Skip to main content

Neuroinflammation and Tinnitus

  • Chapter
  • First Online:
The Behavioral Neuroscience of Tinnitus

Abstract

Neuroinflammation is the central nervous system’s response to: injury, infection, and abnormal neural activity. Inflammatory processes are known to mediate many diseases, and recently evidence indicates that neuroinflammation underlies hearing disorders such as presbyacusis, middle-ear disease, ototoxicity, noise-induced hearing loss, and tinnitus. This chapter provides a review of the role of neuroinflammation in the etiology and treatment of tinnitus. Specifically, our research team has demonstrated that both tumor necrosis factor alpha (TNF-α) and calpain signaling pathways are involved in noise-induced tinnitus and that blocking them yielded therapeutic effects on tinnitus. Other efforts such as controlling acute inflammatory response via specialized pro-resolving mediators may help provide insight into preventing and treating tinnitus-related inflammatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15(5):542–548

    Article  CAS  PubMed  Google Scholar 

  • Arumugam TV, Granger DN, Mattson MP (2005) Stroke and T-cells. Neuromolecular Med 7(3):229–242

    Article  CAS  PubMed  Google Scholar 

  • Baizer JS et al (2015) Effects of acoustic trauma on the auditory system of the rat: the role of microglia. Neuroscience 303:299–311

    Article  CAS  PubMed  Google Scholar 

  • Bartus RT et al (1995) Calpain as a novel target for treating acute neurodegenerative disorders. Neurol Res 17(4):249–258

    Article  CAS  PubMed  Google Scholar 

  • Bellinger FP, Madamba S, Siggins GR (1993) Interleukin 1 beta inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Res 628(1–2):227–234

    Article  CAS  PubMed  Google Scholar 

  • Bianchi M et al (2007) Increased tumor necrosis factor-alpha and prostaglandin E2 concentrations in the cerebrospinal fluid of rats with inflammatory hyperalgesia: the effects of analgesic drugs. Anesth Analg 104(4):949–954

    Article  CAS  PubMed  Google Scholar 

  • Bobbin RP, Parker M, Wall L (2003) Thapsigargin suppresses cochlear potentials and DPOAEs and is toxic to hair cells. Hear Res 184(1–2):51–60

    Article  CAS  PubMed  Google Scholar 

  • Browne CA et al (2012) Differential lipopolysaccharide-induced immune alterations in the hippocampus of two mouse strains: effects of stress. Neuroscience 225:237–248

    Article  CAS  PubMed  Google Scholar 

  • Calcia MA et al (2016) Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berl) 233(9):1637–1650

    Article  CAS  Google Scholar 

  • Chen XH, Zheng LL (2017) Expression of pro-inflammatory cytokines in the auditory cortex of rats with salicylate-induced tinnitus. Mol Med Rep 16(4):5643–5648

    Article  CAS  PubMed  Google Scholar 

  • Cuzzocrea S et al (2000) Calpain inhibitor I reduces the development of acute and chronic inflammation. Am J Pathol 157(6):2065–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang DK et al (2016) Apocynin prevents mitochondrial burdens, microglial activation, and pro-apoptosis induced by a toxic dose of methamphetamine in the striatum of mice via inhibition of p47phox activation by ERK. J Neuroinflammation 13:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeLeo JA, Yezierski RP (2001) The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90(1–2):1–6

    Article  CAS  PubMed  Google Scholar 

  • Deng D, Wang W, Bao S (2020) Diffusible tumor necrosis factor-alpha (TNF-α) promotes noise-induced Parvalbumin-positive (PV+) neuron loss and auditory processing impairments. Front Neurosci 14:573047

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Filippo M et al (2008) Neuroinflammation and synaptic plasticity: theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders. Trends Pharmacol Sci 29(8):402–412

    Article  PubMed  CAS  Google Scholar 

  • Donat CK et al (2017) Microglial activation in traumatic brain injury. Front Aging Neurosci 9:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dugue R et al (2018) Controlled cortical impact-induced neurodegeneration decreases after administration of the novel calpain-inhibitor Gabadur. Brain Res Bull 142:368–373

    Article  CAS  PubMed  Google Scholar 

  • Durai M, Searchfield G (2016) Anxiety and depression, personality traits relevant to tinnitus: a scoping review. Int J Audiol 55(11):605–615

    Article  PubMed  Google Scholar 

  • Ellis A, Bennett DL (2013) Neuroinflammation and the generation of neuropathic pain. Br J Anaesth 111(1):26–37

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Santamaria V et al (2014) Glia-related mechanisms in the anteroventral cochlear nucleus of the adult rat in response to unilateral conductive hearing loss. Front Neurosci 8:319

    PubMed  PubMed Central  Google Scholar 

  • Fuentes-Santamaria V et al (2017) The role of glia in the peripheral and central auditory system following noise overexposure: contribution of TNF-alpha and IL-1beta to the pathogenesis of hearing loss. Front Neuroanat 11:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goll DE et al (1992) Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays 14(8):549–556

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Gonzalez S, Cazevieille C (2020) 3,6′-Dithiothalidomide reduces tinnitus phenotype in two different mouse preclinical models of tinnitus. J Community Prev Med 3(1)

    Google Scholar 

  • Grippo AJ, Scotti MA (2013) Stress and neuroinflammation. Mod Trends Pharmacopsychiatry 28:20–32

    Article  CAS  PubMed  Google Scholar 

  • Hamernik RP et al (1984) Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hear Res 13(3):229–247

    Article  CAS  PubMed  Google Scholar 

  • Hassen GW et al (2018) Effects of novel Calpain inhibitors in transgenic animal model of Parkinson’s disease/dementia with Lewy bodies. Sci Rep 8(1):18083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hovens IB et al (2015) Postoperative cognitive dysfunction and microglial activation in associated brain regions in old rats. Neurobiol Learn Mem 118:74–79

    Article  CAS  PubMed  Google Scholar 

  • Hu SS et al (2014) Effects of salicylate on the inflammatory genes expression and synaptic ultrastructure in the cochlear nucleus of rats. Inflammation 37(2):365–373

    Article  CAS  PubMed  Google Scholar 

  • Hwang JH et al (2011) Expression of tumor necrosis factor-alpha and interleukin-1beta genes in the cochlea and inferior colliculus in salicylate-induced tinnitus. J Neuroinflammation 8:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JH et al (2017) Effects of tumor necrosis factor blocker on salicylate-induced tinnitus in mice. Int Tinnitus J 21(1):24–29

    Article  PubMed  Google Scholar 

  • Isaacson JE et al (2003) Clinical associations between tinnitus and chronic pain. Otolaryngol Head Neck Surg 128(5):706–710

    Article  PubMed  Google Scholar 

  • Juengst SB et al (2014) Exploratory associations with tumor necrosis factor-alpha, disinhibition and suicidal endorsement after traumatic brain injury. Brain Behav Immun 41:134–143

    Article  CAS  PubMed  Google Scholar 

  • Jury MA, Flynn MC (2001) Auditory and vestibular sequelae to traumatic brain injury: a pilot study. N Z Med J 114(1134):286–288

    CAS  PubMed  Google Scholar 

  • Kiguchi N, Kobayashi Y, Kishioka S (2012) Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol 12(1):55–61

    Article  CAS  PubMed  Google Scholar 

  • Kim HA et al (2014) Brain immune cell composition and functional outcome after cerebral ischemia: comparison of two mouse strains. Front Cell Neurosci 8:365

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohno M et al (2019) Neuroinflammation in addiction: a review of neuroimaging studies and potential immunotherapies. Pharmacol Biochem Behav 179:34–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langguth B et al (2011) Tinnitus and depression. World J Biol Psychiatry 12(7):489–500

    Article  PubMed  Google Scholar 

  • Lerman I et al (2016) Posttraumatic stress disorder influences the nociceptive and intrathecal cytokine response to a painful stimulus in combat veterans. Psychoneuroendocrinology 73:99–108

    Article  CAS  PubMed  Google Scholar 

  • Levine J et al (1999) Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology 40(4):171–176

    Article  CAS  PubMed  Google Scholar 

  • Lew HL et al (2007) Auditory dysfunction in traumatic brain injury. J Rehabil Res Dev 44(7):921–928

    Article  PubMed  Google Scholar 

  • Llinas R et al (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28(6):325–333

    Article  CAS  PubMed  Google Scholar 

  • Mazurek B, Szczepek AJ, Hebert S (2015) Stress and tinnitus. HNO 63(4):258–265

    Article  CAS  PubMed  Google Scholar 

  • Miyakawa A et al (2019) Tinnitus correlates with downregulation of cortical glutamate decarboxylase 65 expression but not auditory cortical map reorganization. J Neurosci 39(50):9989–10001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najjar S, Pearlman DM (2015) Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res 161(1):102–112

    Article  PubMed  Google Scholar 

  • Norena AJ (2015) Revisiting the cochlear and central mechanisms of tinnitus and therapeutic approaches. Audiol Neurootol 20(Suppl 1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Pace E et al (2016) A conditioned behavioral paradigm for assessing onset and lasting tinnitus in rats. PLoS One 11(11):e0166346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez CJ et al (2013) Several classical mouse inbred strains, including DBA/2, NOD/Lt, FVB/N, and SJL/J, carry a putative loss-of-function allele of Gpr84. J Hered 104(4):565–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrin C et al (2003) Calpain and caspase-3 inhibitors reduce infarct size and post-ischemic apoptosis in rat heart without modifying contractile recovery. Cell Mol Biol (Noisy-le-Grand) 49 Online Pub:OL497–OL505

    CAS  Google Scholar 

  • Popeo DM, Tobias KG, Kellner CH (2011) Tinnitus as a symptom of psychotic depression successfully treated with electroconvulsive therapy. J ECT 27(1):e7–e8

    Article  PubMed  Google Scholar 

  • Roberts LE et al (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30(45):14972–14979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruetten H, Thiemermann C (1997) Effect of calpain inhibitor I, an inhibitor of the proteolysis of I kappa B, on the circulatory failure and multiple organ dysfunction caused by endotoxin in the rat. Br J Pharmacol 121(4):695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salter MW, Beggs S (2014) Sublime microglia: expanding roles for the guardians of the CNS. Cell 158(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Schain M, Kreisl WC (2017) Neuroinflammation in neurodegenerative disorders – a review. Curr Neurol Neurosci Rep 17(3):25

    Article  PubMed  CAS  Google Scholar 

  • Serhan CN, Levy BD (2018) Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest 128(7):2657–2669

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabab T et al (2017) Neuroinflammation pathways: a general review. Int J Neurosci 127(7):624–633

    Article  CAS  PubMed  Google Scholar 

  • Shore SE, Roberts LE, Langguth B (2016) Maladaptive plasticity in tinnitus – triggers, mechanisms and treatment. Nat Rev Neurol 12(3):150–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Shulman A, Goldstein B (2005) Subjective idiopathic tinnitus. A review of clinical experience 1979–2005. Otorinolaringologia 55(1):23

    Google Scholar 

  • Simon DW et al (2017) The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 13(3):171–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefaniak J, O'Brien J (2016) Imaging of neuroinflammation in dementia: a review. J Neurol Neurosurg Psychiatry 87(1):21–28

    PubMed  Google Scholar 

  • Steinmetz CC, Turrigiano GG (2010) Tumor necrosis factor-alpha signaling maintains the ability of cortical synapses to express synaptic scaling. J Neurosci 30(44):14685–14690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440(7087):1054–1059

    Article  CAS  PubMed  Google Scholar 

  • Stellwagen D et al (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25(12):3219–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczepek AJ et al (2014) Biological correlates of tinnitus-related distress: an exploratory study. Hear Res 318:23–30

    Article  PubMed  Google Scholar 

  • Tacchini-Cottier F et al (2000) An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. J Immunol 165(5):2628–2636

    Article  CAS  PubMed  Google Scholar 

  • Tan WJ, Thorne PR, Vlajkovic SM (2013) Noise-induced cochlear inflammation. World J Otorhinolaryngol 3(3):89–99

    Article  Google Scholar 

  • Tan WJ, Thorne PR, Vlajkovic SM (2016) Characterisation of cochlear inflammation in mice following acute and chronic noise exposure. Histochem Cell Biol 146(2):219–230

    Article  CAS  PubMed  Google Scholar 

  • Troubat R et al (2021) Neuroinflammation and depression: a review. Eur J Neurosci 53(1):151–171

    Article  PubMed  Google Scholar 

  • Trune DR, Canlon B (2012) Corticosteroid therapy for hearing and balance disorders. Anat Rec Adv Integr Anat Evol Biol 295(11):1928–1943

    Article  CAS  Google Scholar 

  • Walker AK et al (2014) Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev 66(1):80–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KK (2000) Calpain and caspase: can you tell the difference?, by kevin K.W. Wang Vol. 23, pp. 20–26. Trends Neurosci 23(2):59

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (1999) Leupeptin protects sensory hair cells from acoustic trauma. Neuroreport 10(4):811–816

    Article  CAS  PubMed  Google Scholar 

  • Wang W et al (2019) Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models. PLoS Biol 17(6):e3000307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson N et al (2017) Chronic inflammation – inflammaging – in the ageing cochlea: a novel target for future presbycusis therapy. Ageing Res Rev 40:142–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehead GS et al (2003) Allergen-induced airway disease is mouse strain dependent. Am J Physiol Lung Cell Mol Physiol 285(1):L32–L42

    Article  CAS  PubMed  Google Scholar 

  • Wolf SA, Boddeke HW, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643

    Article  CAS  PubMed  Google Scholar 

  • Wright EF, Gullickson DC (1996) Dental pulpalgia contributing to bilateral preauricular pain and tinnitus. J Orofac Pain 10(2):166–168

    CAS  PubMed  Google Scholar 

  • Xia C et al (2020) Neuroglial activation in the auditory cortex and medial geniculate body of salicylate-induced tinnitus rats. Am J Transl Res 12(10):6043–6059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziebell JM, Morganti-Kossmann MC (2010) Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7(1):22–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinsmaier AK et al (2020) Resistance to noise-induced GAP detection impairment in FVB mice is correlated with reduced neuroinflammatory response and Parvalbumin neuron loss. Sci Rep 10:20445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Defense (W81XWH-15-1-0028, W81XWH-15-1-0356, W81XWH-15-1-0357) and Martha Entenmann Tinnitus Research Center. The support of Richard M. Rosenfeld, M.D., and Matthew B. Hanson M.D. in tinnitus interest and efforts is appreciated.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shulman, A., Wang, W., Luo, H., Bao, S., Searchfield, G., Zhang, J. (2021). Neuroinflammation and Tinnitus. In: Searchfield, G.D., Zhang, J. (eds) The Behavioral Neuroscience of Tinnitus. Current Topics in Behavioral Neurosciences, vol 51. Springer, Cham. https://doi.org/10.1007/7854_2021_238

Download citation

Publish with us

Policies and ethics