Skip to main content

Cell Cycle Regulation and Regeneration

  • Chapter
  • First Online:
New Perspectives in Regeneration

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 367))

Abstract

Regeneration of ear punch holes in the MRL mouse and amputated limbs of the axolotl show a number of similarities. A large proportion of the fibroblasts of the uninjured MRL mouse ear are arrested in G2 of the cell cycle, and enter nerve-dependent mitosis after injury to form a ring-shaped blastema that regenerates the ear tissue. Multiple cell types contribute to the establishment of the regeneration blastema of the urodele limb by dedifferentiation, and there is substantial reason to believe that the cells of this early blastema are also arrested in G2, and enter mitosis under the influence of nerve-dependent factors supplied by the apical epidermal cap. Molecular analysis reveals other parallels, such as; (1) the upregulation of Evi5, a centrosomal protein that prevents mitosis by stabilizing Emi1, a protein that inhibits the degradation of cyclins by the anaphase promoting complex and (2) the expression of sodium channels by the epidermis. A central feature in the entry into the cell cycle by MRL ear fibroblasts is a natural downregulation of p21, and knockout of p21 in wild-type mice confers regenerative capacity on non-regenerating ear tissue. Whether the same is true for entry into the cell cycle in regenerating urodele limbs is presently unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEC:

Apical epidermal cap

AGP:

Anterior gradient protein

APC:

Anaphase promoting complex

CDK:

Cyclin-dependent kinase

EGF:

Epidermal growth factor

FGF:

Fibroblast growth factor

G:

Gap

GGF:

Glial growth factor

HGF:

Hepatocyte growth factor

IGF:

Insulin-like growth factor

M:

Mitosis

PDGF:

Platelet-derived growth factor

RP:

Restriction point

S:

DNA synthesis

TGF:

Transforming growth factor

References

  • Adams DS, Masi A, Levin M (2007) H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development 134:1323–1325

    Article  PubMed  CAS  Google Scholar 

  • Arthur LM, Demarest RM, Clark L, Gourevitch D, Bedelbaeva K, Anderson R, Snyder A, Capobianco AJ, Lieberman P, Feigenbaum L, Heber-Katz E (2010) Epimorphic regeneration in Mice is p53-independent. Cell Cycle 9:3667–3673

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JJ, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1:260–266

    Article  PubMed  CAS  Google Scholar 

  • Atkinson SL, Stevenson TJ, Park EJ, Riedy MD, Milash B, Odelberg SJ (2006) Cellular electroporation induces dedifferentiation in intact newt limbs. Dev Biol 299:257–271

    Google Scholar 

  • Balu DT, Hodes GE, Anderson BT, Lucki I (2009) Enhanced sensitivity of the MRL/MpJ mouse to the neuroplastic and behavioral effects of chronic antidepressant treatments. Neuropsychopharmacology 34:1764–1773

    Article  PubMed  CAS  Google Scholar 

  • Barger PM, Tassava RA (1985) Kinetics of cell cycle entry in innervated and denervated forelimb stumps of larval Ambystoma. J Exp Zool 233:151–154

    Article  Google Scholar 

  • Bedelbaeva K, Snyder A, Gourevitch D, Clark L, Zhang XM, Leferovich J, Cheverud JM, Lieberman P, Heber-Katz E (2010) Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci U S A 107:5845–5850

    Article  PubMed  CAS  Google Scholar 

  • Bernis C, Vigneron S, Burgess A, Labbe J-C, Fesquet D, Castro A, Lorca T (2007) Pin1 stabilizes Emi1 during G2 phase by preventing its association with SCFβtrcp. EMBO Rep 8:91–98

    Article  PubMed  CAS  Google Scholar 

  • Boilly B, Cavanaugh KP, Thomas D, Hondermarck H, Bryant SV, Bradshaw RA (1991) Acidic fibroblast growth factor is present in regenerating limb blastemas of axolotls and bonds specifically to blastema tissues. Dev Biol 145:302–310

    Article  PubMed  CAS  Google Scholar 

  • Boi, C, Zenjari C, Boilly B, Hondermarck H, Boilly-Marer Y (1997) Nerve-blastema interactions induce fibroblast growth factor-1 release during limb regeneration in Pleurodeles waltl. Dev Growth Diff 39:15–22

    Google Scholar 

  • Borgens RB, Vanable JW Jr, Jaffe LF (1977) Bioelectricity and regeneration. Large currents leave the stumps of regenerating newt limbs. Proc Natl Acad Sci U S A 74:4528–4532

    Article  PubMed  CAS  Google Scholar 

  • Borgens RB, Vanable JW Jr, Jaffe LF (1979) Reduction of sodium dependent stump currents disturbs urodele limb regeneration. J Exp Zool 209:377–386

    Article  PubMed  CAS  Google Scholar 

  • Brockes JP, Kumar A (2008) Comparative aspects of animal regeneration. Ann Rev Cell Dev Biol 24:525–549

    Article  CAS  Google Scholar 

  • Buckley G, Wong J, Metcalfe AD, Ferguson MW (2012) Denervation affects regenerating responses in MRL/Mpj and repair in C57BL/6 ear wounds. J Anat 220:3–12

    Article  PubMed  CAS  Google Scholar 

  • Buhimschi CS, Zhao G, Sora N, Madri JA, Buhimschi IA (2010) Myometrial wound healing post-Cesarean delivery in the MRL/MpJ mouse model of uterine scarring. Am J Pathol 177:197–207

    Article  PubMed  Google Scholar 

  • Cheverud JM, Lawson HA, Bouckaert K, Kossenkov A, Showe L, Cort L, Blankenhorn EP, Bedelbaeva K, Gourevitch D, Arthur LM, and E. Heber-Katz (2012) Genetics of murine external ear tissue regeneration is due to differences in cell cycle, DNA repair, Cell Adhesion and Migration, and Fibrosis. Heredity

    Google Scholar 

  • Chew K, Cameron JA (1983) Increase in mitotic activity of regenerating axolotl limbs by growth factor-impregnated implants. J Exp Zool 226:325–329

    Article  Google Scholar 

  • Christensen RN, Tassava RA (2000) Apical epithelial cap morphology and fibronectin gene expression in regenerating axolotl limbs. Dev Dyn 217:216–224

    Article  PubMed  CAS  Google Scholar 

  • Christensen RN, Weinstein M, Tassava RA (2001) Fibroblast growth factors in regenerating limbs of Ambystoma: cloning and semi-quantitative RT-PCR expression studies. J Exp Zool 290:529–540

    Article  PubMed  CAS  Google Scholar 

  • Christensen RN, Weinstein M, Tassava RA (2002) Expression of fibroblast growth factors 4,8, and 10 in limbs, flanks, and blastemas of Ambystoma. Dev Dyn 223:193–203

    Article  PubMed  CAS  Google Scholar 

  • Chuykin I, Lianguzova MS, Pospelov TV, Pospelov VA (2008) Activation of DNA damage response signaling in mouse embryonic stem cells. Cell Cycle 7:2922–2928

    Article  PubMed  CAS  Google Scholar 

  • Clark LD, Clark RK, Heber-Katz E (1998) A new murine model for mammalian wound repair and regeneration. Clin Immunol Immunopathol 88:35–45

    Article  PubMed  CAS  Google Scholar 

  • Dabbeekeh JPS, Faitar SL, Dufrense CP, Cowell Jk (2007) The Evi5 TBC domain provides the GTPase-activating protein motif for RAB11. Oncogene 26:2804–2808

    Article  PubMed  CAS  Google Scholar 

  • Daniels M, Dhokia V, Richard-Parpaillon L, Ohnuma S-I (2004) Identification of Xenopus cuclin-dependent kinase inhibitors, p16Xic2 and p17Xic3. Gene 342:41–47

    Article  PubMed  CAS  Google Scholar 

  • Davies AM (2000) Neurotrophins: neurotrophic modulation of neurite growth. Curr Biol 10:R198–R200

    Google Scholar 

  • Dubel S, Schaller HC (1990) Terminal differentiation of ectodermal epithelial stem cells of Hydra can occur in G2 without requiring mitosis or S phase. J Cell Biol 110:939–945

    Google Scholar 

  • Dungan KM, Wei TY, Nace JD, Poulin ML, Chiu I-M, Lang JC, Tassava RA (2002) Expression and biological effect of urodele fibroblast growth factor 1: relationship to limb regeneration. J Exp Zool 292:540–554

    Article  PubMed  CAS  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1: a potential mediator of p53 tumor suppression. Cell 75:817–825

    Google Scholar 

  • Eldridge AG, Loktev AV, Hansen DV, Verschuren EW, Reimann JD, Jackson PK (2006) The evi5 oncogene regulates cyclin accumulationby stabilizing the anaphase-promoting complex inhibitor emi1. Cell 124:367–380

    Article  PubMed  CAS  Google Scholar 

  • Fahmy GH, Sicard RE (1998) Acceleration of amphibian forelimb regeneration bypolypeptide growth factors. J Minn Acad. Sci 63:58–60

    Google Scholar 

  • Faitar SL, Sossey-Alaouki K, Ranalli TA, Cowell TA (2006) Evi5 protein associates with the INCENP-aurora B kinase-survivin chromosomal passenger complex and is involved in the completion of cytokinesis. Exp Cell Res 312:2325–2335

    Article  PubMed  CAS  Google Scholar 

  • Galvin KE, Ye H, Erstad DJ, Feddersen R, Wetmore C (2008) Gli1 induces G2/M arrest and apoptosis in hippocampal but not tumor-derived neural stem cells. Stem Cells 26:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Garza-Garcia A, Harris R, Esposito D, Gates PB, Driscoll PC (2009) Solution structure and phylogenetics of Prod1, a member of the three-finger protein superfamily implicated in salamander limb regeneration. PLoS ONE 4(9):e7123

    Article  PubMed  Google Scholar 

  • Giampaoli S, Bucci S, Ragghianti M, Mancino G, Zhang F, Feretti P (2003) Expression of FGF2 in the limb blastema of two Salamandridae correlates with their regenerative capability. Proc Biol Sci 270:2197–2205

    Article  PubMed  CAS  Google Scholar 

  • Glotzer M (2005) The molecular requirements for cytokinesis. Science 307:1735–1739

    Article  PubMed  CAS  Google Scholar 

  • Goldhamer DJ, Tassava RA (1987) An analysis of proliferative activity in innervated and denervated forelimb regenerates of the newt Notophthalmus viridescens. Development 100:619–628

    Google Scholar 

  • Gourevitch D, Clark L, Chen P, Seitz A, Samulewicz SJ, Heber-Katz E (2003) Matrix metalloproteinase activity correlates with blastema formation in the regenerating MRL mouse ear hole model. Dev Dyn 226:377–387

    Article  PubMed  CAS  Google Scholar 

  • Guidotti JE, Bregerie O, Robert A, Debey P, Brechot C, Desdouets C (2003) Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 278:19095–19101

    Article  PubMed  CAS  Google Scholar 

  • Guse A, Mishima M, Glotzer M (2005) Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr Biol 15:778–786

    Article  PubMed  CAS  Google Scholar 

  • Habermann B, Bebin A-G, Herklotz S, Volkmer M, Eckelt K, Pehlke K, Epperlein HH, Schackert HK, Wiebe G, Tanaka EM (2004) An Ambystoma mesicanum EST sequencing project: analysis of 17,352 expressed sequence tags from embryonic and regenerating blastema cDNA libraries. Genome Biol 5:R67

    Article  PubMed  Google Scholar 

  • Han M-J, An J-Y, Kim W-S (2001) Expression patterns of Fgf-8 during development and limb regeneration of the axolotl. Dev Dyn 220:40–48

    Article  PubMed  CAS  Google Scholar 

  • Hay ED, Fischman DA (1961) Origin of the blastema in the regenerating newt Triturus viridescens. An autoradiographic study using tritiated thymidine to follow cell proliferation and migration. Dev Biol 3:26–59

    Article  PubMed  CAS  Google Scholar 

  • Holstein TW, Hobmayer E, David CN (1991) Pattern of epithelial cell cycling in the hydra. Dev Biol 148:602–611

    Article  PubMed  CAS  Google Scholar 

  • Hong Y, Cervanes RB, Tichy E, Tischfield JA, Stambrook PJ (2007) Protecting genomic integrity in somatic cells and embryonic stem cells. Mutat Res 614:48–55

    Article  PubMed  CAS  Google Scholar 

  • Kelly DJ, Tassava RA (1973) Cell division and ribonucleic acid synthesis during the initiation of limb regeneration in larval axolotls (Ambystoma mexicanum). J Exp Zool 185:45–54

    Article  PubMed  CAS  Google Scholar 

  • Kesik A, Vethamany-Globus S, Globus M (1986) Effect of insulin on cyclic nucleotide levels and promotion of mitosis by insulin and ionophore A23187 in cultured newt blastemata. In Vitro Cell Dev Biol 22:465–468

    Article  PubMed  CAS  Google Scholar 

  • Komarova EA, Neznanov N, Komarov PG, Chernov MV, Wang K, Gudkov AV (2003) p53 inhibitor pifithrin alpha can suppress heat shock and glucocorticoid signaling pathways. J Biol Chem 278:15465–15468

    Article  PubMed  CAS  Google Scholar 

  • Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka E (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318:772–777

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Nevill G, Brockes JP, Forge A (2010) A comparative study of gland cells implicated in the nerve dependence of salamander limb regeneration. J Anat 217:16–25

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Kim JA, Barbier V, Fotedar A, Fotedar R (2009) DNA damage triggers p21WAF1-dependent Emi1 down-regulation that maintains G2 arrest. Mol Biol Cell 20:1891–1902

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ, Momand J et al (1991) The p53 tumor suppressor gene. Nature 351:453–456

    Article  PubMed  CAS  Google Scholar 

  • Lian I, Kim J, Okazawa H, Zhao J, Yu J, Chinnaiyan A, Israel MA, Goldstein LSB, Abujarour R, Ding S, Guan K-L (2010) The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 24:1106–1118

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Johnson K, Li J, Piamonte V, Steffy BM, Hsieh MH, Ng N, Zhang J, Walker JR, Ding S, Muneoka K, Wu X, Glynne R, Schultz PG (2011) Regenerative phenotype in mice with a point mutation in transforming growth factor beta type I receptor (TGFBR1). Proc Natl Acad Sci U S A 108(35):14560–14565

    Article  PubMed  CAS  Google Scholar 

  • Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P (2008) Molecular cell biology, 6th edn. WE Freeman and Co, New York 1150 pp

    Google Scholar 

  • Maden M (1978) Neurotrophic control of the cell cycle during amphibian limb regeneration. J Embryol exp Morph 48:169–175

    PubMed  CAS  Google Scholar 

  • Margall-Ducos G, Celton-Morizur S, Couton D, BrÈgerie O, Desdouets C (2007) Liver tetraploidization is controlled by a new process of incomplete cytokinesis. J Cell Sci 120:3633–3639

    Google Scholar 

  • Mescher AL, Tassava RA (1976) Denervation effects on DNA replication and mitosis during the initiation of limb regeneration in adult newts. Dev Biol 44:187–197

    Article  Google Scholar 

  • Mescher AL, White GW, Brokaw JJ (2000) Apoptosis in regenerating and denervatednonregenerating urodele forelimbs. Wound Rep Reg 8:110–116

    Google Scholar 

  • Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66

    Article  PubMed  CAS  Google Scholar 

  • Monaghan JR, Epp LG, Putta S, Page RB, Walker JA, Beachy CK, Zhu W, Pao GM, Verma IM, Hunter T, Bryant SV, Gardiner DM, Harkins TT, Voss SR (2009) Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration. BMC Biol 7:1

    Article  PubMed  Google Scholar 

  • Morais da Silva SM, Gates PB, Brockes JP (2002) The newt ortholog of CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev Cell 3:547–555

    Article  Google Scholar 

  • Morgan CJ, Pledger WJ (1992) Fibroblast proliferation. In: Cohen IK, Diegelmann RF, Lindblad WJ (eds) Wound healing: biochemical and clinical aspects. WB Saunders Co, Philadelphia, pp 63–66

    Google Scholar 

  • Namiki Y, Endoh D, Kon Y (2003) Genetic mutation associated with meiotic metaphase-specific apoptosis in MRL/MpJ mice. Mol Reprod Dev 64:179–188

    Article  PubMed  CAS  Google Scholar 

  • Pajcini KV, Corbel SY, Sage J, Pomerantz JH, Blau HM (2010) Transient inactivation of Rb and ARF yields regenerative cells from ppostmitotic mammalian muscle. Cell Stem Cell 7:198–213

    Article  PubMed  CAS  Google Scholar 

  • Poss KD, Nechiporuk A, Hillam AM, Johnson SL, Keating MT (2002) Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development 129:5141–5149

    PubMed  CAS  Google Scholar 

  • Powell JA (1969) Analysis of histogenesis and regenerative ability of denervated forelimb regenerates of Triturus viridescens. J Exp Zool 170:125–147

    Google Scholar 

  • Rai MF, Hashimoto S, Johnson EE, Janiszak KL, Fitzgerald J, Heber-Katz E, Cheverud JM, Sandell LJ (2012) Heritability of articular cartilage regeneration and its association with ear-wound healing. Arthritis Rheum 64:(7):2300–2310. doi: 10.1002/art.34396

    Google Scholar 

  • Rao N, Jhamb D, Milner DJ, Li B, Song F, Wang M, Voss SR, Palakal M, King MW, Saranjami B, Nye HLD, Cameron JA, Stocum DL (2009) Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol 7:83

    Article  PubMed  Google Scholar 

  • Ruchaud S, Carmens M, Earnshaw WC (2007) Chromosomal passengers: conducting cell division. Nat Revs 8:798–812

    Article  CAS  Google Scholar 

  • Ruzankina Y, Schoppy DW, Asare A, Clark CE, Vonderheide RH, Brown EJ (2009) Tissue regenerative delays and synthetic lethality in adult mice after combined deletion of Atr and Trp53. Nat Genet 41:1144–1149

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T, David CN (1986) Gland cells in Hydra: cell cycle kinetics and development. J Cell Sci 85:197–215

    PubMed  CAS  Google Scholar 

  • Singer M, Craven L (1948) The growth and morphogenesis of the regenerating forelimb of adult Triturus following denervation at various stages of development. J Exp Zool 108:279–308

    Article  PubMed  CAS  Google Scholar 

  • Sirbulescu RF, Zupanc GKH (2009) Dynamics of caspase-3-mediated apoptosis during spinal cord regeneration in the teleost fish, Apteronotus leptorhynchus. Brain Res 1304:14–25

    Article  PubMed  CAS  Google Scholar 

  • Stocum DL (2012) Regenerative biology and medicine, 2nd edn. Elsevier, San Diego 474 pp

    Google Scholar 

  • Stocum DL, Rao N (2010) Mechanisms of blastema formation in regenerating amphibiasn limbs. In: Atala A, Lanza R, Thomson JA, Nerem R (eds) Principles of regenerative medicine, 2nd edn. Elsevier, San Diego, pp 67–86

    Google Scholar 

  • Straube WL, Tanaka EM (2006) Reversibility of the differentiated state: regeneration in amphibians. Artif Organs 30:743–755

    Article  PubMed  Google Scholar 

  • Tanaka EM, Gann F, Gates PB, Brockes JP (1997) Newt myotubes re-enter the cell cycle by phosphorylation of the retinoblastoma protein. J Cell Biol 136:155–165

    Article  PubMed  CAS  Google Scholar 

  • Tassava RA, Garling DJ (1979) Regenerative responses in larval axolotl limbs with skin grafts over the amputation surface. J Exp Zool 208:97–110

    Article  PubMed  CAS  Google Scholar 

  • Tassava RA, McCullough WD (1978) Neural control of cell cycle events in regenerating salamander limbs. Amer Zool 18:843–854

    Google Scholar 

  • Tassava RA, Mescher AL (1975) The roles of injury, nerves and the wound epidermis during the initiation of amphibian limb regeneration. Differentiation 4:23–24

    Article  PubMed  CAS  Google Scholar 

  • Tassava RA, Bennett LL, Zitnik GD (1974) DNA synthesis without mitosis in amputated denervated forelimbs of larval axolotls. J Exp Zool 190:111–116

    Google Scholar 

  • Tassava RA, Goldhamer DJ, Tomlinson BL (1987) Cell cycle controls and the role of nerves and the regenerate epithelium in urodele forelimb regeneration: possible modifications of basic concepts. Biochem Cell Biol 65:739–749

    Article  PubMed  CAS  Google Scholar 

  • Thuret S, Toni N, Aigner S, Yeo GW, Gage FH (2009) Hippocampus-dependent learning is associated with adult neurogenesis in MRL/MpJ mice. Hippocampus 19:658–669

    Article  PubMed  CAS  Google Scholar 

  • Tolba RH, Schildberg FA, Decker D, Abdullah Z, Büttner R, Minor T, Von Ruecker A (2010) Mechanisms of improved wound healing in Murphy Roths Large (MRL) mice after skin transplantation. Wound Repair Regen 18:662–670

    Article  PubMed  Google Scholar 

  • Tseng A-S, Adams DS, Qiu D, Koustubhan P, Levin M (2007) Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev Biol 301:62–69

    Article  PubMed  CAS  Google Scholar 

  • Tseng A-S, Beane WS, Lemire JM, Masi A, Levin M (2011) Induction of vertebrate regeneration by a transient sodium current. J Neurosci 30:13192–13200

    Article  Google Scholar 

  • Van Dilla MA, Trujillo TT, Mullaney PF, Coulter JR (1969) Cell microfluorometry: a method for rapid fluorescence measurement. Science 163:1213–1214

    Article  PubMed  Google Scholar 

  • Velloso CP, Kumar A, Tanaka EM, Brockes JP (2000) Generation of mononucleate cells from post-mitotic myotubes proceeds in the absence of cell cycle progression. Differentiation 6:239–246

    Google Scholar 

  • Verschuren EW, Ban KH, Masek MA, Lehman NL, Jackson PK (2007) Loss of Emi1-dependent anaphase-promoting complex/cyclosome inhibition degregulates E2F target expression and elicits DNA damage-induced senescence. Mol Cell Biol 27:7955–7965

    Article  PubMed  CAS  Google Scholar 

  • Vethamany-Globus S, Globus M, Tomlinson B (1978) Neural and hormonal stimulation of DNA and protein synthesis in cultured regeneration blastema in the newt, Notophthammus viridescens. Dev Biol 65:183–192

    Article  PubMed  CAS  Google Scholar 

  • Villiard E, Brtinkmann H, Moiseeva O, Mallette FA, Ferbeyre G, Roy S (2007) Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer. BMC Evol Biol 7:180

    Article  PubMed  Google Scholar 

  • Wang L, Marchionni MA, Tassava RA (2000) Cloning and neuronal expression of a type III newt neuregulin and rescue of denervated nerve-dependent newt limb blastemas by rhGGF2. J Neurobiol 43:150–158

    Article  PubMed  CAS  Google Scholar 

  • Watt KI, Judson R, Medlow P, Reid K, Kurth TB, Burniston JG, Ratkevicius A, De Bari C, Wackerhage H (2010) Yap is a novel regulator of C2C12 myogenesis. Biochem Biophys Res Comm 393:619–624

    Article  PubMed  CAS  Google Scholar 

  • Westlake CJ, Junutula JR, Simon GC, Pilli M, Prekeris, R, Scheller RH, Jackson PK, Eldridge AG (2007) Identification of Rab 11 as a small GTPase binding protein for the Evi5 oncogene. Proc Natl Acad Sci USA 104:1236–1241

    Google Scholar 

  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama H, Yonei-Tamura S, Endo T, Izpisua-Belmonte JC, Tamura K, Ide H (2000) Mesenchyme with fgf10 expression is responsible for regenerative capacity in Xenopus limb buds. Dev Biol 219:18–29

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama H, Ide H, Tamura K (2001) FGF-10 stimulates limb regeneration ability in Xenopus laevis. Dev Biol 233:72–79

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Tumaneng K, Guan KL (2011) The Hippo pathway in organ size control, tissue regeneraton and stem cell self-renewal. Nat Cell Biol 13:877–883

    Article  PubMed  CAS  Google Scholar 

  • Zhong Z, Tsukada S, Rehman H, Parsons CJ, Theruvath TP, Rippe RA, Brenner DA, Lemasters JJ (2010) Inhibition of transforming growth factor-beta/Smad signaling improves regeneration of small-for-size rat liver grafts. Liver Transpl 16:181–190

    Article  PubMed  Google Scholar 

  • Zhu C, Bossy-Wetzel E, Jiang W (2005) Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is essential for midbody formation and completion of cytokinesis in human cells. Biochem J 389:373–381

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Heber-Katz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heber-Katz, E., Zhang, Y., Bedelbaeva, K., Song, F., Chen, X., Stocum, D.L. (2012). Cell Cycle Regulation and Regeneration. In: Heber-Katz, E., Stocum, D. (eds) New Perspectives in Regeneration. Current Topics in Microbiology and Immunology, vol 367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_294

Download citation

Publish with us

Policies and ethics