Skip to main content

Antigenic Analyses of Highly Pathogenic Avian Influenza A Viruses

  • Chapter
  • First Online:
Influenza Pathogenesis and Control - Volume I

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 385))

Abstract

In response to the ongoing threat to animal and human health posed by HPAI endemic in poultry, Asia (H5N1) and North America (H7N3) have revived efforts to reduce pandemic risk by disease control at the source and improved pandemic vaccines. Discovery of conserved neutralization epitopes in the HA, which mediate broad protection within and across HA subtypes have changed the paradigm of “broadly reactive” or “universal” vaccine design. Development of such vaccines would benefit from comparative antigenic analysis of viruses with increasing divergence within (and between) HA subtypes. A review of recent work to define the antigenic properties of HPAI viruses revealed data generated through an array of experimental approaches. This information has supported diagnostics and vaccine development for animal and human health. Further harmonization of analytical methods is needed to determine the antigenic relationships among multiple lineages of rapidly evolving HPAI viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Aa:

Amino acid

CVV:

Candidate vaccine virus

ELISA:

Enzyme linked immunosorbent assay

FAO:

Food and agriculture organization

HA:

Hemagglutinin

NA:

Neuraminidase

HI:

Hemagglutination inhibition

HPAI:

High pathogenicity avian influenza

LPAI:

Low pathogenicity avian influenza

Nt:

Nucleotide

OIE:

World organisation for animal health

RBC:

Red blood cell

RBS:

Receptor binding site

WHO:

World health organization

gs/Gd/96 A/goose/Guangdong/1/1996-mAb:

Monoclonal antibody

References

  • Aamir UB, Naeem K, Ahmed Z, Obert CA, Franks J, Krauss S, Seiler P, Webster RG (2009) Zoonotic potential of highly pathogenic avian H7N3 influenza viruses from Pakistan. Virology 390:212–220

    PubMed Central  PubMed  CAS  Google Scholar 

  • Abbas MA, Spackman E, Fouchier R, Smith D, Ahmed Z, Siddique N, Sarmento L, Naeem K, McKinley ET, Hameed A, Rehmani S, Swayne DE (2011) H7 avian influenza virus vaccines protect chickens against challenge with antigenically diverse isolates. Vaccine 29:7424–7429. doi:10.1016/j.vaccine.2011.07.064 S0264-410X(11)01109-1

  • Abolnik C, Londt BZ, Manvell RJ, Shell W, Banks J, Gerdes GH, Akol G, Brown IH (2009) Characterisation of a highly pathogenic influenza A virus of subtype H5N2 isolated from ostriches in South Africa in 2004. Influenza Other Respir Viruses 3:63–68

    PubMed  CAS  Google Scholar 

  • Ampofo WK, Baylor N, Cobey S, Cox NJ, Daves S, Edwards S, Ferguson N, Grohmann G, Hay A, Katz J, Kullabutr K, Lambert L, Levandowski R, Mishra AC, Monto A, Siqueira M, Tashiro M, Waddell AL, Wairagkar N, Wood J, Zambon M, Zhang W (2012) Improving influenza vaccine virus selection: report of a WHO informal consultation held at WHO headquarters, Geneva, Switzerland, 14–16 June 2010. Influenza Other Respir Viruses 6(142–52):e1–e5. doi:10.1111/j.1750-2659.2011.00277.x

    Google Scholar 

  • Ampofo WK, Baylor N, Cobey S, Cox NJ, Daves S, Edwards S, Ferguson N, Grohmann G, Hay A, Katz J, Kullabutr K, Lambert L, Levandowski R, Mishra AC, Monto A, Siqueira M, Tashiro M, Waddell AL, Wairagkar N, Wood J, Zambon M, Zhang W (2013) Improving influenza vaccine virus selection: report of a WHO informal consultation held at WHO headquarters, Geneva, Switzerland, 14–16 June 2010. Influenza Other Respir Viruses 7(Suppl 2):52–53. doi:10.1111/irv.12081

    PubMed  Google Scholar 

  • Archetti I, Horsfall FL Jr (1950) Persistent antigenic variation of influenza A viruses after incomplete neutralization in ovo with heterologous immune serum. J Exp Med 92:441–462

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bahl J, Nelson MI, Chan KH, Chen R, Vijaykrishna D, Halpin RA, Stockwell TB, Lin X, Wentworth DE, Ghedin E, Guan Y, Peiris JS, Riley S, Rambaut A, Holmes EC, Smith GJ (2011) Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans. Proc Natl Acad Sci U S A 108:19359–19364. doi:10.1073/pnas.1109314108 1109314108

  • Balish AL, Katz JM, Klimov AI (2013) Influenza: propagation, quantification, and storage. Curr Protoc Microbiol Chapter 15:Unit15G 1. doi:10.1002/9780471729259.mc15g01s29

  • Barnett JL, Yang J, Cai Z, Zhang T, Wan XF (2012) AntigenMap 3D: an online antigenic cartography resource. Bioinformatics 28:1292–1293. doi:10.1093/bioinformatics/bts105 bts105

  • Beato MS, Monne I, Mancin M, Bertoli E, Capua I (2010) A proof-of-principle study to identify suitable vaccine seed candidates to combat introductions of Eurasian lineage H5 and H7 subtype avian influenza viruses. Avian Pathol 39:375–382. doi:10.1080/03079457.2010.513376

    PubMed  Google Scholar 

  • Beaver JE, Bourne PE, Ponomarenko JV (2007) Immunome Res 3:3. doi:10.1186/1745-7580-3-3

  • Bedford T, Suchard MA, Lemey P, Dudas G, Gregory V, Hay AJ, McCauley JW, Russell CA, Smith DJ, Rambaut A (2014) Integrating influenza antigenic dynamics with molecular evolution. Elife 3:e01914. doi:10.7554/eLife.01914

  • Belser JA, Katz JM, Tumpey TM (2011) The ferret as a model organism to study influenza a virus infection. Dis Model Mech 4:575–579. doi:10.1242/dmm.007823 dmm.007823

  • Belser JA, Tumpey TM (2013) H5N1 pathogenesis studies in mammalian models. Virus Res. doi:10.1016/j.virusres.2013.02.003

    PubMed  Google Scholar 

  • Belshe R, Lee MS, Walker RE, Stoddard J, Mendelman PM (2004) Safety, immunogenicity and efficacy of intranasal, live attenuated influenza vaccine. Expert Rev Vaccines 3:643–654

    PubMed  CAS  Google Scholar 

  • Ben Jebara K (2007) WAHIS and the role of the OIE’s reference laboratories and collaborating centres. Dev Biol (Basel) 128:69–72

    CAS  Google Scholar 

  • Bender C, Hall H, Huang J, Klimov A, Cox N, Hay A, Gregory V, Cameron K, Lim W, Subbarao K (1999) Characterization of the surface proteins of influenza A (H5N1) viruses isolated from humans in 1997–1998. Virology 254:115–123

    PubMed  CAS  Google Scholar 

  • Bonfanti L, Monne I, Tamba M, Santucci U, Massi P, Patregnani T, Loli Piccolomini L, Natalini S, Ferri G, Cattoli G, Marangon S (2014) Highly pathogenic H7N7 avian influenza in Italy. Vet Rec. doi:10.1136/vr.102202

  • Bosch FX, Garten W, Klenk HD, Rott R (1981) Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of Avian influenza viruses. Virology 113:725–735

    PubMed  CAS  Google Scholar 

  • Bragstad K, Nielsen LP, Fomsgaard A (2008) The evolution of human influenza A viruses from 1999 to 2006: a complete genome study. Virol J 5:40. doi:10.1186/1743-422X-5-40

    PubMed Central  PubMed  Google Scholar 

  • Bui HH, Peters B, Assarsson E, Mbawuike I, Sette A (2007a) Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proc Natl Acad Sci U S A 104:246–251

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bui HH, Sidney J, Li W, Fusseder N, Sette A (2007b) Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics 8:361. doi:10.1186/1471-2105-8-361

    PubMed Central  PubMed  Google Scholar 

  • Buonagurio DA, Nakada S, Parvin JD, Krystal M, Palese P, Fitch WM (1986) Evolution of human influenza A viruses over 50 years: rapid, uniform rate of change in NS gene. Science 232:980–982

    PubMed  CAS  Google Scholar 

  • Bush RM, Fitch WM, Bender CA, Cox NJ (1999) Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol 16:1457–1465

    PubMed  CAS  Google Scholar 

  • Cai Z, Zhang T, Wan XF (2011) Concepts and applications for influenza antigenic cartography. Influenza Other Respir Viruses 5(Suppl 1):204–207

    PubMed Central  PubMed  Google Scholar 

  • Cao Z, Meng J, Li X, Wu R, Huang Y, He Y (2012) The epitope and neutralization mechanism of AVFluIgG01, a broad-reactive human monoclonal antibody against H5N1 influenza virus. PLoS One 7:e38126. doi:10.1371/journal.pone.0038126

    PubMed Central  PubMed  CAS  Google Scholar 

  • Caton AJ, Brownlee GG, Staudt LM, Gerhard W (1986) Structural and functional implications of a restricted antibody response to a defined antigenic region on the influenza virus hemagglutinin. Embo J 5:1577–1587

    PubMed Central  PubMed  CAS  Google Scholar 

  • Caton AJ, Brownlee GG, Yewdell JW, Gerhard W (1982) The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31:417–427

    PubMed  CAS  Google Scholar 

  • Caton AJ, Raymond FL, Brownlee GG, Yewdell JW, Gerhard W (1983) Antigenic variation in influenza virus. Biochem Soc Trans 11:435–441

    PubMed  CAS  Google Scholar 

  • Cattoli G, Fusaro A, Monne I, Coven F, Joannis T, El-Hamid HS, Hussein AA, Cornelius C, Amarin NM, Mancin M, Holmes EC, Capua I (2011) Evidence for differing evolutionary dynamics of A/H5N1 viruses among countries applying or not applying avian influenza vaccination in poultry. Vaccine 29:9368–9375. doi:10.1016/j.vaccine.2011.09.127S0264-410X(11)01584-2

  • Chen Y, Qin K, Wu WL, Li G, Zhang J, Du H, Ng MH, Shih JW, Peiris JS, Guan Y, Chen H, Xia N (2009) Broad cross-protection against H5N1 avian influenza virus infection by means of monoclonal antibodies that map to conserved viral epitopes. J Infect Dis 199:49–58. doi:10.1086/594374

    PubMed  Google Scholar 

  • Cho KJ, Lee JH, Hong KW, Kim SH, Park Y, Lee JY, Kang S, Kim S, Yang JH, Kim EK, Seok JH, Unzai S, Park SY, Saelens X, Kim CJ, Lee JY, Kang C, Oh HB, Chung MS, Kim KH (2013) Insight into structural diversity of influenza virus haemagglutinin. J Gen Virol 94:1712–1722. doi:10.1099/vir.0.051136-0

    PubMed  CAS  Google Scholar 

  • Claas EC, Osterhaus AD, van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, Krauss S, Shortridge KF, Webster RG (1998) Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351:472–477

    PubMed  CAS  Google Scholar 

  • Claes F, Kuznetsov D, Liechti R, Von Dobschuetz S, Dinh Truong B, Gleizes A, Conversa D, Colonna A, Demaio E, Ramazzotto S, Larfaoui F, Pinto J, Le Mercier P, Xenarios I, Dauphin G (2014) The EMPRES-i genetic module: a novel tool linking epidemiological outbreak information and genetic characteristics of influenza viruses. Database (Oxford) 2014: bau008. doi:10.1093/database/bau008

  • Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchetto-Sasselli I, Calder L, Sallusto F, Collins P, Haire LF, Temperton N, Langedijk JP, Skehel JJ, Lanzavecchia A (2011) A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333:850–856. doi:10.1126/science.1205669

    PubMed  CAS  Google Scholar 

  • Cui J, Smith T, Robbins PW, Samuelson J (2009) Darwinian selection for sites of Asn-linked glycosylation in phylogenetically disparate eukaryotes and viruses. Proc Natl Acad Sci U S A 106:13421-13426. doi:10.1073/pnas.0905818106 0905818106

  • Daly JM, Newton JR, Mumford JA (2004) Current perspectives on control of equine influenza. Vet Res 35:411–423

    PubMed  Google Scholar 

  • Daniels RS, Douglas AR, Skehel JJ, Wiley DC, Naeve CW, Webster RG, Rogers GN, Paulson JC (1984) Antigenic analyses of influenza virus haemagglutinins with different receptor-binding specificities. Virology 138:174–177

    PubMed  CAS  Google Scholar 

  • de Jong JC, Heinen PP, Loeffen WL, van Nieuwstadt AP, Claas EC, Bestebroer TM, Bijlsma K, Verweij C, Osterhaus AD, Rimmelzwaan GF, Fouchier RA, Kimman TG (2001) Antigenic and molecular heterogeneity in recent swine influenza A(H1N1) virus isolates with possible implications for vaccination policy. Vaccine 19:4452–4464

    PubMed  Google Scholar 

  • De Marco D, Clementi N, Mancini N, Solforosi L, Moreno GJ, Sun X, Tumpey TM, Gubareva LV, Mishin V, Clementi M, Burioni R (2012) A non-VH1-69 heterosubtypic neutralizing human monoclonal antibody protects mice against H1N1 and H5N1 viruses. PLoS One 7:e34415. doi:10.1371/journal.pone.0034415 PONE-D-11-19380

  • Deyde VM, Okomo-Adhiambo M, Sheu TG, Wallis TR, Fry A, Dharan N, Klimov AI, Gubareva LV (2009) Pyrosequencing as a tool to detect molecular markers of resistance to neuraminidase inhibitors in seasonal influenza A viruses. Antiviral Res 81:16–24

    PubMed  CAS  Google Scholar 

  • Donatelli I, Campitelli L, Di Trani L, Puzelli S, Selli L, Fioretti A, Alexander DJ, Tollis M, Krauss S, Webster RG (2001) Characterization of H5N2 influenza viruses from Italian poultry. J Gen Virol 82:623–630

    PubMed  CAS  Google Scholar 

  • Dreyfus C, Ekiert DC, Wilson IA (2013) Structure of a classical broadly neutralizing stem antibody in complex with a pandemic H2 hemagglutinin. J Virol. doi:10.1128/JVI.02975-12

    PubMed Central  PubMed  Google Scholar 

  • Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R, Ekiert DC, Lee JH, Metlagel Z, Bujny MV, Jongeneelen M, van der Vlugt R, Lamrani M, Korse HJ, Geelen E, Sahin O, Sieuwerts M, Brakenhoff JP, Vogels R, Li OT, Poon LL, Peiris M, Koudstaal W, Ward AB, Wilson IA, Goudsmit J, Friesen RH (2012) Highly conserved protective epitopes on influenza B viruses. Science 337:1343–1348. doi:10.1126/science.1222908

    PubMed Central  PubMed  CAS  Google Scholar 

  • Du A, Daidoji T, Koma T, Ibrahim MS, Nakamura S, de Silva UC, Ueda M, Yang CS, Yasunaga T, Ikuta K, Nakaya T (2009) Detection of circulating Asian H5N1 viruses by a newly established monoclonal antibody. Biochem Biophys Res Commun 378:197–202

    PubMed  CAS  Google Scholar 

  • Du L, Jin L, Zhao G, Sun S, Li J, Yu H, Li Y, Zheng BJ, Liddington RC, Zhou Y, Jiang S (2012) Identification and structural characterization of a broadly neutralizing antibody targeting a novel conserved epitope on influenza H5N1 hemagglutinin. J Virol. doi:10.1128/JVI.02344-12 JVI.02344-12

  • Ducatez MF, Cai Z, Peiris M, Guan Y, Ye Z, Wan XF, Webby RJ (2011) Extent of antigenic cross-reactivity among highly pathogenic H5N1 influenza viruses. J Clin Microbiol 49:3531–3536. doi:10.1128/JCM.01279-11 JCM.01279-11

  • Durviaux S, Treanor J, Beran J, Duval X, Esen M, Feldman G, Frey SE, Launay O, Leroux-Roels G, McElhaney JE, Nowakowski A, Ruiz-Palacios GM, van Essen GA, Oostvogels L, Devaster JM, Walravens K (2014) Genetic and antigenic typing of seasonal influenza virus breakthrough cases from a 2008–2009 vaccine efficacy trial. Clin Vaccine Immunol 21:271–279. doi:10.1128/CVI.00544-13 CVI.00544-13

  • Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA (2009) Antibody recognition of a highly conserved influenza virus epitope. Science 324:246–251. doi:10.1126/science.1171491

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ekiert DC, Friesen RH, Bhabha G, Kwaks T, Jongeneelen M, Yu W, Ophorst C, Cox F, Korse HJ, Brandenburg B, Vogels R, Brakenhoff JP, Kompier R, Koldijk MH, Cornelissen LA, Poon LL, Peiris M, Koudstaal W, Wilson IA, Goudsmit J (2011) A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333:843–850. doi:10.1126/science.1204839

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ekiert DC, Kashyap AK, Steel J, Rubrum A, Bhabha G, Khayat R, Lee JH, Dillon MA, O’Neil RE, Faynboym AM, Horowitz M, Horowitz L, Ward AB, Palese P, Webby R, Lerner RA, Bhatt RR, Wilson IA (2012) Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489:526–532. doi:10.1038/nature11414

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ekiert DC, Wilson IA (2012) Broadly neutralizing antibodies against influenza virus and prospects for universal therapies. Curr Opin Virol 2:134–141. doi:10.1016/j.coviro.2012.02.005

    PubMed Central  PubMed  CAS  Google Scholar 

  • FAO-DAH (2011) Stamping out H5N1 avian influenza could take decades. http://www.fao.org/news/story/en/item/66118/icode/. Accessed 15 Jul 2012

  • Fauci AS (2006) Pandemic influenza threat and preparedness. Emerg Infect Dis 12:73–77

    PubMed Central  PubMed  Google Scholar 

  • Ferreira HL, Lambrecht B, van Borm S, Torrieri-Dramard L, Klatzmann D, Bellier B, van den Berg T (2010) Identification of a dominant epitope in the hemagglutinin of an Asian highly pathogenic avian influenza H5N1 clade 1 virus by selection of escape mutants. Avian Dis 54:565–571

    PubMed  Google Scholar 

  • Fidler DP, Gostin LO (2011) The WHO pandemic influenza preparedness framework: a milestone in global governance for health. JAMA 306:200–201. doi: 10.1001/jama.2011.960 306/2/200

  • Fiore AE, Bridges CB, Cox NJ (2009) Seasonal influenza vaccines. Curr Top Microbiol Immunol 333:43–82. doi:10.1007/978-3-540-92165-3_3

    PubMed  CAS  Google Scholar 

  • Fitch WM, Bush RM, Bender CA, Cox NJ (1997) Long term trends in the evolution of H(3) HA1 human influenza type A. Proc Natl Acad Sci U S A 94:7712–7718

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fitch WM, Leiter JM, Li XQ, Palese P (1991) Positive Darwinian evolution in human influenza A viruses. Proc Natl Acad Sci U S A 88:4270–4274

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fleury D, Barrere B, Bizebard T, Daniels RS, Skehel JJ, Knossow M (1999) A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site. Nat Struct Biol 6:530–534

    PubMed  CAS  Google Scholar 

  • Fouchier RAM, Smith DJ (2010) Use of antigenic cartography in vaccine seed strain selection. Avian Dis 54:220–223. doi:10.1637/8740-032509-ResNote.1

  • Friesen RHE, Lee PS, Stoop EJM, Hoffman RMB, Ekiert DC, Bhabha G, Yu W, Juraszek J, Koudstaal W, Jongeneelen M, Korse HJWM, Ophorst C, Brinkman-van der Linden ECM, Throsby M, Kwakkenbos MJ, Bakker AQ, Beaumont T, Spits H, Kwaks T, Vogels R, Ward AB, Goudsmit J, Wilson IA (2013) A common solution to group 2 influenza virus neutralization. In: Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1319058110

  • Fuller T, Havers F, Xu C, Fang LQ, Cao WC, Shu Y, Widdowson MA, Smith TB (2014) Identifying areas with a high risk of human infection with the avian influenza A (H7N9) virus in East Asia. J Infect. doi:10.1016/j.jinf.2014.03.006

    PubMed  Google Scholar 

  • Furuse Y, Suzuki A, Kishi M, Nukiwa N, Shimizu M, Sawayama R, Fuji N, Oshitani H (2010) Occurrence of mixed populations of influenza A viruses that can be maintained through transmission in a single host and potential for reassortment. J Clin Microbiol 48:369–374. doi:10.1128/JCM.01795-09 JCM.01795-09

  • Garcia M, Crawford JM, Latimer JW, Rivera-Cruz E, Perdue ML (1996) Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J Gen Virol 77(Pt 7):1493–1504

    PubMed  CAS  Google Scholar 

  • Garten W, Bosch FX, Linder D, Rott R, Klenk HD (1981) Proteolytic activation of the influenza virus hemagglutinin: The structure of the cleavage site and the enzymes involved in cleavage. Virology 115:361–374

    PubMed  CAS  Google Scholar 

  • Gerhard W, Yewdell J, Frankel ME, Webster R (1981) Antigenic structure of influenza virus haemagglutinin defined by hybridoma antibodies. Nature 290:713–717

    PubMed  CAS  Google Scholar 

  • Ghedin E, Laplante J, DePasse J, Wentworth DE, Santos RP, Lepow ML, Porter J, Stellrecht K, Lin X, Operario D, Griesemer S, Fitch A, Halpin RA, Stockwell TB, Spiro DJ, Holmes EC, St George K (2011) Deep sequencing reveals mixed infection with 2009 pandemic influenza A (H1N1) virus strains and the emergence of oseltamivir resistance. J Infect Dis 203:168–174. doi:10.1093/infdis/jiq040 jiq040

  • Grund S, Adams O, Wahlisch S, Schweiger B (2011) Comparison of hemagglutination inhibition assay, an ELISA-based micro-neutralization assay and colorimetric microneutralization assay to detect antibody responses to vaccination against influenza A H1N1 2009 virus. J Virol Methods 171:369–373. doi:10.1016/j.jviromet.2010.11.024

    PubMed  CAS  Google Scholar 

  • Guan Y, Peiris JS, Lipatov AS, Ellis TM, Dyrting KC, Krauss S, Zhang LJ, Webster RG, Shortridge KF (2002) Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A 99:8950–8955

    PubMed Central  PubMed  CAS  Google Scholar 

  • Guan Y, Smith GJ (2013) The emergence and diversification of panzootic H5N1 influenza viruses. Virus Res. doi:10.1016/j.virusres.2013.05.012

    Google Scholar 

  • Guan Y, Smith GJ, Webby R, Webster RG (2009) Molecular epidemiology of H5N1 avian influenza. Rev Sci Tech 28:39–47

    PubMed  CAS  Google Scholar 

  • Han T, Marasco WA (2011) Structural basis of influenza virus neutralization. Ann N Y Acad Sci 1217:178–190. doi:10.1111/j.1749-6632.2010.05829.x

    PubMed Central  PubMed  CAS  Google Scholar 

  • Han T, Sui J, Bennett AS, Liddington RC, Donis RO, Zhu Q, Marasco WA (2011) Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 influenza virus using yeast surface display. Biochem Biophys Res Commun 409:253–259. doi:10.1016/j.bbrc.2011.04.139

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hanson BJ, Boon AC, Lim AP, Webb A, Ooi EE, Webby RJ (2006) Passive immunoprophylaxis and therapy with humanized monoclonal antibody specific for influenza A H5 hemagglutinin in mice. Respir Res 7:126

    PubMed Central  PubMed  Google Scholar 

  • Harvey R, Hamill M, Robertson JS, Minor PD, Vodeiko GM, Weir JP, Takahashi H, Harada Y, Itamura S, Bamford P, Dalla Pozza T, Engelhardt OG (2012) Application of deglycosylation to SDS PAGE analysis improves calibration of influenza antigen standards. Biologicals 40:96–99. doi:10.1016/j.biologicals.2011.12.009 S1045-1056(11)00201-6

  • Hay AJ, Gregory V, Douglas AR, Lin YP (2001) The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci 356:1861–1870

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ho HT, Qiang HL, He F, Meng T, Szyporta M, Prabhu N, Prabakaran M, Chan KP, Kwang J (2009) Rapid detection of H5N1 subtype influenza viruses by antigen-capture enzyme-linked immunosorbent assay using H5 and N1 specific monoclonal antibodies. Clin Vaccine Immunol 16(5):726–732

    Google Scholar 

  • Hoffmann E, Lipatov AS, Webby RJ, Govorkova EA, Webster RG (2005) Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines. Proc Natl Acad Sci U S A 102:12915–12920

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hong M, Lee PS, Hoffman RM, Zhu X, Krause JC, Laursen NS, Yoon SI, Song L, Tussey L, Crowe JE Jr, Ward AB, Wilson IA (2013) Antibody recognition of the pandemic H1N1 Influenza virus hemagglutinin receptor binding site. J Virol 87:12471–12480. doi:10.1128/JVI.01388-13

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hu H, Voss J, Zhang G, Buchy P, Zuo T, Wang L, Wang F, Zhou F, Wang G, Tsai C, Calder L, Gamblin SJ, Zhang L, Deubel V, Zhou B, Skehel JJ, Zhou P (2012) A human antibody recognizing a conserved epitope of H5 hemagglutinin broadly neutralizes highly pathogenic avian influenza H5N1 viruses. J Virol 86:2978–2989. doi:10.1128/JVI.06665-11 JVI.06665-11

  • Imai M, Sugimoto K, Okazaki K, Kida H (1998) Fusion of influenza virus with the endosomal membrane is inhibited by monoclonal antibodies to defined epitopes on the hemagglutinin. Virus Res 53:129–139

    PubMed  CAS  Google Scholar 

  • Ina Y, Gojobori T (1994) Statistical analysis of nucleotide sequences of the hemagglutinin gene of human influenza A viruses. Proc Natl Acad Sci U S A 91:8388–8392

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jebara KB, Caceres P, Berlingieri F, Weber-Vintzel L (2012) Ten years’ work on the world organisation for animal health (OIE) worldwide animal disease notification system. Prev Vet Med 107:149–159. doi:10.1016/j.prevetmed.2012.08.008

    PubMed  Google Scholar 

  • Jia N, Wang SX, Liu YX, Zhang PH, Zuo SQ, Lin Z, Dang RL, Ma YH, Zhang C, Zhang L, Lu S, Cao WC (2008) Increased sensitivity for detecting avian influenza-specific antibodies by a modified hemagglutination inhibition assay using horse erythrocytes. J Virol Methods 153:43–48

    PubMed  CAS  Google Scholar 

  • Kaverin NV, Rudneva IA, Govorkova EA, Timofeeva TA, Shilov AA, Kochergin-Nikitsky KS, Krylov PS, Webster RG (2007) Epitope mapping of the hemagglutinin molecule of a highly pathogenic H5N1 influenza virus by using monoclonal antibodies. J Virol 81:12911–12917. doi:10.1128/JVI.01522-07

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kaverin NV, Rudneva IA, Ilyushina NA, Varich NL, Lipatov AS, Smirnov YA, Govorkova EA, Gitelman AK, Lvov DK, Webster RG (2002) Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol 83:2497–2505

    PubMed  CAS  Google Scholar 

  • Kayali G, Setterquist SF, Capuano AW, Myers KP, Gill JS, Gray GC (2008) Testing human sera for antibodies against avian influenza viruses: horse RBC hemagglutination inhibition versus microneutralization assays. J Clin Virol 43:73–78

    PubMed Central  PubMed  CAS  Google Scholar 

  • Khurana S, Suguitan AL Jr, Rivera Y, Simmons CP, Lanzavecchia A, Sallusto F, Manischewitz J, King LR, Subbarao K, Golding H (2009) Antigenic fingerprinting of H5N1 avian influenza using convalescent sera and monoclonal antibodies reveals potential vaccine and diagnostic targets. PLoS Med 6:e1000049. doi:10.1371/journal.pmed.1000049

    PubMed Central  PubMed  Google Scholar 

  • Kida H, Brown LE, Webster RG (1982) Biological activity of monoclonal antibodies to operationally defined antigenic regions on the hemagglutinin molecule of A/Seal/Massachusetts/1/80 (H7N7) influenza virus. Virology 122:38–47

    PubMed  CAS  Google Scholar 

  • Krammer F, Albrecht RA, Tan GS, Margine I, Hai R, Schmolke M, Runstadler J, Andrews SF, Wilson PC, Cox RJ, Treanor JJ, Garcia-Sastre A, Palese P (2014) Divergent H7 immunogens offer protection from H7N9 virus challenge. J Virol 88:3976–3985. doi:10.1128/JVI.03095-13

    PubMed Central  PubMed  Google Scholar 

  • Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8:e1002829. doi:10.1371/journal.pcbi.1002829

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kunik V, Ashkenazi S, Ofran Y (2012a) Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res 40:W521–W524. doi:10.1093/nar/gks480

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kunik V, Peters B, Ofran Y (2012b) Structural consensus among antibodies defines the antigen binding site. PLoS Comput Biol 8:e1002388. doi:10.1371/journal.pcbi.1002388

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lapedes A, Farber R (2001) The geometry of shape space: application to influenza. J Theor Biol 212:57–69

    PubMed  CAS  Google Scholar 

  • Lee CC, Zhu H, Huang PY, Peng L, Chang YC, Yip CH, Li YT, Cheung CL, Compans R, Yang C, Smith DK, Lam TT, King CC, Guan Y (2014a) The emergence and evolution of avian H5N2 influenza viruses in chickens in Taiwan. J Virol. doi:10.1128/JVI.00139-14

    Google Scholar 

  • Lee CW, Senne DA, Suarez DL (2004) Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. J Virol 78:8372–8381

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee CW, Suarez DL (2005) Avian influenza virus: prospects for prevention and control by vaccination. Anim Health Res Rev 6:1–15

    PubMed  Google Scholar 

  • Lee MS, Chen MC, Liao YC, Hsiung CA (2007a) Identifying potential immunodominant positions and predicting antigenic variants of influenza A/H3N2 viruses. Vaccine 25:8133–8139

    PubMed  CAS  Google Scholar 

  • Lee YJ, Kang HM, Lee EK, Song BM, Jeong J, Kwon YK, Kim HR, Lee KJ, Hong MS, Jang I, Choi KS, Kim JY, Lee HJ, Kang MS, Jeong OM, Baek JH, Joo YS, Park YH, Lee HS (2014b) Novel reassortant influenza A(H5N8) viruses, South Korea, 2014. Emerg Infect Dis 20:1086–1089. doi:10.3201/eid2006.140233

    Google Scholar 

  • Lee YJ, Sung HW, Choi JG, Lee EK, Jeong OM, Kwon YK, Kwon JH, Song CS, Kimd JH (2007b) Effects of homologous and heterologous neuraminidase vaccines in chickens against H5N1 highly pathogenic avian influenza. Avian Dis 51:476–478

    PubMed  CAS  Google Scholar 

  • Lees WD, Moss DS, Shepherd AJ (2010) A computational analysis of the antigenic properties of haemagglutinin in influenza A H3N2. Bioinformatics. doi:10.1093/bioinformatics/btq160 btq160

  • Li J, Wang Y, Liang Y, Ni B, Wan Y, Liao Z, Chan KH, Yuen KY, Fu X, Shang X, Wang S, Yi D, Guo B, Di B, Wang M, Che X, Wu Y (2009) Fine antigenic variation within H5N1 influenza virus hemagglutinin’s antigenic sites defined by yeast cell surface display. Eur J Immunol 39:3498–3510. doi:10.1002/eji.200939532

    PubMed  CAS  Google Scholar 

  • Li Z, Liu Z, Ma C, Zhang L, Su Y, Gao GF, Cui L, He W (2011) Identification of amino acids in highly pathogenic avian influenza H5N1 virus hemagglutinin that determine avian influenza species specificity. Arch Virol 156:1803–1812. doi:10.1007/s00705-011-1056-2

    PubMed  CAS  Google Scholar 

  • Li Z, Sun W, Wu D, Gao X, Sun N, Liu N (2014) Mass spectrometry analysis coupled with de novo sequencing reveals amino acid substitutions in nucleocapsid protein from influenza A virus. Int J Mol Sci 15:2465–2474. doi:10.3390/ijms15022465

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liao YC, Lee MS, Ko CY, Hsiung CA (2008) Bioinformatics models for predicting antigenic variants of influenza A/H3N2 virus. Bioinformatics 24:505–512

    PubMed  CAS  Google Scholar 

  • Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang XW, Zhang XL, Zhao D, Wang G, Feng Y, Ma J, Liu W, Wang J, Gao GF (2005) Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 309:1206

    PubMed  CAS  Google Scholar 

  • Lo YC, Chuang JH, Kuo HW, Huang WT, Hsu YF, Liu MT, Chen CH, Huang HH, Chang CH, Chou JH, Chang FY, Lin TY, Chiu WT (2013) Surveillance and vaccine effectiveness of an influenza epidemic predominated by vaccine-mismatched influenza B/Yamagata-lineage viruses in Taiwan, 2011–2012 season. PLoS One 8:e58222. doi:10.1371/journal.pone.0058222

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lu G, Rowley T, Garten R, Donis RO (2007) FluGenome: a web tool for genotyping influenza A virus. Nucleic Acids Res 35:W275–W279. doi:10.1093/nar/gkm365

    PubMed Central  PubMed  Google Scholar 

  • Luna LG, Williams TL, Pirkle JL, Barr JR (2008) Ultra performance liquid chromatography isotope dilution tandem mass spectrometry for the absolute quantification of proteins and peptides. Anal Chem 80:2688–2693

    PubMed  CAS  Google Scholar 

  • Manzoor R, Sakoda Y, Sakabe S, Mochizuki T, Namba Y, Tsuda Y, Kida H (2008) Development of a pen-site test kit for the rapid diagnosis of H7 highly pathogenic avian influenza. J Vet Med Sci 70:557–562

    PubMed  CAS  Google Scholar 

  • Masalova OV, Klimova RR, Chichev EV, Fediakina IT, Loginova SY, Borisevich SV, Bondarev VP, Deryabin PG, Lvov DK, Kushch AA (2011) Development of monoclonal antibodies to highly pathogenic avian influenza H5N1 virus and their application to diagnostics, prophylaxis, and therapy. Acta Virol 55:3–14

    PubMed  CAS  Google Scholar 

  • Matsuoka Y, Lamirande EW, Subbarao K (2009) The ferret model for influenza. Curr Protoc Microbiol Chapter 15:Unit 15G 2. doi:10.1002/9780471729259.mc15g02s13

  • Nabel GJ (2012) Rational design of vaccines for AIDS and influenza. Trans Am Clin Climatol Assoc 123:9–16

    PubMed Central  PubMed  Google Scholar 

  • Nabel GJ, Fauci AS (2010) Induction of unnatural immunity: prospects for a broadly protective universal influenza vaccine. Nat Med 16:1389–1391. doi:10.1038/nm1210-1389 nm1210-1389

  • Oh HL, Akerstrom S, Shen S, Bereczky S, Karlberg H, Klingstrom J, Lal SK, Mirazimi A, Tan YJ (2010) An antibody against a novel and conserved epitope in the hemagglutinin 1 subunit neutralizes numerous H5N1 influenza viruses. J Virol 84:8275–8286. doi:10.1128/JVI.02593-09

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ohkura T, Kikuchi Y, Kono N, Itamura S, Komase K, Momose F, Morikawa Y (2012) Epitope mapping of neutralizing monoclonal antibody in avian influenza A H5N1 virus hemagglutinin. Biochem Biophys Res Commun 418:38–43. doi:10.1016/j.bbrc.2011.12.108 S0006-291X(11)02317-5

  • Okuno Y, Isegawa Y, Sasao F, Ueda S (1993) A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J Virol 67:2552–2558

    PubMed Central  PubMed  CAS  Google Scholar 

  • Okuno Y, Matsumoto K, Isegawa Y, Ueda S (1994) Protection against the mouse-adapted A/FM/1/47 strain of influenza A virus in mice by a monoclonal antibody with cross-neutralizing activity among H1 and H2 strains. J Virol 68:517–520

    PubMed Central  PubMed  CAS  Google Scholar 

  • Osterholm MT, Kelley NS, Sommer A, Belongia EA (2012) Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis 12:36–44. doi:10.1016/S1473-3099(11)70295-X

    PubMed  Google Scholar 

  • Oxford JS, Corcoran T, Hugentobler AL (1981) Quantitative analysis of the protein composition of influenza A and B viruses using high resolution SDS polyacrylamide gels. J Biol Stand 9:483–491

    PubMed  CAS  Google Scholar 

  • Pantin-Jackwood MJ, Miller PJ, Spackman E, Swayne DE, Susta L, Costa-Hurtado M, Suarez DL (2014) Role of poultry in spread of novel H7N9 influenza virus in China. J Virol. doi:10.1128/JVI.03689-13

    Google Scholar 

  • Pappas C, Matsuoka Y, Swayne DE, Donis RO (2007) Development and evaluation of an influenza virus subtype H7N2 vaccine candidate for pandemic preparedness. Clin Vaccine Immunol 14:1425–1432

    PubMed Central  PubMed  CAS  Google Scholar 

  • Perelson AS, Oster GF (1979) Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination. J Theor Biol 81:645–670. doi:http://dx.doi.org/10.1016/0022-5193(79)90275-3

  • Pierce CL, Williams TL, Moura H, Pirkle JL, Cox NJ, Stevens J, Donis RO, Barr JR (2011) Quantification of immunoreactive viral influenza proteins by immunoaffinity capture and isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem. doi:10.1021/ac2006526

    Google Scholar 

  • Prabakaran M, He F, Meng T, Madhan S, Yunrui T, Jia Q, Kwang J (2010) Neutralizing epitopes of influenza virus hemagglutinin: Target for the development of universal vaccine against H5N1 lineages. J Virol. doi:10.1128/JVI.00891-10 JVI.00891-10

  • Prabakaran M, Ho HT, Prabhu N, Velumani S, Szyporta M, He F, Chan KP, Chen LM, Matsuoka Y, Donis RO, Kwang J (2009a) Development of epitope-blocking ELISA for universal detection of antibodies to human H5N1 influenza viruses. PLoS One 4:e4566. doi:10.1371/journal.pone.0004566

    PubMed Central  PubMed  Google Scholar 

  • Prabakaran M, Prabhu N, He F, Hongliang Q, Ho HT, Qiang J, Meng T, Goutama M, Kwang J (2009b) Combination therapy using chimeric monoclonal antibodies protects mice from lethal H5N1 infection and prevents formation of escape mutants. PLoS One 4:e5672

    PubMed Central  PubMed  Google Scholar 

  • Prabhu N, Prabakaran M, Ho HT, Velumani S, Qiang J, Goutama M, Kwang J (2008) Monoclonal antibodies against the fusion peptide of Hemagglutinin protect mice from lethal Influenza A H5N1 Infection. J Virol 83(6):2553–2562

    Google Scholar 

  • Prabhu N, Prabakaran M, Hongliang Q, He F, Ho HT, Qiang J, Goutama M, Lim AP, Hanson BJ, Kwang J (2009) Prophylactic and therapeutic efficacy of a chimeric monoclonal antibody specific for H5 haemagglutinin against lethal H5N1 influenza. Antivir Ther 14:911–921. doi:10.3851/IMP1413

    PubMed  CAS  Google Scholar 

  • Prosser DJ, Cui P, Takekawa JY, Tang M, Hou Y, Collins BM, Yan B, Hill NJ, Li T, Li Y, Lei F, Guo S, Xing Z, He Y, Zhou Y, Douglas DC, Perry WM, Newman SH (2011) Wild bird migration across the Qinghai-Tibetan plateau: a transmission route for highly pathogenic H5N1. PLoS One 6:e17622. doi:10.1371/journal.pone.0017622

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ramakrishnan MA, Tu ZJ, Singh S, Chockalingam AK, Gramer MR, Wang P, Goyal SM, Yang M, Halvorson DA, Sreevatsan S (2009) The feasibility of using high resolution genome sequencing of influenza A viruses to detect mixed infections and quasispecies. PLoS One 4:e7105. doi:10.1371/journal.pone.0007105

    PubMed Central  PubMed  Google Scholar 

  • Robertson JS, Cook P, Nicolson C, Newman R, Wood JM (1994) Mixed populations in influenza virus vaccine strains. Vaccine 12:1317–1322

    PubMed  CAS  Google Scholar 

  • Rockman S, Camuglia S, Vandenberg K, Ong C, Baker MA, Nation RL, Li J, Velkov T (2013) Reverse engineering the antigenic architecture of the haemagglutinin from influenza H5N1 clade 1 and 2.2 viruses with fine epitope mapping using monoclonal antibodies. Mol Immunol 53:435–442. doi:10.1016/j.molimm.2012.10.001

    PubMed  CAS  Google Scholar 

  • Rohm C, Suss J, Pohle V, Webster RG (1996) Different hemagglutinin cleavage site variants of H7N7 in an influenza outbreak in chickens in Leipzig, Germany. Virology 218:253–257

    PubMed  CAS  Google Scholar 

  • Rott R (1980) Genetic determinants for infectivity and pathogenicity of influenza viruses. Philos Trans R Soc Lond B Biol Sci 288:393–399

    PubMed  CAS  Google Scholar 

  • Rott R, Reinacher M, Orlich M, Klenk HD (1980) Cleavability of hemagglutinin determines spread of avian influenza viruses in the chorioallantoic membrane of chicken embryo. Arch Virol 65:123–133

    PubMed  CAS  Google Scholar 

  • Rowe T, Abernathy RA, Hu-Primmer J, Thompson WW, Lu X, Lim W, Fukuda K, Cox NJ, Katz JM (1999) Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J Clin Microbiol 37:937–943

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rudneva IA, Kushch AA, Masalova OV, Timofeeva TA, Klimova RR, Shilov AA, Ignatieva AV, Krylov PS, Kaverin NV (2010) Antigenic epitopes in the hemagglutinin of Qinghai-type influenza H5N1 virus. Viral Immunol 23:181–187. doi:10.1089/vim.2009.0086

    PubMed  CAS  Google Scholar 

  • Shahzad MI, Naeem K, Mukhtar M, Khanum A (2008) Passive immunization against highly pathogenic Avian Influenza Virus (AIV) strain H7N3 with antiserum generated from viral polypeptides protect poultry birds from lethal viral infection. Virol J 5:144

    PubMed Central  PubMed  Google Scholar 

  • Shortridge KF, Zhou NN, Guan Y, Gao P, Ito T, Kawaoka Y, Kodihalli S, Krauss S, Markwell D, Murti KG, Norwood M, Senne D, Sims L, Takada A, Webster RG (1998) Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology 252:331–342

    PubMed  CAS  Google Scholar 

  • Skehel JJ, Daniels RS, Douglas AR, Wiley DC (1983) Antigenic and amino acid sequence variations in the haemagglutinins of type A influenza viruses recently isolated from human subjects. Bull World Health Organ 61:671–676

    PubMed Central  PubMed  CAS  Google Scholar 

  • Skowronski DM, Janjua NZ, Sabaiduc S, De Serres G, Winter AL, Gubbay JB, Dickinson JA, Fonseca K, Charest H, Bastien N, Li Y, Kwindt TL, Mahmud SM, Van Caeseele P, Krajden M, Petric M (2014) Influenza A/subtype and B/lineage effectiveness estimates for the 2011–2012 trivalent vaccine: cross-season and cross-lineage protection with unchanged vaccine. J Infect Dis. doi:10.1093/infdis/jiu048

    Google Scholar 

  • Skowronski DM, Moser FS, Janjua NZ, Davoudi B, English KM, Purych D, Petric M, Pourbohloul B (2013) H3N2v and other influenza epidemic risk based on age-specific estimates of sero-protection and contact network interactions. PLoS One 8:e54015. doi:10.1371/journal.pone.0054015

    PubMed Central  PubMed  CAS  Google Scholar 

  • Smirnov YA, Lipatov AS, Gitelman AK, Claas EC, Osterhaus AD (2000) Prevention and treatment of bronchopneumonia in mice caused by mouse-adapted variant of avian H5N2 influenza A virus using monoclonal antibody against conserved epitope in the HA stem region. Arch Virol 145:1733–1741

    PubMed  CAS  Google Scholar 

  • Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2004) Mapping the antigenic and genetic evolution of influenza virus. Science 305:371–376. doi:10.1126/science.1097211

    PubMed  CAS  Google Scholar 

  • Smith GJ, Fan XH, Wang J, Li KS, Qin K, Zhang JX, Vijaykrishna D, Cheung CL, Huang K, Rayner JM, Peiris JS, Chen H, Webster RG, Guan Y (2006) Emergence and predominance of an H5N1 influenza variant in China. Proc Natl Acad Sci U S A 103:16936–16941

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stephenson I, Heath A, Major D, Newman RW, Hoschler K, Junzi W, Katz JM, Weir JP, Zambon MC, Wood JM (2009) Reproducibility of serologic assays for influenza virus A (H5N1). Emerg Infect Dis 15:1252–1259

    PubMed  Google Scholar 

  • Stephenson I, Wood JM, Nicholson KG, Zambon MC (2003) Sialic acid receptor specificity on erythrocytes affects detection of antibody to avian influenza haemagglutinin. J Med Virol 70:391–398

    PubMed  CAS  Google Scholar 

  • Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410

    PubMed  CAS  Google Scholar 

  • Stewart PL, Nemerow GR (1997) Recent structural solutions for antibody neutralization of viruses. Trends Microbiol 5:229–233

    PubMed  CAS  Google Scholar 

  • Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J, Hemphill M, Rowe T, Shaw M, Xu X, Fukuda K, Cox N (1998) Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279:393–396

    PubMed  CAS  Google Scholar 

  • Sui J, Hwang WC, Perez S, Wei G, Aird D, Chen LM, Santelli E, Stec B, Cadwell G, Ali M, Wan H, Murakami A, Yammanuru A, Han T, Cox NJ, Bankston LA, Donis RO, Liddington RC, Marasco WA (2009) Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 16:265–273. doi:10.1038/nsmb.1566

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sun L, Lu X, Li C, Wang M, Liu Q, Li Z, Hu X, Li J, Liu F, Li Q, Belser JA, Hancock K, Shu Y, Katz JM, Liang M, Li D (2009) Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses. PLoS One 4:e5476. doi:10.1371/journal.pone.0005476

    PubMed Central  PubMed  Google Scholar 

  • Swayne DE, Beck JR, Garcia M, Stone HD (1999) Influence of virus strain and antigen mass on efficacy of H5 avian influenza inactivated vaccines. Avian Pathol 28:245–255. doi:10.1080/03079459994731

    Google Scholar 

  • Swayne DE, Beck JR, Perdue ML, Beard CW (2001) Efficacy of vaccines in chickens against highly pathogenic Hong Kong H5N1 avian influenza. Avian Dis 45:355–365

    PubMed  CAS  Google Scholar 

  • Swayne DE, Garcia M, Beck JR, Kinney N, Suarez DL (2000a) Protection against diverse highly pathogenic H5 avian influenza viruses in chickens immunized with a recombinant fowlpox vaccine containing an H5 avian influenza hemagglutinin gene insert. Vaccine 18:1088–1095

    PubMed  CAS  Google Scholar 

  • Swayne DE, Perdue ML, Beck JR, Garcia M, Suarez DL (2000b) Vaccines protect chickens against H5 highly pathogenic avian influenza in the face of genetic changes in field viruses over multiple years. Vet Microbiol 74:165–172

    PubMed  CAS  Google Scholar 

  • Swayne DE, Suarez DL (2000) Highly pathogenic avian influenza. Rev Sci Tech 19:463–482

    PubMed  CAS  Google Scholar 

  • Terregino C, Toffan A, Cilloni F, Monne I, Bertoli E, Castellanos L, Amarin N, Mancin M, Capua I (2010) Evaluation of the protection induced by avian influenza vaccines containing a 1994 Mexican H5N2 LPAI seed strain against a 2008 Egyptian H5N1 HPAI virus belonging to clade 2.2.1 by means of serological and in vivo tests. Avian Pathol 39:215–222. doi:10.1080/03079451003781858

    PubMed  CAS  Google Scholar 

  • Thornburg NJ, Nannemann DP, Blum DL, Belser JA, Tumpey TM, Deshpande S, Fritz GA, Sapparapu G, Krause JC, Lee JH, Ward AB, Lee DE, Li S, Winarski KL, Spiller BW, Meiler J, Crowe JE Jr (2013) Human antibodies that neutralize respiratory droplet transmissible H5N1 influenza viruses. J Clin Invest 123:4405–4409. doi:10.1172/JCI69377

    PubMed Central  PubMed  CAS  Google Scholar 

  • Throsby M, van den Brink E, Jongeneelen M, Poon LL, Alard P, Cornelissen L, Bakker A, Cox F, van Deventer E, Guan Y, Cinatl J, ter Meulen J, Lasters I, Carsetti R, Peiris M, de Kruif J, Goudsmit J (2008) Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One 3:e3942. doi:10.1371/journal.pone.0003942

    PubMed Central  PubMed  Google Scholar 

  • Treanor JJ, Talbot HK, Ohmit SE, Coleman LA, Thompson MG, Cheng PY, Petrie JG, Lofthus G, Meece JK, Williams JV, Berman L, Breese Hall C, Monto AS, Griffin MR, Belongia E, Shay DK (2012) Effectiveness of seasonal influenza vaccines in the United States during a season with circulation of all three vaccine strains. Clin Infect Dis 55:951–959. doi:10.1093/cid/cis574 cis574

  • Trock SC, Burke SA, Cox NJ (2012) Development of an influenza virologic risk assessment tool. Avian Dis 56:1058–1061

    PubMed  Google Scholar 

  • Tsibane T, Ekiert DC, Krause JC, Martinez O, Crowe JE Jr, Wilson IA, Basler CF (2012) Influenza human monoclonal antibody 1F1 interacts with three major antigenic sites and residues mediating human receptor specificity in H1N1 viruses. PLoS Pathog 8:e1003067. doi:10.1371/journal.ppat.1003067

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vallat B, Thiermann A, Ben Jebara K, Dehove A (2013) Notification of animal and human diseases: the global legal basis. Rev Sci Tech 32:331–335

    Google Scholar 

  • Van Kerkhove MD, Broberg E, Engelhardt OG, Wood J, Nicoll A (2012) The consortium for the standardization of influenza seroepidemiology (CONSISE): a global partnership to standardize influenza seroepidemiology and develop influenza investigation protocols to inform public health policy. Influenza Other Respir Viruses. doi:10.1111/irv.12068

    Google Scholar 

  • Vareckova E, Mucha V, Kostolansky F, Gubareva LV, Klimov A (2008) HA2-specific monoclonal antibodies as tools for differential recognition of influenza A virus antigenic subtypes. Virus Res 132:181–186. doi:10.1016/j.virusres.2007.10.004

    PubMed  CAS  Google Scholar 

  • Velkov T, Ong C, Baker MA, Kim H, Li J, Nation RL, Huang JX, Cooper MA, Rockman S (2013) The antigenic architecture of the hemagglutinin of influenza H5N1 viruses. Mol Immunol 56:705–719. doi:10.1016/j.molimm.2013.07.010

    PubMed  CAS  Google Scholar 

  • Vijaykrishna D, Bahl J, Riley S, Duan L, Zhang JX, Chen H, Peiris JS, Smith GJ, Guan Y (2008) Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLoS Pathog 4:e1000161

    PubMed Central  PubMed  Google Scholar 

  • Wang SF, Chen KH, Thitithanyanont A, Yao L, Lee YM, Chan YJ, Liu SJ, Chong P, Liu WT, Huang JC, Chen YM (2009) Generating and characterizing monoclonal and polyclonal antibodies against avian H5N1 hemagglutinin protein. Biochem Biophys Res Commun 382:691–696. doi:10.1016/j.bbrc.2009.03.119

    PubMed  CAS  Google Scholar 

  • Wang TT, Tan GS, Hai R, Pica N, Ngai L, Ekiert DC, Wilson IA, Garcia-Sastre A, Moran TM, Palese P (2010) Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc Natl Acad Sci U S A 107:18979–18984. doi:10.1073/pnas.1013387107

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wei K, Chen Y, Chen J, Wu L, Xie D (2012) Evolution and adaptation of hemagglutinin gene of human H5N1 influenza virus. Virus Genes 44:450–458. doi:10.1007/s11262-012-0717-x

    PubMed  CAS  Google Scholar 

  • WHO-OIE-FAO HNEWG (2008) Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis 14:e1

    Google Scholar 

  • WHO-OIE-FAO HNEWG (2009) Continuing progress towards a unified nomenclature for the highly pathogenic H5N1 avian influenza viruses: divergence of clade 2.2 viruses. Influenza Other Respir Viruses 3:59–62. doi:10.1111/j.1750-2659.2009.00078.x

  • WHO-OIE-FAO HNEWG (2012) Continued evolution of highly pathogenic avian influenza A (H5N1): updated nomenclature. Influenza Other Respir Viruses 6:1–5. doi:10.1111/j.1750-2659.2011.00298.x

  • WHO-OIE-FAO HNEWG (2014) Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. Influenza Other Respir Viruses 8:384–388. doi:10.1111/irv.12230

  • WHO-WPRO (2014) Avian influenza weekly update number 432. Accessed 9 May 2014

    Google Scholar 

  • WHO (2006) Antigenic and genetic characteristics of H5N1 viruses and candidate H5N1 vaccine viruses developed for potential use as pre-pandemic vaccines. Wkly Epidemiol Rec 81:328–330

    Google Scholar 

  • WHO (2007) Antigenic and genetic characteristics of H5N1 viruses and candidate H5N1 vaccine viruses developed for potential use as pre-pandemic vaccines, March 2007. Wkly Epidemiol Rec 82:164–167

    Google Scholar 

  • WHO (2009a) Antigenic and genetic characteristics of H5N1 viruses and candidate vaccine viruses developed for potential use in human vaccines, February 2009. Wkly Epidemiol Rec 84:72–76

    Google Scholar 

  • WHO (2009b) Antigenic and genetic characteristics of influenza A(H5N1) viruses and candidate vaccine viruses developed for potential use in human vaccines. Wkly Epidemiol Rec 84:432–436

    Google Scholar 

  • WHO (2009c) Pandemic influenza preparedness and response: a who guidance document. Geneva

    Google Scholar 

  • WHO (2010a) Antigenic and genetic characteristics of influenza A(H5N1) and influenza A(H9N2) viruses and candidate vaccine viruses developed for potential use in human vaccines—February 2010. Wkly Epidemiol Rec 85:100–107

    Google Scholar 

  • WHO (2010b) Antigenic and genetic characteristics of influenza A(H5N1)and influenza A(H9N2) viruses and candidate vaccine viruses developed for potential use in human vaccines. Wkly Epidemiol Rec 85:418–424

    Google Scholar 

  • WHO (2011a) Antigenic and genetic characteristics of influenza A(H5N1) and influenza A(H9N2) viruses for development of candidate vaccines viruses for pandemic preparedness—February 2011. Wkly Epidemiol Rec 86:93–100

    Google Scholar 

  • WHO (2011b) Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. Wkly Epidemiol Rec 86:469–480

    Google Scholar 

  • WHO (2012a) Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. Wkly Epidemiol Rec 87:97–108

    Google Scholar 

  • WHO (2012b) Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. Wkly Epidemiol Rec 87:401–412

    Google Scholar 

  • WHO (2013a) Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. Wkly Epidemiol Rec 88:449–463

    Google Scholar 

  • WHO (2013b) Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. Wkly Epidemiol Rec 88:117–125

    Google Scholar 

  • WHO (2014a) Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. Wkly Epidemiol Rec 89:105–115

    Google Scholar 

  • WHO (2014b) Confirmed human cases of avian influenza A(H7N9) reported to WHO. Report 18, data in WHO/HQ as of 14 July 2014. http://www.who.int/influenza/human_animal_interface/influenza_h7n9/18_reportwebh7n9number_20140714.pdf?ua=1 Accessed 14 July 2014

  • Wiley DC, Wilson IA, Skehel JJ (1981) Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289:373–378

    PubMed  CAS  Google Scholar 

  • Williams TL, Luna L, Guo Z, Cox NJ, Pirkle JL, Donis RO, Barr JR (2008) Quantification of influenza virus hemagglutinins in complex mixtures using isotope dilution tandem mass spectrometry. Vaccine 26:2510–2520. doi:10.1016/j.vaccine.2008.03.014

    PubMed  CAS  Google Scholar 

  • Williams TL, Pirkle JL, Barr JR (2012) Simultaneous quantification of hemagglutinin and neuraminidase of influenza virus using isotope dilution mass spectrometry. Vaccine 30:2475–2482. doi:10.1016/j.vaccine.2011.12.056 S0264-410X(11)01991-8

  • Wu JT, Leung K, Perera RA, Chu DK, Lee CK, Hung IF, Lin CK, Lo SV, Lau YL, Leung GM, Cowling BJ, Peiris JS (2014) Inferring influenza infection attack rate from seroprevalence data. PLoS Pathog 10:e1004054. doi:10.1371/journal.ppat.1004054

    PubMed Central  PubMed  Google Scholar 

  • Xu R, Krause JC, McBride R, Paulson JC, Crowe JE Jr, Wilson IA (2013) A recurring motif for antibody recognition of the receptor-binding site of influenza hemagglutinin. Nat Struct Mol Biol 20:363–370. doi:10.1038/nsmb.2500

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang ZY, Wei CJ, Kong WP, Wu L, Xu L, Smith DF, Nabel GJ (2007) Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science 317:825–828. doi:10.1126/science.1135165

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yewdell JW, Taylor A, Yellen A, Caton A, Gerhard W, Bachi T (1993) Mutations in or near the fusion peptide of the influenza virus hemagglutinin affect an antigenic site in the globular region. J Virol 67:933–942

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yoshida R, Igarashi M, Ozaki H, Kishida N, Tomabechi D, Kida H, Ito K, Takada A (2009) Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses. PLoS Pathog 5:e1000350. doi:10.1371/journal.ppat.1000350

    PubMed Central  PubMed  Google Scholar 

  • Zhang M, Gaschen B, Blay W, Foley B, Haigwood N, Kuiken C, Korber B (2004) Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology 14:1229–1246. doi:10.1093/glycob/cwh106

    PubMed  CAS  Google Scholar 

  • Zhao K, Gu M, Zhong L, Duan Z, Zhang Y, Zhu Y, Zhao G, Zhao M, Chen Z, Hu S, Liu W, Liu X, Peng D, Liu X (2013) Characterization of three H5N5 and one H5N8 highly pathogenic avian influenza viruses in China. Vet Microbiol 163:351–357. doi:10.1016/j.vetmic.2012.12.025

    PubMed  CAS  Google Scholar 

  • Zhou J, Wang D, Gao R, Zhao B, Song J, Qi X, Zhang Y, Shi Y, Yang L, Zhu W, Bai T, Qin K, Lan Y, Zou S, Guo J, Dong J, Dong L, Zhang Y, Wei H, Li X, Lu J, Liu L, Zhao X, Li X, Huang W, Wen L, Bo H, Xin L, Chen Y, Xu C, Pei Y, Yang Y, Zhang X, Wang S, Feng Z, Han J, Yang W, Gao GF, Wu G, Li D, Wang Y, Shu Y (2013) Biological features of novel avian influenza A (H7N9) virus. Nature 499:500–503. doi:10.1038/nature12379

    PubMed  CAS  Google Scholar 

  • Zhu X, Guo YH, Jiang T, Wang YD, Chan KH, Li XF, Yu W, McBride R, Paulson JC, Yuen KY, Qin CF, Che XY, Wilson IA (2013) A unique and conserved neutralization epitope in H5N1 influenza viruses identified by an antibody against the A/Goose/Guangdong/1/96 hemagglutinin. J Virol 87:12619–12635. doi:10.1128/JVI.01577-13

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Drs. Giovanni Cattoli and Catherine Bigger, for critical reading of the manuscript, and colleagues in the Influenza Division, Centers for Disease Control and Prevention for valuable information and insight. The contributions of the WHO GISRS member laboratories, including National Influenza Centers, H5N1 Reference Laboratories, and Essential Regulatory Laboratories are greatly appreciated. We also thank the OIE/FAO Network of Expertise on Avian Influenza (OFFLU) for contributing viruses, reagents, and surveillance data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben O. Donis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Donis, R.O. (2014). Antigenic Analyses of Highly Pathogenic Avian Influenza A Viruses. In: Compans, R., Oldstone, M. (eds) Influenza Pathogenesis and Control - Volume I. Current Topics in Microbiology and Immunology, vol 385. Springer, Cham. https://doi.org/10.1007/82_2014_422

Download citation

Publish with us

Policies and ethics