Skip to main content

Maturation of Corticolimbic Functional Connectivity During Sensitive Periods of Brain Development

  • Chapter
  • First Online:
Sensitive Periods of Brain Development and Preventive Interventions

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 53))

Abstract

The maturation of key corticolimbic structures and the prefrontal cortex during sensitive periods of brain development from early life through adolescence is crucial for the acquisition of a variety of cognitive and affective processes associated with adult behavior. In this chapter, we first review how key cellular and circuit level changes during adolescence dictate the development of the prefrontal cortex and its capacity to integrate contextual and emotional information from the ventral hippocampus and the amygdala. We further discuss how afferent transmission from ventral hippocampal and amygdala inputs displays unique age-dependent trajectories that directly impact prefrontal functional maturation through adolescence. We conclude by proposing that time-sensitive strengthening of specific corticolimbic synapses is a critical contributing factor for the protracted maturation of cognitive and emotional regulation by the prefrontal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27:3–18

    Article  PubMed  Google Scholar 

  • Bacon SJ, Headlam AJ, Gabbott PL, Smith AD (1996) Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study. Brain Res 720:211–219

    Article  CAS  PubMed  Google Scholar 

  • Baldwin AE, Sadeghian K, Kelley AE (2002) Appetitive instrumental learning requires coincident activation of NMDA and dopamine D1 receptors within the medial prefrontal cortex. J Neurosci 22:1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56

    Article  CAS  PubMed  Google Scholar 

  • Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318:1645–1647

    Article  CAS  PubMed  Google Scholar 

  • Benes FM (1989) Myelination of cortical-hippocampal relays during late adolescence. Schizophr Bull 15:585–593

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Turtle M, Khan Y, Farol P (1994) Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 51:477–484

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Vincent SL, Molloy R, Khan Y (1996) Increased interaction of dopamine-immunoreactive varicosities with GABA neurons of rat medial prefrontal cortex occurs during the postweanling period. Synapse 23:237–245

    Article  CAS  PubMed  Google Scholar 

  • Best JR, Miller PH (2010) A developmental perspective on executive function. Child Dev 81:1641–1660

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogart LJ, O’Donnell P (2018) Multiple long-range inputs evoke NMDA currents in prefrontal cortex fast-spiking interneurons. Neuropsychopharmacology 43:2101–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouthenet ML, Martres MP, Sales N, Schwartz JC (1987) A detailed mapping of dopamine D-2 receptors in rat central nervous system by autoradiography with [125I]iodosulpride. Neuroscience 20:117–155

    Article  CAS  PubMed  Google Scholar 

  • Brenhouse HC, Andersen SL (2011) Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci Biobehav Rev 35:1687–1703

    Article  PubMed  PubMed Central  Google Scholar 

  • Brenhouse HC, Sonntag KC, Andersen SL (2008) Transient D1 dopamine receptor expression on prefrontal cortex projection neurons: relationship to enhanced motivational salience of drug cues in adolescence. J Neurosci 28:2375–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burghy CA, Stodola DE, Ruttle PL, Molloy EK, Armstrong JM, Oler JA, Fox ME, Hayes AS, Kalin NH, Essex MJ, Davidson RJ, Birn RM (2012) Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. Nat Neurosci 15:1736–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caballero A, Tseng KY (2016) GABAergic function as a limiting factor for prefrontal maturation during adolescence. Trends Neurosci 39:441–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caballero A, Diah KC, Tseng KY (2013) Region-specific upregulation of parvalbumin-, but not calretinin-positive cells in the ventral hippocampus during adolescence. Hippocampus 23:1331–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caballero A, Flores-Barrera E, Cass DK, Tseng KY (2014a) Differential regulation of parvalbumin and calretinin interneurons in the prefrontal cortex during adolescence. Brain Struct Funct 219:395–406

    Article  CAS  PubMed  Google Scholar 

  • Caballero A, Thomases DR, Flores-Barrera E, Cass DK, Tseng KY (2014b) Emergence of GABAergic-dependent regulation of input-specific plasticity in the adult rat prefrontal cortex during adolescence. Psychopharmacology (Berl) 231:1789–1796

    Article  CAS  Google Scholar 

  • Caballero A, Granberg R, Tseng KY (2016) Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev 70:4–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Caballero A, Flores-Barrera E, Thomases DR, Tseng KY (2020) Downregulation of parvalbumin expression in the prefrontal cortex during adolescence causes enduring prefrontal disinhibition in adulthood. Neuropsychopharmacology 45:1527–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabro FJ, Murty VP, Jalbrzikowski M, Tervo-Clemmens B, Luna B (2020) Development of hippocampal-prefrontal cortex interactions through adolescence. Cereb Cortex 30:1548–1558

    Article  PubMed  Google Scholar 

  • Carr DB, Sesack SR (1996) Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J Comp Neurol 369:1–15

    Article  CAS  PubMed  Google Scholar 

  • Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional brain development and its relation to cognitive development. Biol Psychol 54:241–257

    Article  CAS  PubMed  Google Scholar 

  • Cass DK, Thomases DR, Caballero A, Tseng KY (2013) Developmental disruption of gamma-aminobutyric acid function in the medial prefrontal cortex by noncontingent cocaine exposure during early adolescence. Biol Psychiatry 74:490–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cass DK, Flores-Barrera E, Thomases DR, Vital WF, Caballero A, Tseng KY (2014) CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex. Mol Psychiatry 19:536–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celio MR, Heizmann CW (1981) Calcium-binding protein parvalbumin as a neuronal marker. Nature 293:300–302

    Article  CAS  PubMed  Google Scholar 

  • Chard PS, Bleakman D, Christakos S, Fullmer CS, Miller RJ (1993) Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol 472:341–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collin T, Chat M, Lucas MG, Moreno H, Racay P, Schwaller B, Marty A, Llano I (2005) Developmental changes in parvalbumin regulate presynaptic Ca2+ signaling. J Neurosci 25:96–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortese BM, Phan KL (2005) The role of glutamate in anxiety and related disorders. CNS Spectr 10:820–830

    Article  PubMed  Google Scholar 

  • Cressman VL, Balaban J, Steinfeld S, Shemyakin A, Graham P, Parisot N, Moore H (2010) Prefrontal cortical inputs to the basal amygdala undergo pruning during late adolescence in the rat. J Comp Neurol 518:2693–2709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham MG, Bhattacharyya S, Benes FM (2002) Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence. J Comp Neurol 453:116–130

    Article  PubMed  Google Scholar 

  • Cunningham MG, Bhattacharyya S, Benes FM (2008) Increasing interaction of amygdalar afferents with GABAergic interneurons between birth and adulthood. Cereb Cortex 18:1529–1535

    Article  PubMed  Google Scholar 

  • Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86:1033–1048

    Article  PubMed  Google Scholar 

  • Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34

    Article  CAS  PubMed  Google Scholar 

  • Delli Pizzi S, Chiacchiaretta P, Mantini D, Bubbico G, Edden RA, Onofrj M, Ferretti A, Bonanni L (2017a) GABA content within medial prefrontal cortex predicts the variability of fronto-limbic effective connectivity. Brain Struct Funct 222:3217–3229

    Article  CAS  PubMed  Google Scholar 

  • Delli Pizzi S, Chiacchiaretta P, Mantini D, Bubbico G, Ferretti A, Edden RA, Di Giulio C, Onofrj M, Bonanni L (2017b) Functional and neurochemical interactions within the amygdala-medial prefrontal cortex circuit and their relevance to emotional processing. Brain Struct Funct 222:1267–1279

    Article  PubMed  Google Scholar 

  • Dilgen J, Tejeda HA, O’Donnell P (2013) Amygdala inputs drive feedforward inhibition in the medial prefrontal cortex. J Neurophysiol 110:221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumas TC (2005) Late postnatal maturation of excitatory synaptic transmission permits adult-like expression of hippocampal-dependent behaviors. Hippocampus 15:562–578

    Article  CAS  PubMed  Google Scholar 

  • Duncan NW, Wiebking C, Northoff G (2014) Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans-a review of multimodal imaging studies. Neurosci Biobehav Rev 47:36–52

    Article  CAS  PubMed  Google Scholar 

  • Erickson SL, Lewis DA (2002) Postnatal development of parvalbumin- and GABA transporter-immunoreactive axon terminals in monkey prefrontal cortex. J Comp Neurol 448:186–202

    Article  CAS  PubMed  Google Scholar 

  • Flores-Barrera E, Thomases DR, Heng LJ, Cass DK, Caballero A, Tseng KY (2014) Late adolescent expression of GluN2B transmission in the prefrontal cortex is input-specific and requires postsynaptic protein kinase A and D1 dopamine receptor signaling. Biol Psychiatry 75:508–516

    Article  CAS  PubMed  Google Scholar 

  • Flores-Barrera E, Thomases DR, Tseng KY (2020) MK-801 exposure during adolescence elicits enduring disruption of prefrontal E-I balance and its control of fear extinction behavior. J Neurosci 40:4881–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floresco SB, Phillips AG (2001) Delay-dependent modulation of memory retrieval by infusion of a dopamine D1 agonist into the rat medial prefrontal cortex. Behav Neurosci 115:934–939

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci 17:1880–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman HR, Goldman-Rakic PS (1988) Activation of the hippocampus and dentate gyrus by working-memory: a 2-deoxyglucose study of behaving rhesus monkeys. J Neurosci 8:4693–4706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fung SJ, Webster MJ, Sivagnanasundaram S, Duncan C, Elashoff M, Weickert CS (2010) Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am J Psychiatry 167:1479–1488

    Article  PubMed  Google Scholar 

  • Gabbott P, Headlam A, Busby S (2002) Morphological evidence that CA1 hippocampal afferents monosynaptically innervate PV-containing neurons and NADPH-diaphorase reactive cells in the medial prefrontal cortex (areas 25/32) of the rat. Brain Res 946:314–322

    Article  CAS  PubMed  Google Scholar 

  • Gabbott PL, Warner TA, Busby SJ (2006) Amygdala input monosynaptically innervates parvalbumin immunoreactive local circuit neurons in rat medial prefrontal cortex. Neuroscience 139:1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Garcia R, Vouimba RM, Baudry M, Thompson RF (1999) The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature 402:294–296

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Bloch B, Le Moine C (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 7:1050–1063

    Article  CAS  PubMed  Google Scholar 

  • Gee DG, Humphreys KL, Flannery J, Goff B, Telzer EH, Shapiro M, Hare TA, Bookheimer SY, Tottenham N (2013) A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. J Neurosci 33:4584–4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmartin MR, Kwapis JL, Helmstetter FJ (2013) NR2A- and NR2B-containing NMDA receptors in the prelimbic medial prefrontal cortex differentially mediate trace, delay, and contextual fear conditioning. Learn Mem 20(6):290–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goddings AL, Mills KL, Clasen LS, Giedd JN, Viner RM, Blakemore SJ (2014) The influence of puberty on subcortical brain development. Neuroimage 88:242–251

    Article  PubMed  Google Scholar 

  • Gogtay N, Nugent TF 3rd, Herman DH, Ordonez A, Greenstein D, Hayashi KM, Clasen L, Toga AW, Giedd JN, Rapoport JL, Thompson PM (2006) Dynamic mapping of normal human hippocampal development. Hippocampus 16:664–672

    Article  PubMed  Google Scholar 

  • Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci U S A 86:9015–9019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman-Rakic PS, Muly EC 3rd, Williams GV (2000) D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 31:295–301

    Article  CAS  PubMed  Google Scholar 

  • Gorelova N, Seamans JK, Yang CR (2002) Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J Neurophysiol 88:3150–3166

    Article  CAS  PubMed  Google Scholar 

  • Gulledge AT, Jaffe DB (1998) Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex. J Neurosci 18:9139–9151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurden H, Takita M, Jay TM (2000) Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J Neurosci 20:RC106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hariri AR, Mattay VS, Tessitore A, Fera F, Weinberger DR (2003) Neocortical modulation of the amygdala response to fearful stimuli. Biol Psychiatry 53:494–501

    Article  PubMed  Google Scholar 

  • Heng LJ, Markham JA, Hu XT, Tseng KY (2011) Concurrent upregulation of postsynaptic L-type Ca(2+) channel function and protein kinase A signaling is required for the periadolescent facilitation of Ca(2+) plateau potentials and dopamine D1 receptor modulation in the prefrontal cortex. Neuropharmacology 60:953–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96:651–656

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa A, Nakamura S (2003) Convergence and interaction of hippocampal and amygdalar projections within the prefrontal cortex in the rat. J Neurosci 23:9987–9995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69:375–390

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HB (1988) Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol 269:58–72

    Article  CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172:687–722

    Article  CAS  PubMed  Google Scholar 

  • Kujawa A, Wu M, Klumpp H, Pine DS, Swain JE, Fitzgerald KD, Monk CS, Phan KL (2016) Altered development of amygdala-anterior cingulate cortex connectivity in anxious youth and young adults. Biol Psychiatry Cogn Neurosci Neuroimaging 1:345–352

    PubMed  PubMed Central  Google Scholar 

  • Lee SH, Schwaller B, Neher E (2000) Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites. J Physiol 525(Pt 2):419–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie CA, Robertson MW, Cutler AJ, Bennett JP Jr (1991) Postnatal development of D1 dopamine receptors in the medial prefrontal cortex, striatum and nucleus accumbens of normal and neonatal 6-hydroxydopamine treated rats: a quantitative autoradiographic analysis. Brain Res Dev Brain Res 62:109–114

    Article  CAS  PubMed  Google Scholar 

  • Lew SE, Tseng KY (2014) Dopamine modulation of GABAergic function enables network stability and input selectivity for sustaining working memory in a computational model of the prefrontal cortex. Neuropsychopharmacology 39:3067–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7:279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis DA, Sesack SR, Levey AI, Rosenberg DR (1998) Dopamine axons in primate prefrontal cortex: specificity of distribution, synaptic targets, and development. Adv Pharmacol 42:703–706

    Article  CAS  PubMed  Google Scholar 

  • Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA (2004) Maturation of cognitive processes from late childhood to adulthood. Child Dev 75:1357–1372

    Article  PubMed  Google Scholar 

  • Maroun M, Richter-Levin G (2003) Exposure to acute stress blocks the induction of long-term potentiation of the amygdala-prefrontal cortex pathway in vivo. J Neurosci 23:4406–4409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald AJ (1996) Glutamate and aspartate immunoreactive neurons of the rat basolateral amygdala: colocalization of excitatory amino acids and projections to the limbic circuit. J Comp Neurol 365:367–379

    Article  CAS  PubMed  Google Scholar 

  • Miguelez Fernandez AMM, Molla HM, Thomases DR, Tseng KY (2021) Prefrontal alpha7nAChR signaling differentially modulates afferent drive and trace fear conditioning behavior in adolescent and adult rats. J Neurosci 41(9):1908–1916

    Article  PubMed  PubMed Central  Google Scholar 

  • Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540

    Article  CAS  PubMed  Google Scholar 

  • Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS (1996) Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381:245–248

    Article  CAS  PubMed  Google Scholar 

  • Muly EC 3rd, Szigeti K, Goldman-Rakic PS (1998) D1 receptor in interneurons of macaque prefrontal cortex: distribution and subcellular localization. J Neurosci 18:10553–10565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murty VP, Calabro F, Luna B (2016) The role of experience in adolescent cognitive development: integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46–58

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Donnell P, Tseng KY (2010) Postnatal maturation of dopamine actions in the prefrontal cortex. In: Iversen L, Iversen S, Dunnett S, Bjorklund A (eds) Dopamine handbook. Oxford University Press, Oxford

    Google Scholar 

  • O’Donnell P (2003) Dopamine gating of forebrain neural ensembles. Eur J Neurosci 17:429–435

    Article  PubMed  Google Scholar 

  • Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, Rapoport JL, Evans AC (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283:1908–1911

    Article  CAS  PubMed  Google Scholar 

  • Pirot S, Godbout R, Mantz J, Tassin JP, Glowinski J, Thierry AM (1992) Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience 49:857–865

    Article  CAS  PubMed  Google Scholar 

  • Raghanti MA, Stimpson CD, Marcinkiewicz JL, Erwin JM, Hof PR, Sherwood CC (2008) Cortical dopaminergic innervation among humans, chimpanzees, and macaque monkeys: a comparative study. Neuroscience 155:203–220

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg DR, Lewis DA (1994) Changes in the dopaminergic innervation of monkey prefrontal cortex during late postnatal development: a tyrosine hydroxylase immunohistochemical study. Biol Psychiatry 36:272–277

    Article  CAS  PubMed  Google Scholar 

  • Santana N, Mengod G, Artigas F (2009) Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 19:849–860

    Article  PubMed  Google Scholar 

  • Satterthwaite TD, Wolf DH, Erus G, Ruparel K, Elliott MA, Gennatas ED, Hopson R, Jackson C, Prabhakaran K, Bilker WB, Calkins ME, Loughead J, Smith A, Roalf DR, Hakonarson H, Verma R, Davatzikos C, Gur RC, Gur RE (2013) Functional maturation of the executive system during adolescence. J Neurosci 33:16249–16261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seamans JK, Floresco SB, Phillips AG (1998) D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 18:1613–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seguela P, Watkins KC, Descarries L (1988) Ultrastructural features of dopamine axon terminals in the anteromedial and the suprarhinal cortex of adult rat. Brain Res 442:11–22

    Article  CAS  PubMed  Google Scholar 

  • Smiley JF, Levey AI, Ciliax BJ, Goldman-Rakic PS (1994) D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proc Natl Acad Sci U S A 91:5720–5724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonntag KC, Brenhouse HC, Freund N, Thompson BS, Puhl M, Andersen SL (2014) Viral over-expression of D1 dopamine receptors in the prefrontal cortex increase high-risk behaviors in adults: comparison with adolescents. Psychopharmacology (Berl) 231:1615–1626

    Article  CAS  Google Scholar 

  • Sowell ER, Jernigan TL (1998) Further MRI evidence of late brain maturation: limbic volume increases and changing asymmetries during childhood and adolescence. Dev Neuropsychol 14:599–617

    Article  Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    Article  CAS  PubMed  Google Scholar 

  • Strawn JR, Chu WJ, Whitsel RM, Weber WA, Norris MM, Adler CM, Eliassen JC, Phan KL, Strakowski SM, DelBello MP (2013) A pilot study of anterior cingulate cortex neurochemistry in adolescents with generalized anxiety disorder. Neuropsychobiology 67:224–229

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Hagino H, Nohara S, Zhou SY, Kawasaki Y, Takahashi T, Matsui M, Seto H, Ono T, Kurachi M (2005) Male-specific volume expansion of the human hippocampus during adolescence. Cereb Cortex 15:187–193

    Article  PubMed  Google Scholar 

  • Swartz JR, Carrasco M, Wiggins JL, Thomason ME, Monk CS (2014) Age-related changes in the structure and function of prefrontal cortex-amygdala circuitry in children and adolescents: a multi-modal imaging approach. Neuroimage 86:212–220

    Article  PubMed  Google Scholar 

  • Tarazi FI, Baldessarini RJ (2000) Comparative postnatal development of dopamine D(1), D(2) and D(4) receptors in rat forebrain. Int J Dev Neurosci 18:29–37

    Article  CAS  PubMed  Google Scholar 

  • Tarazi FI, Tomasini EC, Baldessarini RJ (1999) Postnatal development of dopamine D1-like receptors in rat cortical and striatolimbic brain regions: an autoradiographic study. Dev Neurosci 21:43–49

    Article  CAS  PubMed  Google Scholar 

  • Thomases DR, Cass DK, Tseng KY (2013) Periadolescent exposure to the NMDA receptor antagonist MK-801 impairs the functional maturation of local GABAergic circuits in the adult prefrontal cortex. J Neurosci 33:26–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomases DR, Cass DK, Meyer JD, Caballero A, Tseng KY (2014) Early adolescent MK-801 exposure impairs the maturation of ventral hippocampal control of basolateral amygdala drive in the adult prefrontal cortex. J Neurosci 34:9059–9066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tse MT, Piantadosi PT, Floresco SB (2015) Prefrontal cortical gamma-aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research. Biol Psychiatry 77:929–939

    Article  CAS  PubMed  Google Scholar 

  • Tseng KY, O’Donnell P (2004) Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24:5131–5139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng KY, O’Donnell P (2005) Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation. Cereb Cortex 15:49–57

    Article  PubMed  Google Scholar 

  • Tseng KY, O’Donnell P (2007) Dopamine modulation of prefrontal cortical interneurons changes during adolescence. Cereb Cortex 17:1235–1240

    Article  PubMed  Google Scholar 

  • Tseng KY, Mallet N, Toreson KL, Le Moine C, Gonon F, O’Donnell P (2006) Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo. Synapse 59:412–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng KY, Chambers RA, Lipska BK (2009) The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res 204:295–305

    Article  PubMed  Google Scholar 

  • Urs NM, Gee SM, Pack TF, McCorvy JD, Evron T, Snyder JC, Yang X, Rodriguiz RM, Borrelli E, Wetsel WC, Jin J, Roth BL, O’Donnell P, Caron MG (2016) Distinct cortical and striatal actions of a beta-arrestin-biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties. Proc Natl Acad Sci U S A 113:E8178–E8186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verwer RW, Van Vulpen EH, Van Uum JF (1996) Postnatal development of amygdaloid projections to the prefrontal cortex in the rat studied with retrograde and anterograde tracers. J Comp Neurol 376:75–96

    Article  CAS  PubMed  Google Scholar 

  • Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JH, Wolfe BB, Grayson DR (1998) Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J Neurophysiol 79:555–566

    Article  CAS  PubMed  Google Scholar 

  • Vincent SL, Khan Y, Benes FM (1993) Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex. J Neurosci 13:2551–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XJ (1999) Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J Neurosci 19:9587–9603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GW, Cai JX (2006) Disconnection of the hippocampal-prefrontal cortical circuits impairs spatial working memory performance in rats. Behav Brain Res 175:329–336

    Article  PubMed  Google Scholar 

  • Wang H, Stradtman GG 3rd, Wang XJ, Gao WJ (2008) A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex. Proc Natl Acad Sci U S A 105:16791–16796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Yang Y, Wang CJ, Gamo NJ, Jin LE, Mazer JA, Morrison JH, Wang XJ, Arnsten AF (2013) NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron 77:736–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44:851–859

    CAS  PubMed  Google Scholar 

  • Williams K, Russell SL, Shen YM, Molinoff PB (1993) Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron 10:267–278

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Kujawa A, Lu LH, Fitzgerald DA, Klumpp H, Fitzgerald KD, Monk CS, Phan KL (2016) Age-related changes in amygdala-frontal connectivity during emotional face processing from childhood into young adulthood. Hum Brain Mapp 37:1684–1695

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao MG, Toyoda H, Lee YS, Wu LJ, Ko SW, Zhang XH, Jia Y, Shum F, Xu H, Li BM, Kaang BK, Zhuo M (2005) Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron 47:859–872

    Article  CAS  PubMed  Google Scholar 

  • Zhu JJ (2000) Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites. J Physiol 526(Pt 3):571–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Grant Sponsor: National Institute of Mental Health grants MH086507, MH105488, and MH123147 to KYT, and MH116475 to SY and KYT. The funding source had no role in the study design, data analysis, or writing of this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuei Y. Tseng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, S., Tseng, K.Y. (2021). Maturation of Corticolimbic Functional Connectivity During Sensitive Periods of Brain Development. In: Andersen, S.L. (eds) Sensitive Periods of Brain Development and Preventive Interventions. Current Topics in Behavioral Neurosciences, vol 53. Springer, Cham. https://doi.org/10.1007/7854_2021_239

Download citation

Publish with us

Policies and ethics