Skip to main content

Modulation of Small GTPases by Legionella

  • Chapter
  • First Online:
Molecular Mechanisms in Legionella Pathogenesis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 376))

Abstract

The pathogenic bacterium Legionella pneumophila interacts intimately with signaling molecules during the infection of eukaryotic host cells. Among a diverse set of regulatory molecules, host small GTPases appear to be prominent and significant targets. Small GTPases are molecular switches that regulate cellular signaling via their respective nucleotide-bound states: When bound to GDP, they are inactive, but become activated upon binding to GTP. Legionella secretes specific bacterial proteins into the cytosol of the host cell that most prominently modulate the activities of small GTPases involved in vesicular trafficking, but probably also other G-proteins. The master regulators of vesicular trafficking, i.e., Rab and Arf proteins, are majorly targeted G-proteins of Legionella proteins, and among these, Rab1 experiences the most diverse modifications. Generally, the activities of small GTPases are modulated by GDP/GTP exchange (activation), GTP hydrolysis (deactivation), membrane recruitment, post-translational modifications (phosphocholination, adenylylation), and tight and competitive binding. Here, we discuss the consequences and molecular details of the modulation of small GTPases for the infection by Legionella, with a special but not exclusive focus on Rab and Arf proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktories K (2011) Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 9:487–498. doi: 10.1038/nrmicro2592

    Google Scholar 

  • Alix E, Chesnel L, Bowzard BJ, Tucker AM, Delprato A, Cherfils J, Wood DO, Kahn RA, Roy CR (2012) The Capping domain in Ralf regulates effector functions. PLOS Pathog 8. doi: 10.1371/journal.ppat.1003012

  • Allaire PD, Marat AL, Dall’Armi C, Di Paolo G, McPherson PS, Ritter B (2010) The connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes. Mol Cell 37:370–382. doi: 10.1016/j.molcel.2009.12.037

    Google Scholar 

  • Allan BB, Moyer BD, Balch WE (2000) Rab1 recruitment of p115 into a cis-SNARE complex: Programming budding COPII vesicles for fusion. Science 289:444–448. doi:10.1126/science.289.5478.444

    Google Scholar 

  • Blümer J, Rey J, Dehmelt L, Mazel T, Wu YW, Bastiaens P, Goody RS, Itzen A (2013) RabGEFs are a major determinant for specific Rab membrane targeting. J Cell Biol 200:287–300. doi: 10.1083/jcb.201209113

    Google Scholar 

  • Brombacher E, Urwyler S, Ragaz C, Weber SS, Kami K, Overduin M, Hilbi H (2009) Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem 284:4846–4856. doi: 10.1074/jbc.M807505200

    Google Scholar 

  • Chen Y, Machner MP (2013) Targeting of the small GTPase Rab6A’ by the Legionella pneumophila effector LidA. Infect Immun. doi: 10.1128/IAI.00157-13

  • Cheng W, Yin K, Lu DF, Li BQ, Zhu DY, Chen YZ, Zhang H, Xu SJ, Chai JJ, Gu LC (2012) Structural insights into a Unique Legionella pneumophila effector LidA recognizing Both GDP and GTP Bound Rab1 in their active state. Plos Pathog 8. doi: 10.1371/journal.ppat.1002528.

  • Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309. doi: 10.1152/physrev.00003.2012.

    Google Scholar 

  • Conover GM, Derre I, Vogel JP, Isberg RR (2003) The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol Microbiol 48:305–321. doi: 10.1046/j.1365-2958.2003.03400.x

    Google Scholar 

  • Cortes C, Rzomp KA, Tvinnereim A, Scidmore MA, Wizel B (2007) Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases. infection and immunity 75:5586–5596. doi: 10.1128/IAI.01020-07.

    Google Scholar 

  • de Barsy M, Jamet A, Filopon D, Nicolas C, Laloux G, Rual JF, Muller A, Twizere JC, Nkengfac B, Vandenhaute J, Hill DE, Salcedo SP, Gorvel JP, Letesson JJ, De Bolle X (2011) Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol 13:1044–1058. doi: 10.1111/j.1462-5822.2011.01601.x

    Google Scholar 

  • Derre I, Isberg RR (2005) LidA, a translocated substrate of the Legionella pneumophila type IV secretion system, interferes with the early secretory pathway. Infect Immun 73:4370–4380. doi: 10.1128/IAI.73.7.4370-4380.2005

    Google Scholar 

  • DiNitto JP, Delprato A, Gabe Lee MT, Cronin TC, Huang S, Guilherme A, Czech MP, Lambright DG (2007) Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors. Mol Cell 28:569–583. doi: 10.1016/j.molcel.2007.09.017

    Google Scholar 

  • Dong N, Zhu Y, Lu Q, Hu L, Zheng Y, Shao F (2012) Structurally distinct bacterial TBC-like GAPs Link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 150:1029–1041. doi: 10.1016/j.cell.2012.06.050

    Google Scholar 

  • Dorer MS, Kirton D, Bader JS, Isberg RR (2006) RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS Pathog 2:e34. doi: 10.1371/journal.ppat.0020034

  • Eathiraj S, Pan X, Ritacco C, Lambright DG (2005) Structural basis of family-wide Rab GTPase recognition by rabenosyn-5. Nature 436:415–419. doi: 10.1038/nature03798

    Google Scholar 

  • Gazdag EM, Streller A, Haneburger I, Hilbi H, Vetter IR, Goody RS, Itzen A (2013) Mechanism of Rab1b deactivation by the Legionella pneumophila GAP LepB. EMBO Reports 14:199–205. doi: 10.1038/embor.2012.211

    Google Scholar 

  • Godi A, Pertile P, Meyers R, Marra P, Di Tullio G, Iurisci C, Luini A, Corda D, De Matteis MA (1999) ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns (4,5)P2 on the Golgi complex. Nat Cell Biol 1:280–287. doi: 10.1038/12993

    Google Scholar 

  • Goody PR, Heller K, Oesterlin LK, Muller MP, Itzen A, Goody RS (2012) Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J 31:1774–1784. doi: 10.1038/emboj.2012.16

    Google Scholar 

  • Haas AK, Yoshimura S, Stephens DJ, Preisinger C, Fuchs E, Barr FA (2007) Analysis of GTPase-activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells. J Cell Sci 120:2997–3010. doi: 10.1242/jcs.014225

    Google Scholar 

  • Ingmundson A, Delprato A, Lambright DG, Roy CR (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450:365–369. doi: 10.1038/nature06336

    Google Scholar 

  • Isberg RR, O’Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:13–24. doi: 10.1038/nrmicro1967

    Google Scholar 

  • Kagan JC, Roy CR (2002) Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4:945–954. doi: 10.1038/ncb883

    Google Scholar 

  • Kagan JC, Stein MP, Pypaert M, Roy CR (2004) Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J Exp Med 199:1201–1211. doi: 10.1084/jem.20031706

    Google Scholar 

  • Kauppi M, Simonsen A, Bremnes B, Vieira A, Callaghan J, Stenmark H, Olkkonen VM (2002) The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. J Cell Sci 115:899–911

    Google Scholar 

  • Kouranti I, Sachse M, Arouche N, Goud B, Echard A (2006) Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr Biol 16:1719–1725. doi: 10.1016/j.cub.2006.07.020

    Google Scholar 

  • Ku B, Lee KH, Park WS, Yang CS, Ge J, Lee SG, Cha SS, Shao F, Heo WD, Jung JU, Oh BH (2012) VipD of Legionella pneumophila Targets Activated Rab5 and Rab22 to Interfere with Endosomal Trafficking in Macrophages. Plos Pathog 8. doi: 10.1371/journal.ppat.1003082

  • Machner MP, Isberg RR (2006) Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Develop Cell 11:47–56. doi: 10.1016/j.devcel.2006.05.013

    Google Scholar 

  • Machner MP, Isberg RR (2007) A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318:974–977. doi: 10.1126/science.1149121

    Google Scholar 

  • Mishra A, Eathiraj S, Corvera S, Lambright DG (2010) Structural basis for Rab GTPase recognition and endosome tethering by the C2H2 zinc finger of early endosomal autoantigen 1 (EEA1). Proc Natl Acad Sci U S A 107:10866–10871. doi: 10.1073/pnas.1000843107

  • Moyer BD, Allan BB, Balch WE (2001) Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis-Golgi tethering. Traffic 2:268–276. doi: 10.1034/j.1600-0854.2001.10007.x

    Google Scholar 

  • Mukherjee S, Liu XY, Arasaki K, McDonough J, Galan JE, Roy CR (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477:103–106. doi: 10.1038/Nature10335

    Google Scholar 

  • Müller MP, Peters H, Blumer J, Blankenfeldt W, Goody RS, Itzen A (2010) The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329:946–949. doi: 10.1126/science.1192276

    Google Scholar 

  • Müller MP, Shkumatov AV, Oesterlin LK, Schoebel S, Goody PR, Goody RS, Itzen A (2012) Characterization of Enzymes from Legionella pneumophila involved in reversible adenylylation of Rab1 protein. J Biol Chem 287:35036–35046. doi: 10.1074/jbc.M112.396861

    Google Scholar 

  • Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8:971–9777. doi: 10.1038/ncb1463

    Google Scholar 

  • Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–682. doi: 10.1126/science.1067025

    Google Scholar 

  • Neunuebel MR, Chen Y, Gaspar AH, Backlund PS, Yergey A, Machner MP (2011) De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333:453–456. doi: 10.1126/science.1207193

    Google Scholar 

  • Neunuebel MR, Mohammadi S, Jarnik M, Machner MP (2012) Legionella pneumophila LidA affects nucleotide binding and activity of the host GTPase Rab1. J Bacteriol 194:1389–1400. doi: 10.1128/JB.06306-11

    Google Scholar 

  • Novick PJ, Hutagalung AH (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119–149. doi: 10.1152/physrev.00059.2009

    Google Scholar 

  • Oesterlin LK, Goody RS, Itzen A (2012) Posttranslational modifications of Rab proteins cause effective displacement of GDP dissociation inhibitor. Proc Natl Acad Sci U S A 109:5621–5621. doi: 10.1073/pnas.1121161109

  • Pan X, Eathiraj S, Munson M, Lambright DG (2006) TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442:303–306. doi: 10.1038/nature04847

    Google Scholar 

  • Pan XX, Lührmann A, Satoh A, Laskowski-Arce MA, Roy CR (2008) Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320:1651–1654. doi: 10.1126/science.1158160

    Google Scholar 

  • Richardson PM, Zon LI (1995) Molecular cloning of a cDNA with a novel domain present in the tre-2 oncogene and the yeast cell cycle regulators BUB2 and cdc16. Oncogene 11:1139–1148

    Google Scholar 

  • Sarantis H, Grinstein S (2012) Subversion of phagocytosis for pathogen survival. Cell Host Microbe 12:419–431. doi: 10.1016/j.chom.2012.09.001

    Google Scholar 

  • Schoebel S, Blankenfeldt W, Goody RS, Itzen A (2010) High-affinity binding of phosphatidylinositol 4-phosphate by Legionella pneumophila DrrA. EMBO Reports 11:598–604. doi: 10.1038/embor.2010.97

    Google Scholar 

  • Schoebel S, Cichy AL, Goody RS, Itzen A (2011) Protein LidA from Legionella is a Rab GTPase supereffector. Proc Natl Acad Sci U S A 108: 17945–17950. doi: 10.1073/pnas.1113133108

    Google Scholar 

  • Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A (2009) RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell 36:1060–1072. doi: 10.1016/j.molcel.2009.11.014

    Google Scholar 

  • Schulze H, Dose M, Korpal M, Meyer I, Italiano JE, Shivdasani RA (2008) RanBP10 is a cytoplasmic guanine nucleotide exchange factor that modulates noncentrosomal microtubules. J Biol Chem 283:14109–14119. doi: 10.1074/jbc.M709397200

    Google Scholar 

  • Shevchuk O, Batzilla C, Hagele S, Kusch H, Engelmann S, Hecker M, Haas A, Heuner K, Glockner G, Steinert M (2009) Proteomic analysis of Legionella-containing phagosomes isolated from Dictyostelium. Int J Med Microbiol 299:489–508. doi: 10.1016/j.ijmm.2009.03.006

    Google Scholar 

  • Shohdy N, Efe JA, Emr SD, Shuman HA (2005) Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci U S A 102: 4866–4871. doi: 10.1073/pnas.0501315102

    Google Scholar 

  • Spano S, Liu XY, Galan JE (2011) Proteolytic targeting of Rab29 by an effector protein distinguishes the intracellular compartments of human-adapted and broad-host Salmonella. Proc Natl Acad Sci U S A 108:18418–18423. doi: 10.1073/pnas.1111959108

  • Stalder D, Barelli H, Gautier R, Macia E, Jackson CL, Antonny B (2011) Kinetic studies of the Arf activator Arno on model membranes in the presence of Arf effectors suggest control by a positive feedback loop. J Biol Chem 286:3873–3883. doi: 10.1074/jbc.M110.145532

    Google Scholar 

  • Suh HY, Lee DW, Lee KH, Ku B, Choi SJ, Woo JS, Kim YG, Oh BH (2010) Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA. EMBO J 29:496–504. doi: 10.1038/emboj.2009.347

    Google Scholar 

  • Tan YH, Arnold RJ, Luo ZQ (2011) Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci U S A 108:21212–21217. doi: 10.1073/pnas.1114023109

    Google Scholar 

  • Tan YH, Luo ZQ (2011) Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475:506–509. doi: 10.1038/nature10307

    Google Scholar 

  • Tilney LG, Harb OS, Connelly PS, Robinson CG, Roy CR (2001) How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J Cell Sci 114:4637–4650

    Google Scholar 

  • Urwyler S, Brombacher E, Hilbi H (2009a) Endosomal and secretory markers of the Legionella-containing vacuole. Commun Integr Biol 2:107–109. doi: 10.1111/j.1600-0854

    Google Scholar 

  • Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aebersold R, Hilbi H (2009b) Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10:76–87. doi: 10.1111/j.1600-0854.2008.00851.x

    Google Scholar 

  • Weide T, Teuber J, Bayer M, Barnekow A (2003) MICAL-1 isoforms, novel rab1 interacting proteins. Biochem Biophys Res Commun 306:79–86. doi: 10.1016/S0006-2961x(03)00918-5

    Google Scholar 

  • Zhu HP, Liang ZM, Li GP (2009) Rabex-5 Is a Rab22 Effector and Mediates a Rab22-Rab5 signaling cascade in endocytosis. Mol Biol Cell 20:4720–4729. doi: 10.1091/mbc.E09-06-0453

    Google Scholar 

  • Zhu Y, Hu L, Zhou Y, Yao Q, Liu L, Shao F (2010) Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA. Proc Natl Acad Sci U S A 107:4699–4704. doi: 10.1073/pnas.0914231107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymelt Itzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goody, R.S., Itzen, A. (2013). Modulation of Small GTPases by Legionella . In: Hilbi, H. (eds) Molecular Mechanisms in Legionella Pathogenesis. Current Topics in Microbiology and Immunology, vol 376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2013_340

Download citation

Publish with us

Policies and ethics