Skip to main content

Development of Functional Properties in the Early Visual System: New Appreciations of the Roles of Lateral Geniculate Nucleus

  • Chapter
  • First Online:
Sensitive Periods of Brain Development and Preventive Interventions

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 53))

Abstract

In the years following Hubel and Wiesel’s first reports on ocular dominance plasticity and amblyopia, much attention has been focused on understanding the role of cortical circuits in developmental and experience-dependent plasticity. Initial studies found few differences between retinal ganglion cells and neurons in the lateral geniculate nucleus and uncovered little evidence for an impact of altered visual experience on the functional properties of lateral geniculate nucleus neurons. In the last two decades, however, studies have revealed that the connectivity between the retina and lateral geniculate nucleus is much richer than was previously appreciated, even revealing visual plasticity – including ocular dominance plasticity – in lateral geniculate nucleus neurons. Here we review the development of the early visual system and the impact of experience with a distinct focus on recent discoveries about lateral geniculate nucleus, its connectivity, and evidence for its plasticity and rigidity during development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2(2):284–299

    Article  CAS  PubMed  Google Scholar 

  • Akerman CJ, Smyth D, Thompson ID (2002) Visual experience before eye-opening and the development of the retinogeniculate pathway. Neuron 36(5):869–879

    Article  CAS  PubMed  Google Scholar 

  • Albus K, Fries W (1980) Inhibitory sidebands of complex receptive fields in the cat’s striate cortex. Vision Res 20(4):369–372

    Article  CAS  PubMed  Google Scholar 

  • Albus K, Wolf W (1984) Early post-natal development of neuronal function in the kitten’s visual cortex: a laminar analysis. J Physiol 348(1):153–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17:185–218

    Article  CAS  PubMed  Google Scholar 

  • Antonini A, Stryker MP (1993) Rapid remodeling of axonal arbors in the visual cortex. Science 260(5115):1819–1821

    Article  CAS  PubMed  Google Scholar 

  • Antonini A, Stryker MP (1996) Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat. J Comp Neurol 369(1):64–82

    Article  CAS  PubMed  Google Scholar 

  • Antonini A, Fagiolini M, Stryker MP (1999) Anatomical correlates of functional plasticity in mouse visual cortex. J Neurosci 19(11):4388–4406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit’s retina. J Physiol 178(3):477–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop PO, Burke W, Davis R (1962) The interpretation of the extracellular response of single lateral geniculate cells. J Physiol 162(3):451–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blakemore C, Vital-Durand F (1986) Organization and post-natal development of the monkey's lateral geniculate nucleus. J Physiol 380:453–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasdel G, Lund J (1983) Termination of afferent axons in macaque striate cortex. J Neurosci 3(7):1389–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos R, Gainer C, Feller MB (2016) Role for visual experience in the development of direction-selective circuits. Curr Biol 26(10):1367–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471(7337):183–188

    Article  CAS  PubMed  Google Scholar 

  • Briggs F, Usrey WM (2008) Emerging views of corticothalamic function. Curr Opin Neurobiol 18(4):403–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs F, Kiley CW, Callaway EM, Usrey WM (2016) Morphological substrates for parallel streams of corticogeniculate feedback originating in both V1 and V2 of the macaque monkey. Neuron 90(2):388–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks JM, Su J, Levy C, Wang JS, Seabrook TA, Guido W, Fox MA (2013) A molecular mechanism regulating the timing of corticogeniculate innervation. Cell Rep 5(3):573–581

    Article  CAS  PubMed  Google Scholar 

  • Cai D, Deangelis GC, Freeman RD (1997) Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J Neurophysiol 78(2):1045–1061

    Article  CAS  PubMed  Google Scholar 

  • Chan Y-C, Chiao C-C (2008) Effect of visual experience on the maturation of ON–OFF direction selective ganglion cells in the rabbit retina. Vision Res 48(23):2466–2475

    Article  PubMed  Google Scholar 

  • Chapman B, Stryker M (1993) Development of orientation selectivity in ferret visual cortex and effects of deprivation. J Neurosci 13(12):5251–5262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chariker L, Shapley R, Hawken M, Young L-S (2021) A theory of direction selectivity for macaque primary visual cortex. Proc Natl Acad Sci 118(32):e2105062118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Regehr WG (2000) Developmental remodeling of the retinogeniculate synapse. Neuron 28(3):955–966

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Weng S, Deng Q, Xu Z, He S (2009) Physiological properties of direction-selective ganglion cells in early postnatal and adult mouse retina. J Physiol 587(Pt 4):819–828

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liu X, Tian N (2014) Subtype-dependent postnatal development of direction- and orientation-selective retinal ganglion cells in mice. J Neurophysiol 112(9):2092–2101

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheong SK, Tailby C, Solomon SG, Martin PR (2013) Cortical-like receptive fields in the lateral geniculate nucleus of marmoset monkeys. J Neurosci 33(16):6864–6876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu C, Weliky M (2001) Spontaneous activity in developing ferret visual cortex in vivo. J Neurosci 21(22):8906–8914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clascá F, Rubio-Garrido P, Jabaudon D (2012) Unveiling the diversity of thalamocortical neuron subtypes. Eur J Neurosci 35(10):1524–1532

    Article  PubMed  Google Scholar 

  • Cleland BG, Lee BB (1985) A comparison of visual responses of cat lateral geniculate nucleus neurones with those of ganglion cells afferent to them. J Physiol 369:249–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleland BG, Levick WR (1974) Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. J Physiol 240(2):457–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleland BG, Dubin MW, Levick WR (1971a) Simultaneous recording of input and output of lateral geniculate neurones. Nat New Biol 231(23):191–192

    Article  CAS  PubMed  Google Scholar 

  • Cleland BG, Dubin MW, Levick WR (1971b) Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol 217(2):473–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly M, Van Essen D (1984) The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey. J Comp Neurol 226(4):544–564

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Martin A, El-Danaf RN, Osakada F, Sriram B, Dhande OS, Nguyen PL, Callaway EM, Ghosh A, Huberman AD (2014) A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507(7492):358–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dacey DM (1994) Physiology, morphology and spatial densities of identified ganglion cell types in primate retina. Ciba Found Symp 184:12–28. discussion 28–34, 63–70

    CAS  PubMed  Google Scholar 

  • Daniels JD, Norman JL, Pettigrew JD (1977) Biases for oriented moving bars in lateral geniculate nucleus neurons of normal and stripe-reared cats. Exp Brain Res 29(2):155–172

    Article  CAS  PubMed  Google Scholar 

  • Daniels JD, Pettigrew JD, Norman JL (1978) Development of single-neuron responses in kitten’s lateral geniculate nucleus. J Neurophysiol 41(6):1373–1393

    Article  CAS  PubMed  Google Scholar 

  • Davis ZW, Chapman B, Cheng HJ (2015) Increasing spontaneous retinal activity before eye opening accelerates the development of geniculate receptive fields. J Neurosci 35(43):14612–14623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demas J, Eglen SJ, Wong ROL (2003) Developmental loss of synchronous spontaneous activity in the mouse retina is independent of visual experience. J Neurosci 23(7):2851–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeYoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci 11(5):219–226

    Article  CAS  PubMed  Google Scholar 

  • Dhande OS, Stafford BK, Franke K, El-Danaf R, Percival KA, Phan AH, Li P, Hansen BJ, Nguyen PL, Berens P, Taylor WR, Callaway E, Euler T, Huberman AD (2019) Molecular fingerprinting of on-off direction-selective retinal ganglion cells across species and relevance to primate visual circuits. J Neurosci 39(1):78–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dougherty K, Schmid MC, Maier A (2019) Binocular response modulation in the lateral geniculate nucleus. J Comp Neurol 527(3):522–534

    Article  PubMed  Google Scholar 

  • Dunah AW, Yasuda RP, Wang YH, Luo J, Dávila-García M, Gbadegesin M, Vicini S, Wolfe BB (1996) Regional and ontogenic expression of the NMDA receptor subunit NR2D protein in rat brain using a subunit-specific antibody. J Neurochem 67(6):2335–2345

    Article  CAS  PubMed  Google Scholar 

  • Elgeti H, Elgeti R, Fleischhauer K (1976) Postnatal growth of the dorsal lateral geniculate nucleus of the cat. Anat Embryol 149(1):1–13

    Article  CAS  Google Scholar 

  • Elstrott J, Anishchenko A, Greschner M, Sher A, Litke AM, Chichilnisky EJ, Feller MB (2008) Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves. Neuron 58(4):499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson RC, Gerstein GL (1977) Simple striate neurons in the cat. I. Comparison of responses to moving and stationary stimuli. J Neurophysiol 40(1):119–135

    Article  CAS  PubMed  Google Scholar 

  • Erişir A, Van Horn SC, Bickford ME, Sherman SM (1997a) Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals. J Comp Neurol 377(4):535–549

    Article  PubMed  Google Scholar 

  • Erişir A, Van Horn SC, Sherman SM (1997b) Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proc Natl Acad Sci U S A 94(4):1517–1520

    Article  PubMed  PubMed Central  Google Scholar 

  • Erulkar SD, Fillenz M (1960) Single-unit activity in the lateral geniculate body of the cat. J Physiol 154(1):206–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Euler T, Detwiler PB, Denk W (2002) Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418(6900):845–852

    Article  CAS  PubMed  Google Scholar 

  • Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 34(6):709–720

    Article  CAS  PubMed  Google Scholar 

  • Feller MB (1999) Spontaneous correlated activity in developing neural circuits. Neuron 22(4):653–656

    Article  CAS  PubMed  Google Scholar 

  • Ferster D, Lindström S (1983) An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. J Physiol 342(1):181–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferster D, Miller KD (2000) Neural mechanisms of orientation selectivity in the visual cortex. Annu Rev Neurosci 23:441–471

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick D, Usrey WM, Schofield BR, Einstein G (1994) The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Vis Neurosci 11(2):307–315

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JG (2006) Neural map specification by gradients. Curr Opin Neurobiol 16(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Fong MF, Duffy KR, Leet MP, Candler CT, Bear MF (2021) Correction of amblyopia in cats and mice after the critical period. Elife 10

    Google Scholar 

  • Ganz L, Felder R (1984) Mechanism of directional selectivity in simple neurons of the cat’s visual cortex analyzed with stationary flash sequences. J Neurophysiol 51(2):294–324

    Article  CAS  PubMed  Google Scholar 

  • Gary-Bobo E, Przybyslawski J, Saillour P (1995) Experience-dependent maturation of the spatial and temporal characteristics of the cell receptive fields in the kitten visual cortex. Neurosci Lett 189(3):147–150

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Zhang K, Gribizis A, Hamodi AS, Sabino AM, Crair MC (2021) Retinal waves prime visual motion detection by simulating future optic flow. Science 373(6553)

    Google Scholar 

  • Ghosh A, Shatz CJ (1992) Involvement of subplate neurons in the formation of ocular dominance columns. Science 255(5050):1441–1443

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CD (1977) Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol 268(2):391–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert CD, Kelly JP (1975) The projections of cells in different layers of the cat’s visual cortex. J Comp Neurol 163(1):81–105

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CD, Wiesel TN (1992) Receptive field dynamics in adult primary visual cortex. Nature 356(6365):150–152

    Article  CAS  PubMed  Google Scholar 

  • Godement P, Salaün J, Imbert M (1984) Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J Comp Neurol 230(4):552–575

    Article  CAS  PubMed  Google Scholar 

  • Gollisch T, Meister M (2010) Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65(2):150–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin AW, Henry GH, Bishop PO (1975) Direction selectivity of simple striate cells: properties and mechanism. J Neurophysiol 38(6):1500–1523

    Article  CAS  PubMed  Google Scholar 

  • Gordon JA, Stryker MP (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 16(10):3274–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grubb MS, Thompson ID (2004) Biochemical and anatomical subdivision of the dorsal lateral geniculate nucleus in normal mice and in mice lacking the β2 subunit of the nicotinic acetylcholine receptor. Vision Res 44(28):3365–3376

    Article  CAS  PubMed  Google Scholar 

  • Grubb MS, Rossi FM, Changeux JP, Thompson ID (2003) Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron 40(6):1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Guillery RW (1969) The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Z Zellforsch Mikrosk Anat 96(1):1–38

    Article  CAS  PubMed  Google Scholar 

  • Hahm J-O, Langdon RB, Sur M (1991) Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature 351(6327):568–570

    Article  CAS  PubMed  Google Scholar 

  • Hahm J-O, Cramer KS, Sur M (1999) Pattern formation by retinal afferents in the ferret lateral geniculate nucleus: developmental segregation and the role of N-methyl-D-aspartate receptors. J Comp Neurol 411(2):327–345

    Article  CAS  PubMed  Google Scholar 

  • Hammer S, Monavarfeshani A, Lemon T, Su J, Fox MA (2015) Multiple retinal axons converge onto relay cells in the adult mouse thalamus. Cell Rep 12(10):1575–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatta S, Kumagami T, Qian J, Thornton M, Smith EL 3rd, Chino YM (1998) Nasotemporal directional bias of V1 neurons in young infant monkeys. Invest Ophthalmol Vis Sci 39(12):2259–2267

    CAS  PubMed  Google Scholar 

  • Hawken MJ, Blakemore C, Morley JW (1997) Development of contrast sensitivity and temporal-frequency selectivity in primate lateral geniculate nucleus. Exp Brain Res 114(1):86–98

    Article  CAS  PubMed  Google Scholar 

  • Headon MP, Sloper JJ, Hiorns RW, Powell TPS (1979) Cell size changes in undeprived laminae of monkey lateral geniculate nucleus after monocular closure. Nature 281(5732):572–574

    Article  CAS  PubMed  Google Scholar 

  • Hei X, Stoelzel CR, Zhuang J, Bereshpolova Y, Huff JM, Alonso JM, Swadlow HA (2014) Directional selective neurons in the awake LGN: response properties and modulation by brain state. J Neurophysiol 112(2):362–373

    Article  PubMed  PubMed Central  Google Scholar 

  • Heimel JA, Van Hooser SD, Nelson SB (2005) Laminar organization of response properties in primary visual cortex of the gray squirrel (Sciurus carolinensis). J Neurophysiol 94(5):3538–3554

    Article  PubMed  Google Scholar 

  • Hendrickson AE, Wilson JR, Ogren MP (1978) The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. J Comp Neurol 182(1):123–136

    Article  CAS  PubMed  Google Scholar 

  • Hendry SH, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153

    Article  CAS  PubMed  Google Scholar 

  • Hengen KB, Lambo ME, Van Hooser SD, Katz DB, Turrigiano GG (2013) Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron 80(2):335–342

    Article  CAS  PubMed  Google Scholar 

  • Hensch TK, Quinlan EM (2018) Critical periods in amblyopia. Vis Neurosci 35:E014–E014

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrmann K, Antonini A, Shatz CJ (1994) Ultrastructural evidence for synaptic interactions between thalamocortical axons and subplate neurons. Eur J Neurosci 6(11):1729–1742

    Article  CAS  PubMed  Google Scholar 

  • Heynen AJ, Yoon BJ, Liu CH, Chung HJ, Huganir RL, Bear MF (2003) Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat Neurosci 6(8):854–862

    Article  CAS  PubMed  Google Scholar 

  • Hickey TL, Guillery RW (1974) An autoradiographic study of retinogeniculate pathways in the cat and the fox. J Comp Neurol 156(2):239–253

    Article  CAS  PubMed  Google Scholar 

  • Hickey TL, Hitchcock PF (1984) Genesis of neurons in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 228(2):186–199

    Article  CAS  PubMed  Google Scholar 

  • Hillier D, Fiscella M, Drinnenberg A, Trenholm S, Rompani SB, Raics Z, Katona G, Juettner J, Hierlemann A, Rozsa B, Roska B (2017) Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex. Nat Neurosci 20(7):960–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong YK, Chen C (2011) Wiring and rewiring of the retinogeniculate synapse. Curr Opin Neurobiol 21(2):228–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong YK, Park S, Litvina EY, Morales J, Sanes JR, Chen C (2014) Refinement of the retinogeniculate synapse by bouton clustering. Neuron 84(2):332–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooks BM, Chen C (2006) Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse. Neuron 52(2):281–291

    Article  CAS  PubMed  Google Scholar 

  • Hooks BM, Chen C (2008) Vision triggers an experience-dependent sensitive period at the retinogeniculate synapse. J Neurosci 28(18):4807–4817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howarth M, Walmsley L, Brown TM (2014) Binocular integration in the mouse lateral geniculate nuclei. Curr Biol 24(11):1241–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howland HC (1984) Parallel processing in the visual system. The classification of retinal ganglion cells and its impact on the neurobiology of vision. Jonathan Stone. Q Rev Biol 59(4):502–503

    Article  Google Scholar 

  • Hoy JL, Niell CM (2015) Layer-specific refinement of visual cortex function after eye opening in the awake mouse. J Neurosci 35(8):3370–3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubel DH, Wiesel TN (1961) Integrative action in the cat’s lateral geniculate body. J Physiol 155(2):385–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160(1):106–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubel DH, Wiesel TN (1964) Effects of monocular deprivation in kittens. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 248(6):492–497

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206(2):419–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol 146(4):421–450

    Article  CAS  PubMed  Google Scholar 

  • Huberman AD (2007) Mechanisms of eye-specific visual circuit development. Curr Opin Neurobiol 17(1):73–80

    Article  CAS  PubMed  Google Scholar 

  • Huberman AD, Dehay C, Berland M, Chalupa LM, Kennedy H (2005a) Early and rapid targeting of eye-specific axonal projections to the dorsal lateral geniculate nucleus in the fetal macaque. J Neurosci 25(16):4014–4023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huberman AD, Murray KD, Warland DK, Feldheim DA, Chapman B (2005b) Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. Nat Neurosci 8(8):1013–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huberman AD, Feller MB, Chapman B (2008) Mechanisms underlying development of visual maps and receptive fields. Ann Rev Neurosci 31:479–509

    Article  CAS  PubMed  Google Scholar 

  • Huberman AD, Wei W, Elstrott J, Stafford BK, Feller MB, Barres BA (2009) Genetic identification of an on-off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62(3):327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh CYL, Abdelaal K, Salinas KJ, Gu D, Zeitoun J, Figueroa Velez DX, Peach JP, Fowlkes CC, Gandhi SP (2020) Long-term monocular deprivation during juvenile critical period disrupts binocular integration in mouse visual thalamus. J Neurosci 40(3):585–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey AL, Saul AB (1998) Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure. J Neurophysiol 80(6):2991–3004

    Article  CAS  PubMed  Google Scholar 

  • Irvin GE, Norton TT, Sesma MA, Casagrande VA (1986) W-like response properties of interlaminar zone cells in the lateral geniculate nucleus of a primate (Galago crassicaudatus). Brain Res 362(2):254–270

    Article  CAS  PubMed  Google Scholar 

  • Issa NP, Trachtenberg JT, Chapman B, Zahs KR, Stryker MP (1999) The critical period for ocular dominance plasticity in the Ferret’s visual cortex. J Neurosci 19(16):6965–6978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson CA, Peduzzi J, Hickey T (1989) Visual cortex development in the ferret. I. Genesis and migration of visual cortex neurons. J Neurosci 9:1242–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs EC, Campagnoni C, Kampf K, Reyes SD, Kalra V, Handley V, Xie YY, Hong-Hu Y, Spreur V, Fisher RS, Campagnoni AT (2007) Visualization of corticofugal projections during early cortical development in a tau-GFP-transgenic mouse. Eur J Neurosci 25(1):17–30

    Article  PubMed  Google Scholar 

  • Jaepel J, Hübener M, Bonhoeffer T, Rose T (2017) Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice. Nat Neurosci 20(12):1708–1714

    Article  CAS  PubMed  Google Scholar 

  • Jaubert-Miazza L, Green E, Lo FS, Bui K, Mills J, Guido W (2005) Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis Neurosci 22(5):661–676

    Article  PubMed  Google Scholar 

  • Johnson JK, Casagrande V (1993) Prenatal development of axon outgrowth and connectivity in the ferret visual system. Vis Neurosci 10(1):117–130

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH, Guillery RW, Allman JM (1972) Some principles of organization in the dorsal lateral geniculate nucleus. Brain Behav Evol 6(1-6):253–299

    Article  CAS  PubMed  Google Scholar 

  • Kalil R (1978) Dark rearing in the cat: effects on visuomotor behavior and cell growth in the dorsal lateral geniculate nucleus. J Comp Neurol 178(3):451–467

    Article  CAS  PubMed  Google Scholar 

  • Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58(5):673–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang E, Durand S, LeBlanc JJ, Hensch TK, Chen C, Fagiolini M (2013) Visual acuity development and plasticity in the absence of sensory experience. J Neurosci 33(45):17789–17796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanold PO, Kara P, Reid RC, Shatz CJ (2003) Role of subplate neurons in functional maturation of visual cortical columns. Science 301(5632):521–525

    Article  CAS  PubMed  Google Scholar 

  • Kaplan E, Shapley RM (1982) X and Y cells in the lateral geniculate nucleus of macaque monkeys. J Physiol 330:125–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz L (1987) Local circuitry of identified projection neurons in cat visual cortex brain slices. J Neurosci 7(4):1223–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki H, Crowley JC, Livesey FJ, Katz LC (2004) Molecular organization of the ferret visual thalamus. J Neurosci 24(44):9962–9970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay JN, De la Huerta I, Kim I-J, Zhang Y, Yamagata M, Chu MW, Meister M, Sanes JR (2011) Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J Neurosci 31(21):7753–7762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiley CW, Usrey WM (2017) Orientation tuning of correlated activity in the developing lateral geniculate nucleus. J Neurosci 37(48):11549–11558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim IJ, Zhang Y, Yamagata M, Meister M, Sanes JR (2008) Molecular identification of a retinal cell type that responds to upward motion. Nature 452(7186):478–482

    Article  CAS  PubMed  Google Scholar 

  • Kim IJ, Zhang Y, Meister M, Sanes JR (2010) Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. J Neurosci 30(4):1452–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinston WJ, Vadas MA, Bishop PO (1969) Multiple projection of the visual field to the medical portion of the dorsal lateral geniculate nucleus and the adjacent nuclei of the thalamus of the cat. J Comp Neurol 136(3):295–315

    Article  CAS  PubMed  Google Scholar 

  • Kratz K, Sherman S, Kalil R (1979) Lateral geniculate nucleus in dark-reared cats: loss of Y cells without changes in cell size. Science 203(4387):1353–1355

    Article  CAS  PubMed  Google Scholar 

  • Krug K, Akerman CJ, Thompson ID (2001) Responses of neurons in neonatal cortex and thalamus to patterned visual stimulation through the naturally closed lids. J Neurophysiol 85(4):1436–1443

    Article  CAS  PubMed  Google Scholar 

  • Lachica EA, Crooks MW, Casagrande VA (1990) Effects of monocular deprivation on the morphology of retinogeniculate axon arbors in a primate. J Comp Neurol 296(2):303–323

    Article  CAS  PubMed  Google Scholar 

  • Lambo ME, Turrigiano GG (2013) Synaptic and intrinsic homeostatic mechanisms cooperate to increase L2/3 pyramidal neuron excitability during a late phase of critical period plasticity. J Neurosci 33(20):8810–8819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BB, Creutzfeldt OD, Elepfandt A (1979) The responses of magno- and parvocellular cells of the monkey's lateral geniculate body to moving stimuli. Exp Brain Res 35(3):547–557

    Article  CAS  PubMed  Google Scholar 

  • Lehmkuhle S, Kratz KE, Mangel SC, Sherman SM (1978) An effect of early monocular lid suture upon the development of X-cells in the cat’s lateral geniculate nucleus. Brain Res 157(2):346–350

    Article  CAS  PubMed  Google Scholar 

  • Lehmkuhle S, Kratz KE, Mangel SC, Sherman SM (1980) Effects of early monocular lid suture on spatial and temporal sensitivity of neurons in dorsal lateral geniculate nucleus of the cat. J Neurophysiol 43(2):542–556

    Article  CAS  PubMed  Google Scholar 

  • Lennie P (1980) Parallel visual pathways: a review. Vision Res 20(7):561–594

    Article  CAS  PubMed  Google Scholar 

  • LeVay S, Wiesel TN, Hubel DH (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191(1):1–51

    Article  CAS  PubMed  Google Scholar 

  • Levick WR, Thibos LN (1980) Orientation bias of cat retinal ganglion cells. Nature 286(5771):389–390

    Article  CAS  PubMed  Google Scholar 

  • Levick WR, Oyster CW, Takahashi E (1969) Rabbit lateral geniculate nucleus: sharpener of directional information. Science 165(3894):712–714

    Article  CAS  PubMed  Google Scholar 

  • Levick WR, Cleland BG, Dubin MW (1972) Lateral geniculate neurons of cat: retinal inputs and physiology. Invest Ophthalmol 11(5):302–311

    CAS  PubMed  Google Scholar 

  • Levitt JB, Schumer RA, Sherman SM, Spear PD, Movshon JA (2001) Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. J Neurophysiol 85(5):2111–2129

    Article  CAS  PubMed  Google Scholar 

  • Lewis TL, Maurer D (2005) Multiple sensitive periods in human visual development: evidence from visually deprived children. Dev Psychobiol 46(3):163–183

    Article  PubMed  Google Scholar 

  • Li Y, Fitzpatrick D, White LE (2006) The development of direction selectivity in ferret visual cortex requires early visual experience. Nat Neurosci 9(5):676–681

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Van Hooser SD, Mazurek M, White LE, Fitzpatrick D (2008) Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature 456(7224):952–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y-T, Liu B-H, Chou X-L, Zhang LI, Tao HW (2014) Strengthening of direction selectivity by broadly tuned and spatiotemporally slightly offset inhibition in mouse visual cortex. Cereb Cortex 25(9):2466–2477

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang L, Chen C (2020) Organization, function, and development of the mouse retinogeniculate synapse. Annu Rev Vis Sci 6:261–285

    Article  PubMed  Google Scholar 

  • Lien AD, Scanziani M (2018) Cortical direction selectivity emerges at convergence of thalamic synapses. Nature 558(7708):80–86

    Article  CAS  PubMed  Google Scholar 

  • Linden DC, Guillery RW, Cucchiaro J (1981) The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. J Comp Neurol 203(2):189–211

    Article  CAS  PubMed  Google Scholar 

  • Linden ML, Heynen AJ, Haslinger RH, Bear MF (2009) Thalamic activity that drives visual cortical plasticity. Nat Neurosci 12(4):390–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litvina EY, Chen C (2017) Functional convergence at the retinogeniculate synapse. Neuron 96(2):330–338.e335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Chen C (2008) Different roles for AMPA and NMDA receptors in transmission at the immature retinogeniculate synapse. J Neurophysiol 99(2):629–643

    Article  CAS  PubMed  Google Scholar 

  • Livingstone MS (1998) Mechanisms of direction selectivity in macaque V1. Neuron 20(3):509–526

    Article  CAS  PubMed  Google Scholar 

  • Livingstone M, Hubel D (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7(11):3416–3468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maex R, Orban GA (1996) Model circuit of spiking neurons generating directional selectivity in simple cells. J Neurophysiol 75(4):1515–1545

    Article  CAS  PubMed  Google Scholar 

  • Maffei A, Nataraj K, Nelson SB, Turrigiano GG (2006) Potentiation of cortical inhibition by visual deprivation. Nature 443(7107):81–84

    Article  CAS  PubMed  Google Scholar 

  • Malpeli JG, Baker FH (1975) The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta. J Comp Neurol 161(4):569–594

    Article  CAS  PubMed  Google Scholar 

  • Marr D, Ullman S (1981) Directional selectivity and its use in early visual processing. Proc R Soc Lond B Biol Sci 211(1183):151–180

    Article  CAS  PubMed  Google Scholar 

  • Marrocco RT (1976) Sustained and transient cells in monkey lateral geniculate nucleus: conduction velocites and response properties. J Neurophysiol 39(2):340–353

    Article  CAS  PubMed  Google Scholar 

  • Marshel JH, Kaye AP, Nauhaus I, Callaway EM (2012) Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron 76(4):713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastronarde DN (1987) Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. J Neurophysiol 57(2):381–413

    Article  CAS  PubMed  Google Scholar 

  • Mastronarde DN (1992) Nonlagged relay cells and interneurons in the cat lateral geniculate nucleus: receptive-field properties and retinal inputs. Vis Neurosci 8(5):407–441

    Article  CAS  PubMed  Google Scholar 

  • Maunsell JH (1992) Functional visual streams. Curr Opin Neurobiol 2(4):506–510

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Bal T (1994) Sensory gating mechanisms of the thalamus. Curr Opin Neurobiol 4(4):550–556

    Article  CAS  PubMed  Google Scholar 

  • McCourt ME, Jacobs GH (1984) Directional filter characteristics of optic nerve fibers in California ground squirrel (Spermophilus beecheyi). J Neurophysiol 52(6):1200–1212

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin T, O'Leary DD (2005) Molecular gradients and development of retinotopic maps. Annu Rev Neurosci 28:327–355

    Article  CAS  PubMed  Google Scholar 

  • Miska NJ, Richter LM, Cary BA, Gjorgjieva J, Turrigiano GG (2018) Sensory experience inversely regulates feedforward and feedback excitation-inhibition ratio in rodent visual cortex. Elife 7

    Google Scholar 

  • Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540

    Article  CAS  PubMed  Google Scholar 

  • Mooney R, Penn AA, Gallego R, Shatz CJ (1996) Thalamic relay of spontaneous retinal activity prior to vision. Neuron 17(5):863–874

    Article  CAS  PubMed  Google Scholar 

  • Moore CL, Kalil R, Richards W (1976) Development of myelination in optic tract of the cat. J Comp Neurol 165(2):125–136

    Article  CAS  PubMed  Google Scholar 

  • Moore BDT, Alitto HJ, Usrey WM (2005) Orientation tuning, but not direction selectivity, is invariant to temporal frequency in primary visual cortex. J Neurophysiol 94(2):1336–1345

    Article  PubMed  Google Scholar 

  • Moore BDT, Kiley CW, Sun C, Usrey WM (2011) Rapid plasticity of visual responses in the adult lateral geniculate nucleus. Neuron 71(5):812–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan JL, Berger DR, Wetzel AW, Lichtman JW (2016) The fuzzy logic of network connectivity in mouse visual thalamus. Cell 165(1):192–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Movshon JA, Dürsteler MR (1977) Effects of brief periods of unilateral eye closure on the kitten’s visual system. J Neurophysiol 40(6):1255–1265

    Article  CAS  PubMed  Google Scholar 

  • Movshon JA, Kiorpes L, Hawken MJ, Cavanaugh JR (2005) Functional maturation of the macaque’s lateral geniculate nucleus. J Neurosci 25(10):2712–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mower GD, Burchfiel JL, Duffy FH (1982) Animal models of strabismic amblyopia: physiological studies of visual cortex and the lateral geniculate nucleus. Brain Res 281(3):311–327

    Article  CAS  PubMed  Google Scholar 

  • Niell CM, Stryker MP (2008) Highly selective receptive fields in mouse visual cortex. J Neurosci 28(30):7520–7536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433(7026):597–603

    Article  CAS  PubMed  Google Scholar 

  • Orban GA, Kennedy H, Bullier J (1986) Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. J Neurophysiol 56(2):462–480

    Article  CAS  PubMed  Google Scholar 

  • Pearson HE, Berman N, Murphy EH (1981) Stroboscopic rearing reduces direction selectivity in rabbit visual cortex. Dev Brain Res 1(1):127–131

    Article  Google Scholar 

  • Peichl L (1991) Alpha ganglion cells in mammalian retinae: Common properties, species differences, and some comments on other ganglion cells. Vis Neurosci 7(1-2):155–169

    Article  CAS  PubMed  Google Scholar 

  • Peichl L, Ott H, Boycott BB (1987) Alpha ganglion cells in mammalian retinae. Proc Royal Soc Lond Ser B Biol Sci 231(1263):169–197

    CAS  Google Scholar 

  • Peng YR, Shekhar K, Yan W, Herrmann D, Sappington A, Bryman GS, van Zyl T, Do MTH, Regev A, Sanes JR (2019) Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell 176(5):1222–1237.e1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penn AA, Riquelme PA, Feller MB, Shatz CJ (1998) Competition in retinogeniculate patterning driven by spontaneous activity. Science 279(5359):2108–2112

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffenberger C, Cutforth T, Woods G, Yamada J, Rentería RC, Copenhagen DR, Flanagan JG, Feldheim DA (2005) Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping. Nat Neurosci 8(8):1022–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piscopo DM, El-Danaf RN, Huberman AD, Niell CM (2013) Diverse visual features encoded in mouse lateral geniculate nucleus. J Neurosci 33(11):4642–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priebe NJ (2016) Mechanisms of orientation selectivity in the primary visual cortex. Annu Rev Vis Sci 2:85–107

    Article  PubMed  Google Scholar 

  • Priebe NJ, Ferster D (2005) Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron 45(1):133–145

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1976) Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261(5560):467–471

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1977) Genesis of the dorsal lateral geniculate nucleus in the rhesus monkey: site and time of origin, kinetics of proliferation, routes of migration and pattern of distribution of neurons. J Comp Neurol 176(1):23–52

    Article  CAS  PubMed  Google Scholar 

  • Rakic P, Barlow HB, Gaze RM (1977) Prenatal development of the visual system in rhesus monkey. Philos Trans R Soc Lond B Biol Sci 278(961):245–260

    Article  CAS  PubMed  Google Scholar 

  • Ramoa AS, Prusky G (1997) Retinal activity regulates developmental switches in functional properties and ifenprodil sensitivity of NMDA receptors in the lateral geniculate nucleus. Brain Res Dev Brain Res 101(1-2):165–175

    Article  CAS  PubMed  Google Scholar 

  • Reese BE (1988) ‘Hidden lamination’ in the dorsal lateral geniculate nucleus: the functional organization of this thalamic region in the rat. Brain Res Rev 13(2):119–137

    Article  Google Scholar 

  • Ritter NJ, Anderson NM, Van Hooser SD (2017) Visual stimulus speed does not influence the rapid emergence of direction selectivity in ferret visual cortex. J Neurosci 37(6):1557–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivlin-Etzion M, Zhou K, Wei W, Elstrott J, Nguyen PL, Barres BA, Huberman AD, Feller MB (2011) Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing. J Neurosci 31(24):8760–8769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochefort NL, Narushima M, Grienberger C, Marandi N, Hill DN, Konnerth A (2011) Development of direction selectivity in mouse cortical neurons. Neuron 71(3):425–432

    Article  CAS  PubMed  Google Scholar 

  • Rompani SB, Müllner FE, Wanner A, Zhang C, Roth CN, Yonehara K, Roska B (2017) Different modes of visual integration in the lateral geniculate nucleus revealed by single-cell-initiated transsynaptic tracing. Neuron 93(4):767–776.e766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose T, Jaepel J, Hübener M, Bonhoeffer T (2016) Cell-specific restoration of stimulus preference after monocular deprivation in the visual cortex. Science 352(6291):1319–1322

    Article  CAS  PubMed  Google Scholar 

  • Rossi LF, Harris KD, Carandini M (2020) Spatial connectivity matches direction selectivity in visual cortex. Nature 588(7839):648–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy A, Osik JJ, Ritter NJ, Wang S, Shaw JT, Fiser J, Van Hooser SD (2016) Optogenetic spatial and temporal control of cortical circuits on a columnar scale. J Neurophysiol 115(2):1043–1062

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Wang S, Meschede-Krasa B, Breffle J, Van Hooser SD (2020) An early phase of instructive plasticity before the typical onset of sensory experience. Nat Commun 11(1):11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderson KJ, Bishop PO, Darian-Smith I (1971) The properties of the binocular receptive fields of lateral geniculate neurons. Exp Brain Res 13(2):178–207

    CAS  PubMed  Google Scholar 

  • Saul AB, Feidler JC (2002) Development of response timing and direction selectivity in cat visual thalamus and cortex. J Neurosci 22(7):2945–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saul AB, Humphrey AL (1990) Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. J Neurophysiol 64(1):206–224

    Article  CAS  PubMed  Google Scholar 

  • Scholl B, Tan AY, Corey J, Priebe NJ (2013) Emergence of orientation selectivity in the Mammalian visual pathway. J Neurosci 33(26):10616–10624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seabrook TA, El-Danaf RN, Krahe TE, Fox MA, Guido W (2013) Retinal input regulates the timing of corticogeniculate innervation. J Neurosci 33(24):10085–10097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapley R (1984) The neurobiology of vision: parallel processing in the visual system. The classification of retinal ganglion cells and its impact on the neurobiology of vision. Jonathan Stone. Plenum, New York, 1983. xvi, 438 pp., illus. $55. Perspectives in vision research. Science 223(4643):1403–1404

    Article  CAS  PubMed  Google Scholar 

  • Shapley R, Hugh Perry V (1986) Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci 9:229–235

    Article  Google Scholar 

  • Shatz CJ, Rakic P (1981) The genesis of efferent connections from the visual cortex of the fetal rhesus monkey. J Comp Neurol 196(2):287–307

    Article  CAS  PubMed  Google Scholar 

  • Shatz CJ, Sretavan DW (1986) Interactions between retinal ganglion cells during the development of the mammalian visual system. Annu Rev Neurosci 9(1):171–207

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci 357(1428):1695–1708

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherman SM, Spear PD (1982) Organization of visual pathways in normal and visually deprived cats. Physiol Rev 62(2):738–855

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM, Hoffmann KP, Stone J (1972) Loss of a specific cell type from dorsal lateral geniculate nucleus in visually deprived cats. J Neurophysiol 35(4):532–541

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM, Wilson JR, Kaas JH, Webb SV (1976) X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). Science 192(4238):475–477

    Article  CAS  PubMed  Google Scholar 

  • Shou TD, Leventhal AG (1989) Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus. J Neurosci 9(12):4287–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillito AM (1977) Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat’s visual cortex. J Physiol 271(3):699–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver MA, Stryker MP (1999) Synaptic density in geniculocortical afferents remains constant after monocular deprivation in the cat. J Neurosci 19(24):10829–10842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith EL 3rd, Chino YM, Ridder WH 3rd, Kitagawa K, Langston A (1990) Orientation bias of neurons in the lateral geniculate nucleus of macaque monkeys. Vis Neurosci 5(6):525–545

    Article  PubMed  Google Scholar 

  • Smith GB, Hein B, Whitney DE, Fitzpatrick D, Kaschube M (2018) Distributed network interactions and their emergence in developing neocortex. Nat Neurosci 21(11):1600–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommeijer JP, Ahmadlou M, Saiepour MH, Seignette K, Min R, Heimel JA, Levelt CN (2017) Thalamic inhibition regulates critical-period plasticity in visual cortex and thalamus. Nat Neurosci 20(12):1715–1721

    Article  CAS  PubMed  Google Scholar 

  • Soodak RE, Shapley RM, Kaplan E (1987) Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat. J Neurophysiol 58(2):267–275

    Article  CAS  PubMed  Google Scholar 

  • Stacy AK, Schneider NA, Gilman NK, Van Hooser SD (2021) Impact of acute visual experience on development of LGN receptive fields in the ferret. bioRxiv. https://doi.org/10.1101/2021.07.16.452697

  • Stavros KA, Kiorpes L (2008) Behavioral measurement of temporal contrast sensitivity development in macaque monkeys (Macaca nemestrina). Vision Res 48(11):1335–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Stone J, Fukuda Y (1974) Properties of cat retinal ganglion cells: a comparison of W-cells with X- and Y-cells. J Neurophysiol 37(4):722–748

    Article  CAS  PubMed  Google Scholar 

  • Suarez H, Koch C, Douglas R (1995) Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit. J Neurosci 15(10):6700–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suematsu N, Naito T, Miyoshi T, Sawai H, Sato H (2013) Spatiotemporal receptive field structures in retinogeniculate connections of cat. Front Syst Neurosci 7(103)

    Google Scholar 

  • Sun W, Li N, He S (2002) Large-scale morphological survey of mouse retinal ganglion cells. J Comp Neurol 451(2):115–126

    Article  PubMed  Google Scholar 

  • Sun L, Han X, He S (2011) Direction-selective circuitry in rat retina develops independently of GABAergic, cholinergic and action potential activity. PLoS One 6(5):e19477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Tan Z, Mensh B, Ji N (2015) Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs. Nat Neurosci 19

    Google Scholar 

  • Swadlow HA, Weyand TG (1985) Receptive-field and axonal properties of neurons in the dorsal lateral geniculate nucleus of awake unparalyzed rabbits. J Neurophysiol 54(1):168–183

    Article  CAS  PubMed  Google Scholar 

  • Tavazoie SF, Reid RC (2000) Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development. Nat Neurosci 3(6):608–616

    Article  CAS  PubMed  Google Scholar 

  • Thompson ID, Kossut M, Blakemore C (1983) Development of orientation columns in cat striate cortex revealed by 2-deoxyglucose autoradiography. Nature 301(5902):712–715

    Article  CAS  PubMed  Google Scholar 

  • Thompson KG, Zhou Y, Leventhal AG (1994) Direction-sensitive X and Y cells within the A laminae of the cat’s LGNd. Vis Neurosci 11(5):927–938

    Article  CAS  PubMed  Google Scholar 

  • Thompson AD, Picard N, Min L, Fagiolini M, Chen C (2016) Cortical feedback regulates feedforward retinogeniculate refinement. Neuron 91(5):1021–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson A, Gribizis A, Chen C, Crair MC (2017) Activity-dependent development of visual receptive fields. Curr Opin Neurobiol 42:136–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian N, Copenhagen DR (2003) Visual stimulation is required for refinement of on and off pathways in postnatal retina. Neuron 39(1):85–96

    Article  CAS  PubMed  Google Scholar 

  • Tigges M, Hendrickson AE, Tigges J (1984) Anatomical consequences of long-term monocular eyelid closure on lateral geniculate nucleus and striate cortex in squirrel monkey. J Comp Neurol 227(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Tootle JS, Friedlander MJ (1989) Postnatal development of the spatial contrast sensitivity of X- and Y-cells in the kitten retinogeniculate pathway. J Neurosci 9(4):1325–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trachtenberg JT, Stryker MP (2001) Rapid anatomical plasticity of horizontal connections in the developing visual cortex. J Neurosci 21(10):3476–3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trachtenberg JT, Trepel C, Stryker MP (2000) Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. Science 287(5460):2029–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G, Yan W, Adiconis X, Arnold ME, Lee JM, Levin JZ, Lin D, Wang C, Lieber CM, Regev A, He Z, Sanes JR (2019) Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron 104(6):1039–1055.e1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tschetter WW, Govindaiah G, Etherington IM, Guido W, Niell CM (2018) Refinement of Spatial Receptive Fields in the Developing Mouse Lateral Geniculate Nucleus Is Coordinated with Excitatory and Inhibitory Remodeling. J Neurosci 38(19):4531–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usrey WM (2002) Spike timing and visual processing in the retinogeniculocortical pathway. Philos Trans R Soc Lond B Biol Sci 357(1428):1729–1737

    Article  PubMed  PubMed Central  Google Scholar 

  • Usrey WM, Reid RC (2000) Visual physiology of the lateral geniculate nucleus in two species of new world monkey: Saimiri sciureus and Aotus trivirgatis. J Physiol 523(Pt 3):755–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usrey WM, Reppas JB, Reid RC (1998) Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature 395(6700):384–387

    Article  CAS  PubMed  Google Scholar 

  • Usrey WM, Reppas JB, Reid RC (1999) Specificity and strength of retinogeniculate connections. J Neurophysiol 82(6):3527–3540

    Article  CAS  PubMed  Google Scholar 

  • Van Hooser SD (2007) Similarity and diversity in visual cortex: is there a unifying theory of cortical computation? Neuroscientist 13(6):639–656

    Article  PubMed  Google Scholar 

  • Van Hooser SD, Heimel JA, Nelson SB (2003) Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinensis). J Neurophysiol 90(5):3398–3418

    Article  PubMed  Google Scholar 

  • Van Hooser SD, Li Y, Christensson M, Smith GB, White LE, Fitzpatrick D (2012) Initial neighborhood biases and the quality of motion stimulation jointly influence the rapid emergence of direction preference in visual cortex. J Neurosci 32(21):7258–7266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Hooser SD, Roy A, Rhodes HJ, Culp JH, Fitzpatrick D (2013) Transformation of receptive field properties from lateral geniculate nucleus to superficial V1 in the tree shrew. J Neurosci 33(28):11494–11505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vidyasagar TR, Urbas JV (1982) Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Exp Brain Res 46(2):157–169

    Article  CAS  PubMed  Google Scholar 

  • Vital-Durand F, Garey LJ, Blakemore C (1978) Monocular and binocular deprivation in the monkey: morphological effects and reversibility. Brain Res 158(1):45–64

    Article  CAS  PubMed  Google Scholar 

  • von Noorden GK, Crawford ML (1978) Morphological and physiological changes in the monkey visual system after short-term lid suture. Invest Ophthalmol Vis Sci 17(8):762–768

    Google Scholar 

  • Wang X, Wei Y, Vaingankar V, Wang Q, Koepsell K, Sommer FT, Hirsch JA (2007) Feedforward excitation and inhibition evoke dual modes of firing in the cat’s visual thalamus during naturalistic viewing. Neuron 55(3):465–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Hamby AM, Zhou K, Feller MB (2011) Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 469(7330):402–406

    Article  CAS  PubMed  Google Scholar 

  • Weliky M, Katz LC (1999) Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. Science 285(5427):599–604

    Article  CAS  PubMed  Google Scholar 

  • Weliky M, Bosking WH, Fitzpatrick D (1996) A systematic map of direction preference in primary visual cortex. Nature 379(6567):725–728

    Article  CAS  PubMed  Google Scholar 

  • Wenzel A, Villa M, Mohler H, Benke D (1996) Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain. J Neurochem 66(3):1240–1248

    Article  CAS  PubMed  Google Scholar 

  • Weyand TG (2016) The multifunctional lateral geniculate nucleus. Rev Neurosci 27(2):135–157

    Article  PubMed  Google Scholar 

  • White LE, Coppola DM, Fitzpatrick D (2001) The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature 411(6841):1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Wiencken-barger AE, Casagrande VA (2002) Visual system development and neural activity. In: Ramachandran VS (ed) Encyclopedia of the human brain. Academic Press, New York, pp 791–804

    Chapter  Google Scholar 

  • Wiesel TN, Hubel DH (1963a) Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. J Neurophysiol 26(6):978–993

    Article  CAS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1963b) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26(6):1003–1017

    Article  CAS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1965a) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 28(6):1029–1040

    Article  CAS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1965b) Extent of recovery from the effects of visual deprivation in kittens. J Neurophysiol 28(6):1060–1072

    Article  CAS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1974) Ordered arrangement of orientation columns in monkeys lacking visual experience. J Comp Neurol 158(3):307–318

    Article  CAS  PubMed  Google Scholar 

  • Wilson JR, Forestner DM (1995) Synaptic inputs to single neurons in the lateral geniculate nuclei of normal and monocularly deprived squirrel monkeys. J Comp Neurol 362(4):468–488

    Article  CAS  PubMed  Google Scholar 

  • Wilson DE, Scholl B, Fitzpatrick D (2018) Differential tuning of excitation and inhibition shapes direction selectivity in ferret visual cortex. Nature 560(7716):97–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong RO, Meister M, Shatz CJ (1993) Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11(5):923–938

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Ichida JM, Allison JD, Boyd JD, Bonds AB, Casagrande VA (2001) A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). J Physiol 531(Pt 1):203–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan W, Peng Y-R, van Zyl T, Regev A, Shekhar K, Juric D, Sanes JR (2020) Cell atlas of the human fovea and peripheral retina. Sci Rep 10(1):9802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh T, Lee BB, Kremers J, Cowing JA, Hunt DM, Martin PR, Troy JB (1995) Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus). J Neurosci 15(12):7892–7904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin ZQ, Crewther SG, Wang C, Crewther DP (2006) Pre- and post-critical period induced reduction of Cat-301 immunoreactivity in the lateral geniculate nucleus and visual cortex of cats Y-blocked as adults or made strabismic as kittens. Mol Vis 12:858–866

    CAS  PubMed  Google Scholar 

  • Zahs KR, Stryker MP (1985) The projection of the visual field onto the lateral geniculate nucleus of the ferret. J Comp Neurol 241(2):210–224

    Article  CAS  PubMed  Google Scholar 

  • Zaltsman JB, Heimel JA, Hooser SDV (2015) Weak orientation and direction selectivity in lateral geniculate nucleus representing central vision in the gray squirrel Sciurus carolinensis. J Neurophysiol 113(7):2987–2997

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeater N, Cheong SK, Solomon SG, Dreher B, Martin PR (2015) Binocular visual responses in the primate lateral geniculate nucleus. Curr Biol 25(24):3190–3195

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Chen H, Liu X, Cang J (2013) Orientation-selective responses in the mouse lateral geniculate nucleus. J Neurosci 33(31):12751–12763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Leventhal AG, Thompson KG (1995) Visual deprivation does not affect the orientation and direction sensitivity of relay cells in the lateral geniculate nucleus of the cat. J Neurosci 15(1 Pt 2):689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang J, Stoelzel CR, Bereshpolova Y, Huff JM, Hei X, Alonso JM, Swadlow HA (2013) Layer 4 in primary visual cortex of the awake rabbit: contrasting properties of simple cells and putative feedforward inhibitory interneurons. J Neurosci 33(28):11372–11389

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J, Bereshpolova Y, Stoelzel CR, Huff JM, Hei X, Alonso JM, Swadlow HA (2014) Brain state effects on layer 4 of the awake visual cortex. J Neurosci 34(11):3888–3900

    Article  CAS  PubMed  Google Scholar 

  • Ziburkus J, Guido W (2006) Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation. J Neurophysiol 96(5):2775–2784

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Van Hooser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stacy, A.K., Van Hooser, S.D. (2022). Development of Functional Properties in the Early Visual System: New Appreciations of the Roles of Lateral Geniculate Nucleus. In: Andersen, S.L. (eds) Sensitive Periods of Brain Development and Preventive Interventions. Current Topics in Behavioral Neurosciences, vol 53. Springer, Cham. https://doi.org/10.1007/7854_2021_297

Download citation

Publish with us

Policies and ethics