Skip to main content

Genomic Science in Understanding Cholera Outbreaks and Evolution of Vibrio cholerae as a Human Pathogen

  • Chapter
  • First Online:
Cholera Outbreaks

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 379))

Abstract

Modern genomic and bioinformatic approaches have been applied to interrogate the V. cholerae genome, the role of genomic elements in cholera disease, and the origin, relatedness, and dissemination of epidemic strains. A universal attribute of choleragenic strains includes a repertoire of pathogenicity islands and virulence genes, namely the CTXϕ prophage and Toxin Co-regulated Pilus (TCP) in addition to other virulent genetic elements including those referred to as Seventh Pandemic Islands. During the last decade, the advent of Next Generation Sequencing (NGS) has provided highly resolved and often complete genomic sequences of epidemic isolates in addition to both clinical and environmental strains isolated from geographically unconnected regions. Genomic comparisons of these strains, as was completed during and following the Haitian outbreak in 2010, reveals that most epidemic strains appear closely related, regardless of region of origin. Non-O1 clinical or environmental strains may also possess some virulence islands, but phylogenic analysis of the core genome suggests they are more diverse and distantly related than those isolated during epidemics. Like Haiti, genomic studies that examine both the Vibrio core and pan-genome in addition to Single Nucleotide Polymorphisms (SNPs) conclude that a number of epidemics are caused by strains that closely resemble those in Asia, and often appear to originate there and then spread globally. The accumulation of SNPs in the epidemic strains over time can then be applied to better understand the evolution of the V. cholerae genome as an etiological agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali A, Chen Y, Johnson JA, Redden E, Mayette Y, Rashid MH et al (2011) Recent clonal origin of cholera in Haiti. Emerg Infect Dis 17:699–701

    PubMed Central  PubMed  Google Scholar 

  • Ansaruzzaman M, Bhuiyan NA, Nair BG, Sack DA, Lucas M, Deen JL et al (2004) Cholera in Mozambique, variant of Vibrio cholerae. Emerg Infect Dis 10:2057–2059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Awasthi SP, Asakura M, Chowdhury N, Neogi SB, Hinenoya A, Golbar HM et al (2012) Novel cholix toxin variants, an ADP-ribosylating toxin in Vibrio cholerae non-O1/non-O139 strains and their pathogenicity. Infect Immun 81(2):531–541

    PubMed  Google Scholar 

  • Barker A, Manning PA (1997) VlpA of Vibrio cholerae O1: the first bacterial member of the alpha 2-microglobulin lipocalin superfamily. Microbiology 143(Pt 6):1805–1813

    CAS  PubMed  Google Scholar 

  • Bashir A, Klammer AA, Robins WP, Chin CS, Webster D, Paxinos E et al (2012) A hybrid approach for the automated finishing of bacterial genomes. Nat Biotechnol 30(7):701–707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beck NA, Krukonis ES, DiRita VJ (2004) TcpH influences virulence gene expression in Vibrio cholerae by inhibiting degradation of the transcription activator TcpP. J Bacteriol 186:8309–8316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boyd EF, Waldor MK (2002) Evolutionary and functional analyses of variants of the toxin-coregulated pilus protein TcpA from toxigenic Vibrio cholerae non-O1/non-O139 serogroup isolates. Microbiology 148:1655–1666

    CAS  PubMed  Google Scholar 

  • Byun R, Elbourne LD, Lan R, Reeves PR (1999) Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. Infect Immun 67:1116–1124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiang SL, Taylor RK, Koomey M, Mekalanos JJ (1995) Single amino acid substitutions in the N-terminus of Vibrio cholerae TcpA affect colonization, autoagglutination, and serum resistance. Mol Microbiol 17:1133–1142

    CAS  PubMed  Google Scholar 

  • Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR et al (2011) The origin of the Haitian cholera outbreak strain. N Engl J Med 364:33–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, Haley BJ et al (2009) Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci USA 106:15442–15447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Craig L, Taylor RK, Pique ME, Adair BD, Arvai AS, Singh M et al (2003) Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 11:1139–1150

    CAS  PubMed  Google Scholar 

  • Dalsgaard A, Albert MJ, Taylor DN, Shimada T, Meza R, Serichantalergs O, Echeverria P (1995) Characterization of Vibrio cholerae non-O1 serogroups obtained from an outbreak of diarrhea in Lima. Peru J Clin Microbiol 33:2715–2722

    CAS  Google Scholar 

  • Dalsgaard A, Serichantalergs O, Forslund A, Lin W, Mekalanos J, Mintz E, Shimada T, Wells JG (2001) Clinical and environmental isolates of Vibrio cholerae serogroup O141 carry the CTX phage and the genes encoding the toxin-coregulated pili. J Clin Microbiol 39:4086–4092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis BM, Kimsey HH, Kane AV, Waldor MK (2002) A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J 21:4240–4249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis BM, Waldor MK (2003) Filamentous phages linked to virulence of Vibrio cholerae. Curr Opin Microbiol 6:35–42

    CAS  PubMed  Google Scholar 

  • de Sa Morais LL, Garza DR, Loureiro EC, Nunes KN, Vellasco RS, da Silva CP et al (2012) Complete genome sequence of a sucrose-nonfermenting epidemic strain of Vibrio cholerae O1 from Brazil. J Bacteriol 194:2772

    PubMed  Google Scholar 

  • Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci USA 99:1556–1561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faruque SM, Chowdhury N, Kamruzzaman M, Dziejman M, Rahman MH, Sack DA et al (2004) Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area. Proc Natl Acad Sci USA 101:2123–2128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faruque SM, Islam MJ, Ahmad QS, Faruque AS, Sack DA, Nair GB et al (2005a) Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. Proc Natl Acad Sci USA 102:6119–6124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faruque SM, Mekalanos JJ (2003) Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol 11:505–510

    CAS  PubMed  Google Scholar 

  • Faruque SM, Zhu J, Asadulghani, Kamruzzaman M, Mekalanos JJ (2003) Examination of diverse toxin-coregulated pilus-positive Vibrio cholerae strains fails to demonstrate evidence for Vibrio pathogenicity island phage. Infect Immun 71:2993–2999

    Google Scholar 

  • Faruque SM, Islam MJ, Ahmad QS, Faruque AS, Sack DA, Nair GB, Mekalanos JJ (2005b) Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. Proc Natl Acad Sci USA 102:6119–6124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng L, Reeves PR, Lan R, Ren Y, Gao C, Zhou Z et al (2008) A recalibrated molecular clock and independent origins for the cholera pandemic clones. PLoS ONE 3:e4053

    PubMed Central  PubMed  Google Scholar 

  • Frerichs RR, Keim PS, Barrais R, Piarroux R (2012) Nepalese origin of cholera epidemic in Haiti. Clin Microbiol Infect 18:E158–E163

    CAS  PubMed  Google Scholar 

  • Gao Y, Pang B, Wang HY, Zhou HJ, Cui ZG, Kan B (2011) Structural variation of the superintegron in the toxigenic Vibrio cholerae O1 El Tor. Biomed Environ Sci 24:579–592

    CAS  PubMed  Google Scholar 

  • Garza DR, Thompson CC, Loureiro EC, Dutilh BE, Inada DT, Junior EC et al (2012) Genome-wide study of the defective sucrose fermenter strain of Vibrio cholerae from the Latin American cholera epidemic. PLoS ONE 7:e37283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaudart J, Moore S, Rebaudet S, Piarroux M, Barrais R, Boncy J et al (2013a) Environmental factors influencing epidemic cholera. Am J Trop Med Hyg 89:1228–1230

    PubMed Central  PubMed  Google Scholar 

  • Gaudart J, Rebaudet S, Barrais R, Boncy J, Faucher B, Piarroux M et al (2013b) Spatio-temporal dynamics of cholera during the first year of the epidemic in Haiti. PLoS Negl Trop Dis 7:e2145

    PubMed Central  PubMed  Google Scholar 

  • Ghosh-Banerjee J, Senoh M, Takahashi T, Hamabata T, Barman S, Koley H et al (2010) Cholera toxin production by the El Tor variant of Vibrio cholerae O1 compared to prototype El Tor and classical biotypes. J Clin Microbiol 48:4283–4286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh C, Nandy RK, Dasgupta SK, Nair GB, Hall RH, Ghose AC (1997) A search for cholera toxin (CT), toxin coregulated pilus (TCP), the regulatory element ToxR and other virulence factors in non-01/non-0139 Vibrio cholerae. Microb Pathog 22:199–208

    CAS  PubMed  Google Scholar 

  • Grim CJ, Hasan NA, Taviani E, Haley B, Chun J, Brettin TS et al (2010) Genome sequence of hybrid Vibrio cholerae O1 MJ-1236, B-33, and CIRS101 and comparative genomics with V. cholerae. J Bacteriol 192:3524–3533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haley BJ, Choi SY, Hasan NA, Abdullah AS, Cebula TA, Huq A et al (2013) Genome sequences of clinical Vibrio cholerae isolates from an oyster-borne cholera outbreak in Florida. Genome Announc 1(6):e00966-13

    PubMed Central  PubMed  Google Scholar 

  • Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30(5):1229–1235

    CAS  PubMed  Google Scholar 

  • Hang L, John M, Asaduzzaman M, Bridges EA, Vanderspurt C, Kirn TJ et al (2003) Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc Natl Acad Sci USA 100:8508–8513

    PubMed Central  PubMed  Google Scholar 

  • Hasan NA, Choi SY, Eppinger M, Clark PW, Chen A, Alam M et al (2012) Genomic diversity of 2010 Haitian cholera outbreak strains. Proc Natl Acad Sci USA 109:e2010–e2017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hase CC, Mekalanos JJ (1998) TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 95:730–734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hassan F, Kamruzzaman M, Mekalanos JJ, Faruque SM (2010) Satellite phage TLCphi enables toxigenic conversion by CTX phage through dif site alteration. Nature 467:982–985

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ et al (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483

    CAS  PubMed  Google Scholar 

  • Hendriksen RS, Price LB, Schupp JM, Gillece JD, Kaas RS, Engelthaler DM et al (2011) Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. MBio 2:e00157-11

    PubMed Central  PubMed  Google Scholar 

  • Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM (1988) Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168:1487–1492

    CAS  PubMed  Google Scholar 

  • Iredell JR, Manning PA (1994) Biotype-specific tcpA genes in Vibrio cholerae. FEMS Microbiol Lett 121:47–54

    CAS  PubMed  Google Scholar 

  • Jani D, Meena LS, Rizwan-ul-Haq QM, Singh Y, Sharma AK, Tyagi AK (2002) Expression of cholera toxin B subunit in transgenic tomato plants. Transgenic Res 11:447–454

    CAS  PubMed  Google Scholar 

  • Jensen MA, Faruque SM, Mekalanos JJ, Levin BR (2006) Modeling the role of bacteriophage in the control of cholera outbreaks. Proc Natl Acad Sci USA 103:4652–4657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karaolis DK, Lan R, Reeves PR (1994) Molecular evolution of the seventh-pandemic clone of Vibrio cholerae and its relationship to other pandemic and epidemic V. cholerae isolates. J Bacteriol 176:6199–6206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karaolis DK, Somara S, Maneval DR Jr, Johnson JA, Kaper JB (1999) A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399:375–379

    CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katz LS, Petkau A, Beaulaurier J, Tyler S, Antonova ES, Turnsek MA et al (2013) Evolutionary dynamics of Vibrio cholerae O1 following a single-source introduction to Haiti. MBio 4(4):e00398-13

    PubMed Central  PubMed  Google Scholar 

  • Kimsey HH, Waldor MK (1998) CTXphi immunity: application in the development of cholera vaccines. Proc Natl Acad Sci USA 95:7035–7039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirn TJ, Jude BA, Taylor RK (2005) A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438:863–866

    CAS  PubMed  Google Scholar 

  • Kirn TJ, Lafferty MJ, Sandoe CM, Taylor RK (2000) Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae. Mol Microbiol 35:896–910

    CAS  PubMed  Google Scholar 

  • Krukonis ES, Yu RR, Dirita VJ (2000) The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter. Mol Microbiol 38:67–84

    CAS  PubMed  Google Scholar 

  • Labbate M, Boucher Y, Joss MJ, Michael CA, Gillings MR, Stokes HW (2007) Use of chromosomal integron arrays as a phylogenetic typing system for Vibrio cholerae pandemic strains. Microbiology 153:1488–1498

    CAS  PubMed  Google Scholar 

  • Lam C, Octavia S, Reeves P, Wang L, Lan R (2010) Evolution of seventh cholera pandemic and origin of 1991 epidemic, Latin America. Emerg Infect Dis 16:1130–1132

    PubMed Central  PubMed  Google Scholar 

  • Lam C, Octavia S, Reeves PR, Lan R (2012) Multi-locus variable number tandem repeat analysis of 7th pandemic Vibrio cholerae. BMC Microbiol 12:82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larocque RC, Harris JB, Dziejman M, Li X, Khan AI, Faruque AS et al (2005) Transcriptional profiling of Vibrio cholerae recovered directly from patient specimens during early and late stages of human infection. Infect Immun 73:4488–4493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Egelman EH, Craig L (2012) Structure of the Vibrio cholerae Type IVb Pilus and stability comparison with the Neisseria gonorrhoeae type IVa pilus. J Mol Biol 418:47–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Kotetishvili M, Chen Y, Sozhamannan S (2003) Comparative genomic analyses of the vibrio pathogenicity island and cholera toxin prophage regions in nonepidemic serogroup strains of Vibrio cholerae. Appl Environ Microbiol 69:1728–1738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang W, Wang S, Yu F, Zhang L, Qi G, Liu Y et al (2003) Construction and evaluation of a safe, live, oral Vibrio cholerae vaccine candidate, IEM108. Infect Immun 71:5498–5504

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacDonald D, Demarre G, Bouvier M, Mazel D, Gopaul DN (2006) Structural basis for broad DNA-specificity in integron recombination. Nature 440:1157–1162

    CAS  PubMed  Google Scholar 

  • Mandlik A, Livny J, Robins WP, Ritchie JM, Mekalanos JJ, Waldor MK (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10:165–174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazel D, Dychinco B, Webb VA, Davies J (1998) A distinctive class of integron in the Vibrio cholerae genome. Science 280:605–608

    CAS  PubMed  Google Scholar 

  • Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Science 310:1824–1827

    CAS  PubMed  Google Scholar 

  • Mekalanos JJ (1983) Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35(1):253–263

    Google Scholar 

  • Mekalanos JJ, Robins W, Ussery DW, Davis BM, Schadt E, Waldor MK (2012) Non-O1 Vibrio cholerae unlinked to cholera in Haiti. Proc Natl Acad Sci USA 109:E3206 (author reply E7)

    Google Scholar 

  • Miller VL, DiRita VJ, Mekalanos JJ (1989) Identification of toxS, a regulatory gene whose product enhances toxR-mediated activation of the cholera toxin promoter. J Bacteriol 171:1288–1293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mukhopadhyay AK, Chakraborty S, Takeda Y, Nair GB, Berg DE (2001) Characterization of VPI pathogenicity island and CTXphi prophage in environmental strains of Vibrio cholerae. J Bacteriol 183:4737–4746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH, Kariuki S et al (2011) Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477:462–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nair GB, Faruque SM, Bhuiyan NA, Kamruzzaman M, Siddique AK, Sack DA (2002) New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol 40:3296–3299

    PubMed Central  PubMed  Google Scholar 

  • Nair GB, Qadri F, Holmgren J, Svennerholm AM, Safa A, Bhuiyan NA et al (2006) Cholera due to altered El Tor strains of Vibrio cholerae O1 in Bangladesh. J Clin Microbiol 44:4211–4213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novais RC, Coelho A, Salles CA, Vicente AC (1999) Toxin-co-regulated pilus cluster in non-O1, non-toxigenic Vibrio cholerae: evidence of a third allele of pilin gene. FEMS Microbiol Lett 171:49–55

    CAS  PubMed  Google Scholar 

  • Nusrin S, Gil AI, Bhuiyan NA, Safa A, Asakura M, Lanata CF et al (2009) Peruvian Vibrio cholerae O1 El Tor strains possess a distinct region in the Vibrio seventh pandemic island-II that differentiates them from the prototype seventh pandemic El Tor strains. J Med Microbiol 58:342–354

    CAS  PubMed  Google Scholar 

  • Ogawa A, Takeda T (1993) The gene encoding the heat-stable enterotoxin of Vibrio cholerae is flanked by 123-base pair direct repeats. Microbiol Immunol 37:607–616

    CAS  PubMed  Google Scholar 

  • Pang B, Yan M, Cui Z, Ye X, Diao B, Ren Y et al (2007) Genetic diversity of toxigenic and nontoxigenic Vibrio cholerae serogroups O1 and O139 revealed by array-based comparative genomic hybridization. J Bacteriol 189:4837–4849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pascual M, Bouma MJ, Dobson AP (2002) Cholera and climate: revisiting the quantitative evidence. Microbes Infect 4:237–245

    PubMed  Google Scholar 

  • Qadri F, Chowdhury MI, Faruque SM, Salam MA, Ahmed T, Begum YA et al (2007) Peru-15, a live attenuated oral cholera vaccine, is safe and immunogenic in Bangladeshi toddlers and infants. Vaccine 25:231–238

    CAS  PubMed  Google Scholar 

  • Rahman MH, Biswas K, Hossain MA, Sack RB, Mekalanos JJ, Faruque SM (2008) Distribution of genes for virulence and ecological fitness among diverse Vibrio cholerae population in a cholera endemic area: tracking the evolution of pathogenic strains. DNA Cell Biol 27:347–355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raychoudhuri A, Patra T, Ghosh K, Ramamurthy T, Nandy RK, Takeda Y et al (2009) Classical ctxB in Vibrio cholerae O1, Kolkata, India. Emerg Infect Dis 15:131–132

    PubMed Central  PubMed  Google Scholar 

  • Reguera G, Kolter R (2005) Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol 187:3551–3555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reimer AR, Van Domselaar G, Stroika S, Walker M, Kent H, Tarr C et al (2011) Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa. Emerg Infect Dis 17:2113–2121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rhine JA, Taylor RK (1994) TcpA pilin sequences and colonization requirements for O1 and O139 Vibrio cholerae. Mol Microbiol 13:1013–1020

    CAS  PubMed  Google Scholar 

  • Rivera IN, Chun J, Huq A, Sack RB, Colwell RR (2001) Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Appl Environ Microbiol 67:2421–2429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    CAS  PubMed  Google Scholar 

  • Rowe-Magnus DA, Guerout AM, Biskri L, Bouige P, Mazel D (2003) Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res 13:428–442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubin EJ, Lin W, Mekalanos JJ, Waldor MK (1998) Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage. Mol Microbiol 28:1247–1254

    CAS  PubMed  Google Scholar 

  • Russell AJ (1925) A statistical approach to the epidemiology of cholera in Madras presidency. Proc Natl Acad Sci USA 11:653–657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Safa A, Bhuyian NA, Nusrin S, Ansaruzzaman M, Alam M, Hamabata T et al (2006) Genetic characteristics of Matlab variants of Vibrio cholerae O1 that are hybrids between classical and El Tor biotypes. J Med Microbiol 55:1563–1569

    CAS  PubMed  Google Scholar 

  • Sealfon R, Gire S, Ellis C, Calderwood S, Qadri F, Hensley L et al (2012) High depth, whole-genome sequencing of cholera isolates from Haiti and the dominican republic. BMC Genom 13:468

    CAS  Google Scholar 

  • Seed KD, Bodi KL, Kropinski AM, Ackermann HW, Calderwood SB, Qadri F et al (2011) Evidence of a dominant lineage of Vibrio cholerae-specific lytic bacteriophages shed by cholera patients over a 10-year period in Dhaka, Bangladesh. MBio 2:e00334-10

    PubMed Central  PubMed  Google Scholar 

  • Sellek RE, Niemcewicz M, Olsen JS, Bassy O, Lorenzo P, Marti L et al (2012) Phenotypic and genetic analyses of 111 clinical and environmental O1, O139, and non-O1/O139 Vibrio cholerae strains from different geographical areas. Epidemiol Infect 140:1389–1399

    CAS  PubMed  Google Scholar 

  • Shakya G, Kim DW, Clemens JD, Malla S, Upadhyaya BP, Dumre SP et al (2012) Phenotypic and genetic characterization of Vibrio cholerae O1 clinical isolates collected through national antimicrobial resistance surveillance network in Nepal. World J Microbiol Biotechnol 28:2671–2678

    CAS  PubMed  Google Scholar 

  • Shamini G, Ravichandran M, Sinnott JT, Somboonwit C, Sidhu HS, Shapshak P et al (2011) Structural inferences for cholera toxin mutations in Vibrio cholerae. Bioinformation 6:1–9

    PubMed Central  PubMed  Google Scholar 

  • Singh DV, Matte MH, Matte GR, Jiang S, Sabeena F, Shukla BN et al (2001) Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates. Appl Environ Microbiol 67:910–921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sjolund-Karlsson M, Reimer A, Folster JP, Walker M, Dahourou GA, Batra DG et al (2011) Drug-resistance mechanisms in Vibrio cholerae O1 outbreak strain, Haiti, 2010. Emerg Infect Dis 17:2151–2154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Son MS, Megli CJ, Kovacikova G, Qadri F, Taylor RK (2011) Characterization of Vibrio cholerae O1 El Tor biotype variant clinical isolates from Bangladesh and Haiti, including a molecular genetic analysis of virulence genes. J Clin Microbiol 49:3739–3749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Talkington D, Bopp C, Tarr C, Parsons MB, Dahourou G, Freeman M et al (2011) Characterization of toxigenic Vibrio cholerae from Haiti, 2010-2011. Emerg Infect Dis 17:2122–2129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thungapathra M, Sharma C, Gupta N, Ghosh RK, Mukhopadhyay A, Koley H et al (1999) Construction of a recombinant live oral vaccine from a non-toxigenic strain of Vibrio cholerae O1 serotype inaba biotype E1 Tor and assessment of its reactogenicity and immunogenicity in the rabbit model. Immunol Lett 68:219–227

    CAS  PubMed  Google Scholar 

  • Trucksis M, Michalski J, Deng YK, Kaper JB (1998) The Vibrio cholerae genome contains two unique circular chromosomes. Proc Natl Acad Sci USA 95:14464–14469

    CAS  PubMed Central  PubMed  Google Scholar 

  • UN (2011) United Nation Final Report of the Independent Panel of Experts on the Cholera Outbreak in Haiti, May 4, 2011. In: (ed.), Vol. pp. United Nations. Available at http://www.un.org/News/dh/infocus/haiti/UN-cholera-report-final.pdf. Accessed March 2012

  • Vesth T, Lagesen K, Acar O, Ussery D (2013) CMG-biotools, a free workbench for basic comparative microbial genomics. PLoS ONE 8:e60120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vesth T, Wassenaar TM, Hallin PF, Snipen L, Lagesen K, Ussery DW (2010) On the origins of a Vibrio species. Microb Ecol 59:1–13

    PubMed Central  PubMed  Google Scholar 

  • Wachsmuth IK, Evins GM, Fields PI, Olsvik O, Popovic T, Bopp CA et al (1993) The molecular epidemiology of cholera in Latin America. J Infect Dis 167:621–626

    CAS  PubMed  Google Scholar 

  • Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914

    CAS  PubMed  Google Scholar 

  • Waldor MK, Rubin EJ, Pearson GD, Kimsey H, Mekalanos JJ (1997) Regulation, replication, and integration functions of the Vibrio cholerae CTXphi are encoded by region RS2. Mol Microbiol 24:917–926

    CAS  PubMed  Google Scholar 

  • Waldor MK, Tschape H, Mekalanos JJ (1996) A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 178:4157–4165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weber JT, Mintz ED, Canizares R, Semiglia A, Gomez I, Sempertegui R et al (1994) Epidemic cholera in Ecuador: multidrug-resistance and transmission by water and seafood. Epidemiol Infect 112:1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaichi Y, Iida T, Park KS, Yamamoto K, Honda T (1999) Physical and genetic map of the genome of Vibrio parahaemolyticus: presence of two chromosomes in Vibrio species. Mol Microbiol 31:1513–1521

    CAS  PubMed  Google Scholar 

  • Yan M, Liu G, Diao B, Qiu H, Zhang L, Liang W et al (2007) A Vibrio cholerae serogroup O1 vaccine candidate against CTX ET Phi infection. Vaccine 25:4046–4055

    CAS  PubMed  Google Scholar 

  • Yildiz FH, Liu XS, Heydorn A, Schoolnik GK (2004) Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53:497–515

    CAS  PubMed  Google Scholar 

  • Yu RR, DiRita VJ (1999) Analysis of an autoregulatory loop controlling ToxT, cholera toxin, and toxin-coregulated pilus production in Vibrio cholerae. J Bacteriol 181:2584–2592

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William P. Robins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robins, W.P., Mekalanos, J.J. (2014). Genomic Science in Understanding Cholera Outbreaks and Evolution of Vibrio cholerae as a Human Pathogen. In: Nair, G., Takeda, Y. (eds) Cholera Outbreaks. Current Topics in Microbiology and Immunology, vol 379. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2014_366

Download citation

Publish with us

Policies and ethics