Korenromp EL, Sismanidis C, Bierrenbach AL, Williams BG, Atun R, Raviglione M (2011) Lives saved by tuberculosis control and prospects for achieving the 2015 global target for reducing tuberculosis mortality. Bull World Health Organ 89(8):573–582

    Article  PubMed  PubMed Central  Google Scholar 

  • Go ES, Urban C, Burns J, Kreiswirth B, Eisner W, Mariano N, Mosinka-Snipas K, Rahal JJ (1994) Clinical and molecular epidemiology of acinetobacter infections sensitive only to polymyxin B and sulbactam. Lancet 344(8933):1329–1332

    Article  CAS  PubMed  Google Scholar 

  • Goossens H, Grabein B (2005) Prevalence and antimicrobial susceptibility data for extended-spectrum beta-lactamase-and AmpC-producing Enterobacteriaceae from the MYSTIC Program in Europe and the United States (1997–2004). Diagn Microbiol Infect Dis 53(4):257–264

    Article  CAS  PubMed  Google Scholar 

  • Gordon NC, Wareham DW (2010) Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. J Antimicrob Chemother 35(3):219–226

    Article  CAS  Google Scholar 

  • Gould IM, David MZ, Esposito S, Garau J, Lina G, Mazzei T, Peters G (2012) New insights into meticillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. Int J Antimicrol Agents 39(2):96–104

    Article  CAS  Google Scholar 

  • Gullberg E, Cao S, Berg OG, Ilback C, Sandegren L, Hughes D, Andersson DI (2011) Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 7(7):e1002158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris PN (2015) Clinical management of infections caused by Enterobacteriaceae that express extended-spectrum beta-lactamase and AmpC enzymes. Semin Respir Crit Care Med 36(1):56–73

    Article  PubMed  Google Scholar 

  • Harris AD, Perencevich EN, Johnson JK, Paterson DL, Morris JG, Strauss SM, Johnson JA (2007) Patient-to-patient transmission is important in extended-spectrum beta-lactamase-producing Klebsiella pneumoniae acquisition. Clin Infect Dis 45(10):1347–1350

    Article  CAS  PubMed  Google Scholar 

  • Hartman B, Tomasz A (1981) Altered penicillin-binding proteins in methicillin-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother 19(5):726–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkey PM, Jones AM (2009) The changing epidemiology of resistance. J Antimicrob Chemother 64(Suppl 1):i3–10

    Article  CAS  PubMed  Google Scholar 

  • Hayden MK, Rezai K, Hayes RA, Lolans K, Quinn JP, Weinstein RA (2005) Development of Daptomycin resistance in vivo in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43(10):5285–5287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazbon MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI, Varma-Basil M, Billman-Jacobe H, Lavender C, Fyfe J, Garcia-Garcia L, Leon CI, Bose M, Chaves F, Murray M, Eisenach KD, Sifuentes-Osornio J, Cave MD, Ponce de Leon A, Alland D (2006) Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 50(8):2640–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hejnar P, Kolar M, Hajek V (1999) Characteristics of Acinetobacter strains (phenotype classification, antibiotic susceptibility and production of beta-lactamases) isolated from haemocultures from patients at the teaching Hospital in Olomouc. Acta Univ Palackianae Olomucensis Facultatis Med 142:73–77

    CAS  Google Scholar 

  • Henry R, Vithanage N, Harrison P, Seemann T, Coutts S, Moffatt JH, Nation RL, Li J, Harper M, Adler B, Boyce JD (2012) Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-beta-1,6-N-acetylglucosamine. Antimicrob Agents Chemother 56(1):59–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heritier C, Poirel L, Fournier PE, Claverie JM, Raoult D, Nordmann P (2005) Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii. Antimicrob Agents Chemother 49(10):4174–4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, Boyle-Vavra S, Leitch CD, Daum RS (1998) Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 279(8):593–598

    Article  CAS  PubMed  Google Scholar 

  • Hesterkamp T (2015) Antibiotics clinical development and pipeline. Curr Top Microbiol Immunol. doi:10.1007/82_2015_451

    PubMed  Google Scholar 

  • Hinshaw HC, Feldman WH, Pfuetze KH (1946) Treatment of tuberculosis with streptomycin; a summary of observations on one hundred cases. JAMA 132(13):778–782

    Article  CAS  Google Scholar 

  • Hiramatsu K (2001) Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect Dis 1(3):147–155

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, Fukuchi Y, Kobayashi I (1997a) Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350(9092):1670–1673

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC (1997b) Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40(1):135–136

    Article  CAS  PubMed  Google Scholar 

  • Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE, Harris SR, Strommenger B, Layer F, Witte W, de Lencastre H, Skov R, Westh H, Zemlickova H, Coombs G, Kearns AM, Hill RL, Edgeworth J, Gould I, Gant V, Cooke J, Edwards GF, McAdam PR, Templeton KE, McCann A, Zhou Z, Castillo-Ramirez S, Feil EJ, Hudson LO, Enright MC, Balloux F, Aanensen DM, Spratt BG, Fitzgerald JR, Parkhill J, Achtman M, Bentley SD, Nubel U (2013) A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 23(4):653–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML (2010) Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 23(1):99–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Infectious Diseases Society of America I (2010) The 10 ‘20 Initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 50(8):1081

    Article  Google Scholar 

  • Iseman MD, Madsen LA (1989) Drug-resistant tuberculosis. Clin Chest Med 10(3):341–353

    CAS  PubMed  Google Scholar 

  • Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22(1):161–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaurin B, Grundstrom T (1981) ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc Natl Acad Sci USA 78(8):4897–4901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jevons MP (1961) “Celbenin”-resistant staphylococci [letter]. Br Med J 1:124–125

    Article  PubMed Central  Google Scholar 

  • Johnson AP, Aucken HM, Cavendish S, Ganner M, Wale MC, Warner M, Livermore DM, Cookson BD, participants UE (2001) Dominance of EMRSA-15 and -16 among MRSA causing nosocomial bacteraemia in the UK: analysis of isolates from the European Antimicrobial Resistance Surveillance System (EARSS). J Antimicrob Chemother 48(1):143–144

    Google Scholar 

  • Jung D, Rozek A, Okon M, Hancock RE (2004) Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol 11(7):949–957

    Article  CAS  PubMed  Google Scholar 

  • Kallen AJ, Mu Y, Bulens S, Reingold A, Petit S, Gershman K, Ray SM, Harrison LH, Lynfield R, Dumyati G, Townes JM, Schaffner W, Patel PR, Fridkin SK, Active Bacterial Core surveillance MIotEIP (2010) Health care-associated invasive MRSA infections, 2005–2008. JAMA 304(6):641–648

    Google Scholar 

  • Kaspar U, Kriegeskorte A, Schubert T, Peters G, Rudack C, Pieper DH, Wos-Oxley M, Becker K (2015) The culturome of the human nose habitats reveals individual bacterial fingerprint patterns. Environ Microbiol. doi:10.1111/1462-2920.12891

    PubMed  Google Scholar 

  • Katayama Y, Ito T, Hiramatsu K (2000) A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44(6):1549–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keene A, Vavagiakis P, Lee MH, Finnerty K, Nicolls D, Cespedes C, Quagliarello B, Chiasson MA, Chong D, Lowy FD (2005) Staphylococcus aureus colonization and the risk of infection in critically ill patients. Infect Control Hosp Epidemiol 26(7):622–628

    Article  PubMed  Google Scholar 

  • Kernodle DS (2000) Gram-positive pathogens, vol mechanisms of resistance to β-lactam antibiotics. American Society for Microbiology, Washington, DC, USA, pp 609–620

    Google Scholar 

  • Keshavjee S, Farmer PE (2012) Tuberculosis, drug resistance, and the history of modern medicine. N Engl J Med 367(10):931–936

    Article  CAS  PubMed  Google Scholar 

  • Khatib R, Sharma M, Iyer S, Fakih MG, Obeid KM, Venugopal A, Fishbain J, Johnson LB, Segireddy M, Jose J, Riederer K (2013) Decreasing incidence of Staphylococcus aureus bacteremia over 9 years: greatest decline in community-associated methicillin-susceptible and hospital-acquired methicillin-resistant isolates. Am J Infect Control 41(3):210–213

    Article  PubMed  Google Scholar 

  • Kliebe C, Nies BA, Meyer JF, Tolxdorff-Neutzling RM, Wiedemann B (1985) Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother 28(2):302–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kluytmans JA, Wertheim HF (2005) Nasal carriage of Staphylococcus aureus and prevention of nosocomial infections. Infection 33(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Kochi A (1997) Tuberculosis control–is DOTS the health breakthrough of the 1990s? World Health Forum 18(3–4):225–232 (discussion 233–247)

    Google Scholar 

  • Kos VN, Desjardins CA, Griggs A, Cerqueira G, Van Tonder A, Holden MT, Godfrey P, Palmer KL, Bodi K, Mongodin EF, Wortman J, Feldgarden M, Lawley T, Gill SR, Haas BJ, Birren B, Gilmore MS (2012) Comparative genomics of vancomycin-resistant Staphylococcus aureus strains and their positions within the clade most commonly associated with Methicillin-resistant S. aureus hospital-acquired infection in the United States. mBio 3(pii):e00112-12

    Google Scholar 

  • Kulah C, Celebi G, Aktas E, Mengeloglu Z, Comert F, Ankarali H (2009) Unexpected tigecycline resistance among Acinetobacter baumannii Isolates: high minor error rate by Etest. J Chemother 21(4):390–395

    Article  CAS  PubMed  Google Scholar 

  • Lascols C, Hackel M, Marshall SH, Hujer AM, Bouchillon S, Badal R, Hoban D, Bonomo RA (2011) Increasing prevalence and dissemination of NDM-1 metallo-beta-lactamase in India: data from the SMART study (2009). J Antimicrob Chemother 66(9):1992–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, Rossolini GM (1999) Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 43(7):1584–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine DP (2006) Vancomycin: a history. Clin Infect Dis 42(Suppl 1):S5–12

    Article  CAS  PubMed  Google Scholar 

  • Lienhardt C, Glaziou P, Uplekar M, Lonnroth K, Getahun H, Raviglione M (2012) Global tuberculosis control: lessons learnt and future prospects. Nat Rev Microbiol 10(6):407–416

    CAS  PubMed  Google Scholar 

  • Lim LM, Ly N, Anderson D, Yang JC, Macander L, Jarkowski A 3rd, Forrest A, Bulitta JB, Tsuji BT (2010) Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy 30(12):1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limbago BM, Kallen AJ, Zhu W, Eggers P, McDougal LK, Albrecht VS (2014) Report of the 13th vancomycin-resistant Staphylococcus aureus isolate from the United States. J Clin Microbiol 52(3):998–1002

    Article  PubMed  PubMed Central  Google Scholar 

  • Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22(4):582–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livermore DM (1995) Beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8(4):557–584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livermore DM (2012) Current epidemiology and growing resistance of gram-negative pathogens. Korean J Intern Med 27(2):128–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livermore DM, Hawkey PM (2005) CTX-M: changing the face of ESBLs in the UK. J Antimicrob Chemother 56(3):451–454

    Article  CAS  PubMed  Google Scholar 

  • Livermore DM, Woodford N (2006) The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 14(9):413–420

    Article  CAS  PubMed  Google Scholar 

  • Lodge JM, Minchin SD, Piddock LJ, Busby SJ (1990) Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. Biochem J 272(3):627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma XX, Ito T, Tiensasitorn C, Jamklang M, Chongtrakool P, Boyle-Vavra S, Daum RS, Hiramatsu K (2002) Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 46(4):1147–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281

    Article  CAS  PubMed  Google Scholar 

  • Manten A, Van Wijngaarden LJ (1969) Development of drug resistance to rifampicin. Chemotherapy 14(2):93–100

    Article  CAS  PubMed  Google Scholar 

  • Maple PA, Hamilton-Miller JM, Brumfitt W (1989) World-wide antibiotic resistance in methicillin-resistant Staphylococcus aureus. Lancet 1(8637):537–540

    Article  CAS  PubMed  Google Scholar 

  • Matsuo M, Hishinuma T, Katayama Y, Hiramatsu K (2015) A mutation of RNA polymerase beta’ subunit (RpoC) converts heterogeneously vancomycin-intermediate Staphylococcus aureus (hVISA) into “slow VISA”. Antimicrob Agents Chemother 59(7):4215–4225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meehl M, Herbert S, Gotz F, Cheung A (2007) Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother 51(8):2679–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo-Cristino J, Resina C, Manuel V, Lito L, Ramirez M (2013) First case of infection with vancomycin-resistant Staphylococcus aureus in Europe. Lancet 382(9888):205

    Article  PubMed  Google Scholar 

  • Metcalfe C, Macdonald IK, Murphy EJ, Brown KA, Raven EL, Moody PC (2008) The tuberculosis prodrug isoniazid bound to activating peroxidases. J Biol Chem 283(10):6193–6200

    Article  CAS  PubMed  Google Scholar 

  • Meyer E, Schroder C, Gastmeier P, Geffers C (2014) The reduction of nosocomial MRSA infection in Germany: an analysis of data from the hospital infection surveillance system (KISS) between 2007 and 2012. Deutsches Ärzteblatt Int 111(19):331–336

    Google Scholar 

  • Migliori GB, De Iaco G, Besozzi G, Centis R, Cirillo DM (2007) First tuberculosis cases in Italy resistant to all tested drugs. Euro Surveill 12(5):E070517 070511

    Google Scholar 

  • Mira PM, Meza JC, Nandipati A, Barlow M (2015) Adaptive landscapes of resistance genes change as antibiotic concentrations change. Mol Biol Evol 32(10):2707–2715

    Article  CAS  PubMed  Google Scholar 

  • Mitchison D, Davies G (2012) The chemotherapy of tuberculosis: past, present and future. Int J Tuberc Lung Dis 16(6):724–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moellering RC Jr (2008) Current treatment options for community-acquired methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 46(7):1032–1037

    Article  PubMed  Google Scholar 

  • Moellering RC Jr (2012) MRSA: the first half century. J Antimicrob Chemother 67(1):4–11

    Article  CAS  PubMed  Google Scholar 

  • Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, Henry R, Crane B, St Michael F, Cox AD, Adler B, Nation RL, Li J, Boyce JD (2010) Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 54(12):4971–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munier GK, Johnson CL, Snyder JW, Moland ES, Hanson ND, Thomson KS (2010) Positive extended-spectrum-beta-lactamase (ESBL) screening results may be due to AmpC beta-lactamases more often than to ESBLs. J Clin Microbiol 48(2):673–674

    Article  CAS  PubMed  Google Scholar 

  • Murray BE, Moellering RC Jr (1978) Patterns and mechanisms of antibiotic resistance. Med Clin North Am 62(5):899–923

    Article  CAS  PubMed  Google Scholar 

  • Murray CJ, Ortblad KF, Guinovart C, Lim SS, Wolock TM et al (2014) Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet 384(9947):1005–1070

    Article  PubMed  PubMed Central  Google Scholar 

  • Navon-Venezia S, Leavitt A, Carmeli Y (2007) High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. J Antimicrob Chemother 59(4):772–774

    Article  CAS  PubMed  Google Scholar 

  • Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Canica MM, Park YJ, Lavigne JP, Pitout J, Johnson JR (2008) Intercontinental emergence of Escherichia coli clone O25: H4-ST131 producing CTX-M-15. J Antimicrob Chemother 61(2):273–281

    Article  CAS  PubMed  Google Scholar 

  • Nimmo GR (2012) USA300 abroad: global spread of a virulent strain of community-associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 18(8):725–734

    Article  CAS  PubMed  Google Scholar 

  • Nordmann P, Naas T, Fortineau N, Poirel L (2007) Superbugs in the coming new decade; multidrug resistance and prospects for treatment of Staphylococcus aureus, Enterococcus spp. and Pseudomonas aeruginosa in 2010. Curr Opin Microbiol 10(5):436–440

    Article  CAS  PubMed  Google Scholar 

  • Otto M (2012) MRSA virulence and spread. Cell Microbiol 14(10):1513–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panlilio AL, Culver DH, Gaynes RP, Banerjee S, Henderson TS, Tolson JS, Martone WJ (1992) Methicillin-resistant Staphylococcus aureus in U.S. hospitals, 1975–1991. Infect Control Hosp Epidemiol 13(10):582–586

    Article  CAS  PubMed  Google Scholar 

  • Parida SK, Axelsson-Robertson R, Rao MV, Singh N, Master I, Lutckii A, Keshavjee S, Andersson J, Zumla A, Maeurer M (2015) Totally drug-resistant tuberculosis and adjunct therapies. J Intern Med 277(4):388–405

    Article  CAS  PubMed  Google Scholar 

  • Paterson DL, Bonomo RA (2005) Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18(4):657–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peacock SJ, Paterson GK (2015) Mechanisms of methicillin resistance in Staphylococcus aureus. Ann Rev Biochem 84:577–601

    Article  CAS  PubMed  Google Scholar 

  • Peleg AY, Hooper DC (2010) Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 362(19):1804–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21(3):538–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11(3):297–308

    Article  CAS  PubMed  Google Scholar 

  • Perry JD, Naqvi SH, Mirza IA, Alizai SA, Hussain A, Ghirardi S, Orenga S, Wilkinson K, Woodford N, Zhang J, Livermore DM, Abbasi SA, Raza MW (2011) Prevalence of faecal carriage of Enterobacteriaceae with NDM-1 carbapenemase at military hospitals in Pakistan, and evaluation of two chromogenic media. J Antimicrob Chemother 66(10):2288–2294

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer Y, Witte W, Holfelder M, Busch J, Nordmann P, Poirel L (2011) NDM-1-producing Escherichia coli in Germany. Antimicrob Agents Chemother 55(3):1318–1319

    Article  CAS  PubMed  Google Scholar 

  • Philippon A, Arlet G, Jacoby GA (2002) Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother 46(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirel L, Nordmann P (2006) Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 12(9):826–836

    Article  CAS  PubMed  Google Scholar 

  • Poirel L, Kampfer P, Nordmann P (2002) Chromosome-encoded Ambler class A beta-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum beta-lactamases. Antimicrob Agents Chemother 46(12):4038–4040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirel L, Heritier C, Tolun V, Nordmann P (2004) Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 48(1):15–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirel L, Potron A, Nordmann P (2012) OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 67(7):1597–1606

    Article  CAS  PubMed  Google Scholar 

  • Poulikakos P, Tansarli GS, Falagas ME (2014) Combination antibiotic treatment versus monotherapy for multidrug-resistant, extensively drug-resistant, and pandrug-resistant Acinetobacter infections: a systematic review. Eur J Clin Microbiol Infect Dis 33(10):1675–1685

    Article  CAS  PubMed  Google Scholar 

  • Pugh RJ, Cooke RP, Dempsey G (2010) Short course antibiotic therapy for Gram-negative hospital-acquired pneumonia in the critically ill. J Hosp Infect 74(4):337–343

    Article  CAS  PubMed  Google Scholar 

  • Pugh R, Grant C, Cooke RP, Dempsey G (2015) Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst Rev 8:CD007577

    Google Scholar 

  • Queenan AM, Bush K (2007) Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 20(3):440–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy SV, Reich R, Dou SJ, Jasperse L, Pan X, Wanger A, Quitugua T, Graviss EA (2003) Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 47(4):1241–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rammelkamp CH, Maxon T (1942) Resistance of Staphylococcus aureus to the action of penicillin. Proc Royal Soc Exp Biol Med 51:386–389

    Article  CAS  Google Scholar 

  • Richardson JF, Reith S (1993) Characterization of a strain of methicillin-resistant Staphylococcus aureus (EMRSA-15) by conventional and molecular methods. J Hosp Infect 25(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Bano J, Navarro MD, Romero L, Muniain MA, de Cueto M, Rios MJ, Hernandez JR, Pascual A (2006) Bacteremia due to extended-spectrum beta -lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis 43(11):1407–1414

    Article  PubMed  Google Scholar 

  • Rodriguez-Bano J, Miro E, Villar M, Coelho A, Gozalo M, Borrell N, Bou G, Conejo MC, Pomar V, Aracil B, Larrosa N, Aguero J, Oliver A, Fernandez A, Oteo J, Pascual A, Navarro F (2012) Colonisation and infection due to Enterobacteriaceae producing plasmid-mediated AmpC beta-lactamases. J Infect 64(2):176–183

    Article  PubMed  Google Scholar 

  • Rozwarski DA, Grant GA, Barton DH, Jacobs WR Jr, Sacchettini JC (1998) Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279(5347):98–102

    Article  CAS  PubMed  Google Scholar 

  • Rozwarski DA, Vilcheze C, Sugantino M, Bittman R, Sacchettini JC (1999) Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate. J Biol Chem 274(22):15582–15589

    Article  CAS  PubMed  Google Scholar 

  • Saha B, Singh AK, Ghosh A, Bal M (2008) Identification and characterization of a vancomycin-resistant Staphylococcus aureus isolated from Kolkata (South Asia). J Med Microbiol 57(Pt 1):72–79

    Article  CAS  PubMed  Google Scholar 

  • Salverda ML, De Visser JA, Barlow M (2010) Natural evolution of TEM-1 beta-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev 34(6):1015–1036

    Article  CAS  PubMed  Google Scholar 

  • Schrag SJ, Pena C, Fernandez J, Sanchez J, Gomez V, Perez E, Feris JM, Besser RE (2001) Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage: a randomized trial. JAMA 286(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Selikoff IJ, Robitzek EH (1952) Tuberculosis chemotherapy with hydrazine derivatives of isonicotinic acid. Dis Chest 21(4):385–438

    Article  CAS  PubMed  Google Scholar 

  • Sieradzki K, Tomasz A (2003) Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J Bacteriol 185(24):7103–7110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sievert DM, Rudrik JT, Patel JB, McDonald LC, Wilkins MJ, Hageman JC (2008) Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clin Infect Dis 46(5):668–674

    Article  CAS  PubMed  Google Scholar 

  • Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S, National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities (2013) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 34(1):1–14

    Google Scholar 

  • Silverman JA, Perlmutter NG, Shapiro HM (2003) Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 47(8):2538–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirot D, Sirot J, Labia R, Morand A, Courvalin P, Darfeuille-Michaud A, Perroux R, Cluzel R (1987) Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel beta-lactamase. J Antimicrob Chemother 20(3):323–334

    Article  CAS  PubMed  Google Scholar 

  • Skinner D, Keefer CS (1941) Significance of bacteremia caused by Staphylococcus aureus. Arch Intern Med 68:851–875

    Article  Google Scholar 

  • Sougakoff W, Goussard S, Gerbaud G, Courvalin P (1988) Plasmid-mediated resistance to third-generation cephalosporins caused by point mutations in TEM-type penicillinase genes. Rev Infect Dis 10(4):879–884

    Article  CAS  PubMed  Google Scholar 

  • Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr, Infectious Diseases Society of A (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46(2):155–164

    Google Scholar 

  • Spellberg B, Bartlett JG, Gilbert DN (2013) The future of antibiotics and resistance. N Engl J Med 368(4):299–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steenbergen JN, Alder J, Thorne GM, Tally FP (2005) Daptomycin: a lipopeptide antibiotic for the treatment of serious gram-positive infections. J Antimicrob Chemother 55(3):283–288. doi:10.1093/jac/dkh546

    Article  CAS  PubMed  Google Scholar 

  • Stegger M, Wirth T, Andersen PS, Skov RL, De Grassi A, Simoes PM, Tristan A, Petersen A, Aziz M, Kiil K, Cirkovic I, Udo EE, del Campo R, Vuopio-Varkila J, Ahmad N, Tokajian S, Peters G, Schaumburg F, Olsson-Liljequist B, Givskov M, Driebe EE, Vigh HE, Shittu A, Ramdani-Bougessa N, Rasigade JP, Price LB, Vandenesch F, Larsen AR, Laurent F (2014) Origin and evolution of European community-acquired methicillin-resistant Staphylococcus aureus. mBio 5(5):e01044–01014

    Google Scholar 

  • Stryjewski ME, Corey GR (2014) Methicillin-resistant Staphylococcus aureus: an evolving pathogen. Clin Infect Dis 58(Suppl 1):S10–19

    Article  CAS  PubMed  Google Scholar 

  • Sulis G, Roggi A, Matteelli A, Raviglione MC (2014) Tuberculosis: epidemiology and control. Mediterr J Hematol Infect Dis 6(1):e2014070

    Article  PubMed  PubMed Central  Google Scholar 

  • Talbot GH, Bradley J, Edwards JE, Jr., Gilbert D, Scheld M, Bartlett JG, Antimicrobial Availability Task Force of the Infectious Diseases Society of America (2006) Bad bugs need drugs: an update on the development pipeline from the antimicrobial availability task force of the infectious diseases society of America. Clin Infect Dis 42 (5):657–668

    Google Scholar 

  • Tedesco KL, Rybak MJ (2004) Daptomycin. Pharmacotherapy 24(1):41–57

    Article  CAS  PubMed  Google Scholar 

  • Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T (1993a) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341(8846):647–650

    Article  CAS  PubMed  Google Scholar 

  • Telenti A, Imboden P, Marchesi F, Schmidheini T, Bodmer T (1993b) Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother 37(10):2054–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Pew Charitable Trusts P (2015) Tracking the pipeline of antibiotics in development. http://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2014/03/12/tracking-the-pipeline-of-antibiotics-in-development

  • Turner PJ (2005) Extended-spectrum beta-lactamases. Clin Infect Dis 41(Suppl 4):S273–275

    Article  CAS  PubMed  Google Scholar 

  • Turton JF, Woodford N, Glover J, Yarde S, Kaufmann ME, Pitt TL (2006) Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol 44(8):2974–2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udwadia ZF (2012) Totally drug-resistant tuberculosis in India: who let the djinn out? Respirology 17(5):741–742

    Article  PubMed  Google Scholar 

  • Uhlemann AC, Otto M, Lowy FD, DeLeo FR (2014) Evolution of community- and healthcare-associated methicillin-resistant Staphylococcus aureus. Infect Genet Evol 21:563–574

    Article  PubMed  Google Scholar 

  • Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R (2015) Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 112(18):5649–5654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, Liassine N, Bes M, Greenland T, Reverdy ME, Etienne J (2003) Community-acquired methicillin-resistant Staphylococcus aureus carrying panton-valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9(8):978–984

    Article  PubMed  PubMed Central  Google Scholar 

  • Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, Ziazarifi AH, Hoffner SE (2009) Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136(2):420–425

    Article  PubMed  Google Scholar 

  • Vikram HR, Havill NL, Koeth LM, Boyce JM (2005) Clinical progression of methicillin-resistant Staphylococcus aureus vertebral osteomyelitis associated with reduced susceptibility to daptomycin. J Clin Microbiol 43(10):5384–5387

    Article  PubMed  PubMed Central  Google Scholar 

  • Visca P, Seifert H, Towner KJ (2011) Acinetobacter infection—an emerging threat to human health. IUBMB Life 63(12):1048–1054

    Article  CAS  PubMed  Google Scholar 

  • von Eiff C, Becker K, Machka K, Stammer H, Peters G (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. Study group. N Engl J Med 344(1):11–16

    Article  Google Scholar 

  • Voss A, Milatovic D, Wallrauch-Schwarz C, Rosdahl VT, Braveny I (1994) Methicillin-resistant Staphylococcus aureus in Europe. Eur J Clin Microbiol Infect Dis 13(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Waksman SA, Woodruff HB (1941) Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. J Bacteriol 42(2):231–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waksman SA, Woodruff HB (1942) Selective antibiotic action of various substances of microbial origin. J Bacteriol 44(3):373–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waksman SA, Horning ES, Spencer EL (1942) The production of two antibacterial substances. Fumigacin and Clavacin. Science 96(2487):202–203

    Article  CAS  PubMed  Google Scholar 

  • Walsh TR, Howe RA (2002) The prevalence and mechanisms of vancomycin resistance in Staphylococcus aureus. Ann Rev Microbiol 56:657–675

    Article  CAS  Google Scholar 

  • Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11(5):355–362

    Article  PubMed  Google Scholar 

  • Watanabe M, Iyobe S, Inoue M, Mitsuhashi S (1991) Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 35(1):147–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne LG, Sohaskey CD (2001) Nonreplicating persistence of Mycobacterium tuberculosis. Ann Rev Microbiol 55:139–163

    Article  CAS  Google Scholar 

  • Wehrli W (1983) Rifampin: mechanisms of action and resistance. Rev Infect Dis 5(Suppl 3):S407–411

    Article  CAS  PubMed  Google Scholar 

  • Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5(12):751–762

    Article  PubMed  Google Scholar 

  • Winder FG, Collins PB (1970) Inhibition by isoniazid of synthesis of mycolic acids in Mycobacterium tuberculosis. J Gen Microbiol 63(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization W (2001) Guidelines for establishing DOTS-plus pilot projects for the management of multidrug-resistant tuberculosis (MDR-TB)

    Google Scholar 

  • World Health Organization W (2014a) Antimicrobial resistance global report on surveillance. http://www.who.int/drugresistance/documents/surveillancereport/en/

  • World Health Organization W (2014b) Global tuberculosis report 2014. http://www.who.int/tb/publications/global_report/en/ Accessed 22 Oct 2015

  • Wyllie D, Paul J, Crook D (2011a) Waves of trouble: MRSA strain dynamics and assessment of the impact of infection control. J Antimicrob Chemother 66(12):2685–2688

    Article  CAS  PubMed  Google Scholar 

  • Wyllie DH, Walker AS, Miller R, Moore C, Williamson SR, Schlackow I, Finney JM, O’Connor L, Peto TE, Crook DW (2011b) Decline of meticillin-resistant Staphylococcus aureus in Oxfordshire hospitals is strain-specific and preceded infection-control intensification. BMJ Open 1(1):e000160

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang YJ, Wu PJ, Livermore DM (1990) Biochemical characterization of a beta-lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates. Antimicrob Agents Chemother 34(5):755–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45(4):1151–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yocum RR, Waxman DJ, Rasmussen JR, Strominger JL (1979) Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial D-alanine carboxypeptidases. Proc Natl Acad Sci USA 76(6):2730–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong D, Choi YS, Roh KH, Kim CK, Park YH, Yum JH, Lee K, Chong Y (2006) Increasing prevalence and diversity of metallo-beta-lactamases in Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae from Korea. Antimicrob Agents Chemother 50(5):1884–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR (2009) Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53(12):5046–5054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Girotto S, Lee C, Magliozzo RS (2003) Reduced affinity for isoniazid in the S315T mutant of Mycobacterium tuberculosis KatG is a key factor in antibiotic resistance. J Biol Chem 278(17):14769–14775

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358(6387):591–593

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Medina, E., Pieper, D.H. (2016). Tackling Threats and Future Problems of Multidrug-Resistant Bacteria. In: Stadler, M., Dersch, P. (eds) How to Overcome the Antibiotic Crisis . Current Topics in Microbiology and Immunology, vol 398. Springer, Cham. https://doi.org/10.1007/82_2016_492

Download citation

Publish with us

Policies and ethics