Skip to main content

Neuroendocrinology and Adaptive Physiology of Maternal Care

  • Chapter
  • First Online:
Neuroendocrine Regulation of Behavior

Abstract

Parental care is critical for offspring survival in many species. In mammals, parental care is primarily provided through maternal care, due to obligate pregnancy and lactation constraints, although some species also show paternal and alloparental care. These behaviors are driven by specialized neural circuits that receive sensory, cortical, and hormonal input to generate a coordinated and timely change in behavior, and sustain that behavior through activation of reward pathways. Importantly, the hormonal changes associated with pregnancy and lactation also act to coordinate a broad range of physiological changes to support the mother and enable her to adapt to the demands of these states. This chapter will review the neural pathways that regulate maternal behavior, the hormonal changes that occur during pregnancy and lactation, and how these two facets merge together to promote both young-directed maternal responses (including nursing and grooming) and young-related responses (including maternal aggression and other physiological adaptions to support the development of and caring for young). We conclude by examining how experimental animal work has translated into knowledge of human parenting, particularly in regards to maternal mental health issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afonso VM, Shams WM, Jin D, Fleming AS (2013) Distal pup cues evoke dopamine responses in hormonally primed rats in the absence of pup experience or ongoing maternal behavior. J Neurosci 33(6):2305–2312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aghaeepour N, Lehallier B, Baca Q, Ganio EA, Wong RJ, Ghaemi MS, Culos A, El-Sayed YY, Blumenfeld YJ, Druzin ML, Winn VD, Gibbs RS, Tibshirani R, Shaw GM, Stevenson DK, Gaudilliere B, Angst MS (2018) A proteomic clock of human pregnancy. Am J Obstet Gynecol 218(3):347.e1–347e14

    Google Scholar 

  • Altemus M, Deuster PA, Galliven E, Carter C, Gold PW (1995) Suppression of hypothalmic-pituitary-adrenal axis responses to stress in lactating women. J Clin Endocrinol Metab 80(10):2954–2959

    CAS  PubMed  Google Scholar 

  • Atkinson HC, Waddell BJ (1995) The hypothalamic-pituitary-adrenal axis in rat pregnancy and lactation: circadian variation and interrelationship of plasma adrenocorticotropin and corticosterone. Endocrinology 136(2):512–520

    CAS  PubMed  Google Scholar 

  • Augustine RA, Grattan DR (2008) Induction of central leptin resistance in hyperphagic pseudopregnant rats by chronic prolactin infusion. Endocrinology 149(3):1049–1055

    CAS  PubMed  Google Scholar 

  • Augustine RA, Ladyman SR, Bouwer GT, Alyousif Y, Sapsford TJ, Scott V, Kokay IC, Grattan DR, Brown CH (2017) Prolactin regulation of oxytocin neurone activity in pregnancy and lactation. J Physiol Lond 595(11):3591–3605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baeyens L, Hindi S, Sorenson RL, German MS (2016) beta-Cell adaptation in pregnancy. Diabetes Obes Metab 18(Suppl 1):63–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bales KL, Saltzman W (2016) Fathering in rodents: neurobiological substrates and consequences for offspring. Horm Behav 77:249–259

    CAS  PubMed  Google Scholar 

  • Bales KL, Kim AJ, Lewis-Reese AD, Sue Carter C (2004) Both oxytocin and vasopressin may influence alloparental behavior in male prairie voles. Horm Behav 45(5):354–361

    CAS  PubMed  Google Scholar 

  • Barrett J, Wonch KE, Gonzalez A, Ali N, Steiner M, Hall GB, Fleming AS (2012) Maternal affect and quality of parenting experiences are related to amygdala response to infant faces. Soc Neurosci 7(3):252–268

    PubMed  Google Scholar 

  • Beach FA, Jaynes J (1956) Studies of maternal retrieving in rats III: sensory cues involved in the lactating female’s response to her young. Behavior 10:104–125

    Google Scholar 

  • Bi S, Kim YJ, Zheng F (2012) Dorsomedial hypothalamic NPY and energy balance control. Neuropeptides 46(6):309–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch OJ (2013) Maternal aggression in rodents: brain oxytocin and vasopressin mediate pup defence. Philos Trans R Soc Lond Ser B Biol Sci 368(1631):20130085

    Google Scholar 

  • Bosch OJ, Neumann ID (2010) Vasopressin released within the central amygdala promotes maternal aggression. Eur J Neurosci 31(5):883–891

    PubMed  Google Scholar 

  • Bosch OJ, Kromer SA, Brunton PJ, Neumann ID (2004) Release of oxytocin in the hypothalamic paraventricular nucleus, but not central amygdala or lateral septum in lactating residents and virgin intruders during maternal defence. Neuroscience 124(2):439–448

    CAS  PubMed  Google Scholar 

  • Bouilly J, Sonigo C, Auffret J, Gibori G, Binart N (2012) Prolactin signaling mechanisms in ovary. Mol Cell Endocrinol 356(1–2):80–87

    CAS  PubMed  Google Scholar 

  • Bridges RS (1984) A quantitative analysis of the roles of dosage, sequence, and duration of estradiol and progesterone exposure in the regulation of maternal behavior in the rat. Endocrinology 114(3):930–940

    CAS  PubMed  Google Scholar 

  • Bridges RS (2015) Neuroendocrine regulation of maternal behavior. Front Neuroendocrinol 36:178–196

    CAS  PubMed  Google Scholar 

  • Bridges RS, Hays LE (2005) Steroid-induced alterations in mRNA expression of the long form of the prolactin receptor in the medial preoptic area of female rats: effects of exposure to a pregnancy-like regimen of progesterone and estradiol. Brain Res Mol Brain Res 140(1–2):10–16

    CAS  PubMed  Google Scholar 

  • Bridges RS, DiBiase R, Loundes DD, Doherty PC (1985) Prolactin stimulation of maternal behavior in female rats. Science 227(4688):782–784

    CAS  PubMed  Google Scholar 

  • Bridges RS, Numan M, Ronsheim PM, Mann PE, Lupini CE (1990) Central prolactin infusions stimulate maternal behavior in steroid-treated, nulliparous female rats. Proc Soc Natl Acad Sci U S A 87(20):8003–8007

    CAS  Google Scholar 

  • Bridges RS, Robertson MC, Shiu RP, Sturgis JD, Henriquez BM, Mann PE (1997) Central lactogenic regulation of maternal behavior in rats: steroid dependence, hormone specificity, and behavioral potencies of rat prolactin and rat placental lactogen I. Endocrinology 138(2):756–763

    CAS  PubMed  Google Scholar 

  • Bridges RS, Mann PE, Coppeta JS (1999) Hypothalamic involvement in the regulation of maternal behaviour in the rat: inhibitory roles for the ventromedial hypothalamus and the dorsal/anterior hypothalamic areas. J Neuroendocrinol 11(4):259–266

    CAS  PubMed  Google Scholar 

  • Briffaud V, Williams P, Courty J, Broberger C (2015) Excitation of tuberoinfundibular dopamine neurons by oxytocin: crosstalk in the control of lactation. J Neurosci 35(10):4229–4237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RE (1993) Hormonal and experiential factors influencing parental behaviour in male rodents: an integrative approach. Behav Process 30(1):1–27

    CAS  Google Scholar 

  • Brown RS, Kokay IC, Herbison AE, Grattan DR (2010) Distribution of prolactin-responsive neurons in the mouse forebrain. J Comp Neurol 518(1):92–102

    CAS  PubMed  Google Scholar 

  • Brown RS, Herbison AE, Grattan DR (2011) Differential changes in responses of hypothalamic and brainstem neuronal populations to prolactin during lactation in the mouse. Biol Reprod 84(4):826–836

    CAS  PubMed  Google Scholar 

  • Brown RSE, Aoki M, Ladyman SR, Phillipps HR, Wyatt A, Boehm U, Grattan DR (2017) Prolactin action in the medial preoptic area is necessary for postpartum maternal nursing behavior. Proc Natl Acad Sci U S A 114(40):10779–10784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brummelte S, Galea LA (2016) Postpartum depression: etiology, treatment and consequences for maternal care. Horm Behav 77:153–166

    PubMed  Google Scholar 

  • Brunton PJ, Russell JA (2008) The expectant brain: adapting for motherhood. Nat Rev Neurosci 9(1):11–25

    CAS  PubMed  Google Scholar 

  • Brunton PJ, Meddle SL, Ma S, Ochedalski T, Douglas AJ, Russell JA (2005) Endogenous opioids and attenuated hypothalamic-pituitary-adrenal axis responses to immune challenge in pregnant rats. J Neurosci 25(21):5117–5126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunton PJ, Russell JA, Hirst JJ (2014) Allopregnanolone in the brain: protecting pregnancy and birth outcomes. Prog Neurobiol 113:106–136

    CAS  PubMed  Google Scholar 

  • Campino C, Torres C, Ampuero S, Diaz S, Gonzalez GB, Seron-Ferre M (1999) Bioactivity of prolactin isoforms: lactation and recovery of menses in nursing women. Hum Reprod 14(4):898–905

    CAS  PubMed  Google Scholar 

  • Carlson AA, Russell AF, Young AJ, Jordan NR, McNeilly AS, Parlow AF, Clutton-Brock T (2006) Elevated prolactin levels immediately precede decisions to babysit by male meerkat helpers. Horm Behav 50(1):94–100

    CAS  PubMed  Google Scholar 

  • Charles NE, Alexander GM, Saenz J (2013) Motivational value and salience of images of infants. Evol Hum Behav 34(5):373–381

    Google Scholar 

  • Chase HW, Moses-Kolko EL, Zevallos C, Wisner KL, Phillips ML (2014) Disrupted posterior cingulate-amygdala connectivity in postpartum depressed women as measured with resting BOLD fMRI. Soc Cogn Affect Neurosci 9(8):1069–1075

    PubMed  Google Scholar 

  • Chen P, Li C, Haskell-Luevano C, Cone RD, Smith MS (1999) Altered expression of agouti-related protein and its colocalization with neuropeptide Y in the arcuate nucleus of the hypothalamus during lactation. Endocrinology 140(6):2645–2650

    CAS  PubMed  Google Scholar 

  • Cohen L, Rothschild G, Mizrahi A (2011) Multisensory integration of natural odors and sounds in the auditory cortex. Neuron 72(2):357–369

    CAS  PubMed  Google Scholar 

  • Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, Purdy RH, Grisenti P, Biggio G (1998) Role of brain allopregnanolone in the plasticity of gamma-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc Natl Acad Sci U S A 95(22):13284–13289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Consiglio AR, Lucion AB (1996) Lesion of hypothalamic paraventricular nucleus and maternal aggressive behavior in female rats. Physiol Behav 59(4–5):591–596

    CAS  PubMed  Google Scholar 

  • da Costa AP, Wood S, Ingram CD, Lightman SL (1996) Region-specific reduction in stress-induced c-fos mRNA expression during pregnancy and lactation. Brain Res 742(1–2):177–184

    PubMed  Google Scholar 

  • da Costa AP, Ma X, Ingram CD, Lightman SL, Aguilera G (2001) Hypothalamic and amygdaloid corticotropin-releasing hormone (CRH) and CRH receptor-1 mRNA expression in the stress-hyporesponsive late pregnant and early lactating rat. Brain Res Mol Brain Res 91(1–2):119–130

    PubMed  Google Scholar 

  • Delahunty KM, McKay DW, Noseworthy DE, Storey AE (2007) Prolactin responses to infant cues in men and women: effects of parental experience and recent infant contact. Horm Behav 51(2):213–220

    CAS  PubMed  Google Scholar 

  • Dilley WG, Adler NT (1968) Postcopulatory mammary gland secretion in rats. Proc Soc Exp Biol Med 129(3):964–966

    CAS  PubMed  Google Scholar 

  • Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci 13(9):3839–3847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donner N, Bredewold R, Maloumby R, Neumann ID (2007) Chronic intracerebral prolactin attenuates neuronal stress circuitries in virgin rats. Eur J Neurosci 25(6):1804–1814

    PubMed  Google Scholar 

  • Douglas AJ, Brunton PJ, Bosch OJ, Russell JA, Neumann ID (2003) Neuroendocrine responses to stress in mice: hyporesponsiveness in pregnancy and parturition. Endocrinology 144(12):5268–5276

    CAS  PubMed  Google Scholar 

  • Douglas AJ, Johnstone LE, Leng G (2007) Neuroendocrine mechanisms of change in food intake during pregnancy: a potential role for brain oxytocin. Physiol Behav 91(4):352–365

    CAS  PubMed  Google Scholar 

  • Drago F, D’Agata V, Iacona T, Spadaro F, Grassi M, Valerio C, Raffaele R, Astuto C, Lauria N, Vitetta M (1989) Prolactin as a protective factor in stress-induced biological changes. J Clin Lab Anal 3(6):340–344

    CAS  PubMed  Google Scholar 

  • Egli M, Bertram R, Toporikova N, Sellix MT, Blanco W, Freeman ME (2006) Prolactin secretory rhythm of mated rats induced by a single injection of oxytocin. Am J Physiol Endocrinol Metab 290(3):E566–E572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehret G (2005) Infant rodent ultrasounds – a gate to the understanding of sound communication. Behav Genet 35(1):19–29

    PubMed  Google Scholar 

  • Erskine MS (1995) Prolactin release after mating and genitosensory stimulation in females. Endocr Rev 16(4):508–528

    CAS  PubMed  Google Scholar 

  • Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin D (2016) Hypothalamic control of male aggression-seeking behavior. Nat Neurosci 19(4):596–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman R (2016) The neurobiology of mammalian parenting and the biosocial context of human caregiving. Horm Behav 77:3–17

    PubMed  Google Scholar 

  • Field T, Diego M, Hernandez-Reif M (2006) Prenatal depression effects on the fetus and newborn: a review. Infant Behav Dev 29(3):445–455

    PubMed  Google Scholar 

  • Fisher AE (1956) Maternal and sexual behavior induced by intracranial chemical stimulation. Science 124(3214):228–229

    CAS  PubMed  Google Scholar 

  • Fleming AS, Luebke C (1981) Timidity prevents the virgin female rat from being a good mother: emotionality differences between nulliparous and parturient females. Physiol Behav 27(5):863–868

    CAS  PubMed  Google Scholar 

  • Fleming A, Vaccarino F, Tambosso L, Chee P (1979) Vomeronasal and olfactory system modulation of maternal behavior in the rat. Science 203(4378):372–374

    CAS  PubMed  Google Scholar 

  • Fox SR, Smith MS (1984) The suppression of pulsatile luteinizing hormone secretion during lactation in the rat. Endocrinology 115(6):2045–2051

    CAS  PubMed  Google Scholar 

  • Gandelman R, Zarrow MX, Denenberg VH, Myers M (1971) Olfactory bulb removal eliminates maternal behavior in the mouse. Science 171(3967):210–211

    CAS  PubMed  Google Scholar 

  • Garland HO, Atherton JC, Baylis C, Morgan MR, Milne CM (1987) Hormone profiles for progesterone, oestradiol, prolactin, plasma renin activity, aldosterone and corticosterone during pregnancy and pseudopregnancy in two strains of rat: correlation with renal studies. J Endocrinol 113(3):435–444

    CAS  PubMed  Google Scholar 

  • Garner JP, Gaskill BN, Pritchett-Corning KR (2016) Two of a kind or a full house? Reproductive suppression and alloparenting in laboratory mice. PLoS One 11(5):e0154966

    PubMed  PubMed Central  Google Scholar 

  • Gillies GE, Linton EA, Lowry PJ (1982) Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299(5881):355–357

    CAS  PubMed  Google Scholar 

  • Giovenardi M, Padoin MJ, Cadore LP, Lucion AB (1998) Hypothalamic paraventricular nucleus modulates maternal aggression in rats: effects of ibotenic acid lesion and oxytocin antisense. Physiol Behav 63(3):351–359

    CAS  PubMed  Google Scholar 

  • Gonzalez-Mariscal G, Melo AI (2013) Parental behavior. In: Pfaff DW (ed) Neuroscience in the 21st century. Springer, New York, pp 2069–2100

    Google Scholar 

  • Grattan DR (2015) 60 years of neuroendocrinology: the hypothalamo-prolactin axis. J Endocrinol 226(2):T101–T122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grattan DR, Averill RL (1990) Effect of ovarian steroids on a nocturnal surge of prolactin secretion that precedes parturition in the rat. Endocrinology 126(2):1199–1205

    CAS  PubMed  Google Scholar 

  • Gross GA, Imamura T, Luedke C, Vogt SK, Olson LM, Nelson DM, Sadovsky Y, Muglia LJ (1998) Opposing actions of prostaglandins and oxytocin determine the onset of murine labor. Proc Natl Acad Sci U S A 95(20):11875–11879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gunnet JW, Freeman ME (1983) The mating-induced release of prolactin: a unique neuroendocrine response. Endocr Rev 4(1):44–61

    CAS  PubMed  Google Scholar 

  • Gustafson P, Kokay I, Sapsford T, Bunn S, Grattan D (2017) Prolactin regulation of the HPA axis is not mediated by a direct action upon CRH neurons: evidence from the rat and mouse. Brain Struct Funct 222(7):3191–3204

    CAS  PubMed  Google Scholar 

  • Hansen S (1989) Medial hypothalamic involvement in maternal aggression of rats. Behav Neurosci 103(5):1035–1046

    CAS  PubMed  Google Scholar 

  • Hansen S (1994) Maternal behavior of female rats with 6-OHDA lesions in the ventral striatum: characterization of the pup retrieval deficit. Physiol Behav 55(4):615–620

    CAS  PubMed  Google Scholar 

  • Hansen S, Harthon C, Wallin E, Lofberg L, Svensson K (1991) The effects of 6-OHDA-induced dopamine depletions in the ventral or dorsal striatum on maternal and sexual behavior in the female rat. Pharmacol Biochem Behav 39(1):71–77

    CAS  PubMed  Google Scholar 

  • Hansen S, Bergvall AH, Nyiredi S (1993) Interaction with pups enhances dopamine release in the ventral striatum of maternal rats: a microdialysis study. Pharmacol Biochem Behav 45(3):673–676

    CAS  PubMed  Google Scholar 

  • Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng JE, Sabol A, Piper WT, Lee H, Rudy B, Lin D (2017) Esr1(+) cells in the ventromedial hypothalamus control female aggression. Nat Neurosci 20(11):1580–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser H, Gandelman R (1985) Lever pressing for pups: evidence for hormonal influence upon maternal behavior of mice. Horm Behav 19(4):454–468

    CAS  PubMed  Google Scholar 

  • Herrenkohl LR, Rosenberg PA (1974) Effects of hypothalamic deafferentation late in gestation on lactation and nursing behavior in the rat. Horm Behav 5(1):33–41

    CAS  PubMed  Google Scholar 

  • Higuchi T, Negoro H, Arita J (1989) Reduced responses of prolactin and catecholamine to stress in the lactating rat. J Endocrinol 122(2):495–498

    CAS  PubMed  Google Scholar 

  • Hillerer KM, Reber SO, Neumann ID, Slattery DA (2011) Exposure to chronic pregnancy stress reverses peripartum-associated adaptations: implications for postpartum anxiety and mood disorders. Endocrinology 152(10):3930–3940

    CAS  PubMed  Google Scholar 

  • Horrell ND, Perea-Rodriguez JP, Harris BN, Saltzman W (2017) Effects of repeated pup exposure on behavioral, neural, and adrenocortical responses to pups in male California mice (Peromyscus californicus). Horm Behav 90:56–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue H (2016) Central insulin-mediated regulation of hepatic glucose production [Review]. Endocr J 63(1):1–7

    CAS  PubMed  Google Scholar 

  • Insel TR, Harbaugh CR (1989) Lesions of the hypothalamic paraventricular nucleus disrupt the initiation of maternal behavior. Physiol Behav 45(5):1033–1041

    CAS  PubMed  Google Scholar 

  • Jacobson CD, Terkel J, Gorski RA, Sawyer CH (1980) Effects of small medial preoptic area lesions on maternal behavior: retrieving and nest building in the rat. Brain Res 194(2):471–478

    CAS  PubMed  Google Scholar 

  • Jean-Baptiste N, Terleph TA, Bamshad M (2008) Changes in paternal responsiveness of prairie voles (Microtus ochrogaster) in response to olfactory cues and continuous physical contact with a female. Ethology 114:1239–1246

    Google Scholar 

  • Johnstone HA, Wigger A, Douglas AJ, Neumann ID, Landgraf R, Seckl JR, Russell JA (2000) Attenuation of hypothalamic-pituitary-adrenal axis stress responses in late pregnancy: changes in feedforward and feedback mechanisms. J Neuroendocrinol 12(8):811–822

    CAS  PubMed  Google Scholar 

  • Keebaugh AC, Barrett CE, Laprairie JL, Jenkins JJ, Young LJ (2015) RNAi knockdown of oxytocin receptor in the nucleus accumbens inhibits social attachment and parental care in monogamous female prairie voles. Soc Neurosci 10(5):561–570

    PubMed  PubMed Central  Google Scholar 

  • Kenkel WM, Perkeybile AM, Carter CS (2017) The neurobiological causes and effects of alloparenting. Dev Neurobiol 77(2):214–232

    PubMed  Google Scholar 

  • Kennett JE, McKee DT (2012) Oxytocin: an emerging regulator of prolactin secretion in the female rat. J Neuroendocrinol 24(3):403–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinsley CH, Bridges RS (1988) Prolactin modulation of the maternal-like behavior displayed by juvenile rats. Horm Behav 22(1):49–65

    CAS  PubMed  Google Scholar 

  • Kinsley CH, Lambert KG (2008) Reproduction-induced neuroplasticity: natural behavioural and neuronal alterations associated with the production and care of offspring. J Neuroendocrinol 20(4):515–525

    CAS  PubMed  Google Scholar 

  • Kirkpatrick B, Carter CS, Newman SW, Insel TR (1994) Axon-sparing lesions of the medial nucleus of the amygdala decrease affiliative behaviors in the prairie vole (Microtus ochrogaster): behavioral and anatomical specificity. Behav Neurosci 108(3):501–513

    CAS  PubMed  Google Scholar 

  • Knigge KM, Hays M (1963) Evidence of inhibitive role of hippocampus in neural regulation of ACTH release. Proc Soc Exp Biol Med 114:67–69

    CAS  PubMed  Google Scholar 

  • Kokay IC, Bull PM, Davis RL, Ludwig M, Grattan DR (2006) Expression of the long form of the prolactin receptor in magnocellular oxytocin neurons is associated with specific prolactin regulation of oxytocin neurons. Am J Physiol Regul Integr Comp Physiol 290(5):R1216–R1225

    CAS  PubMed  Google Scholar 

  • Kroll-Desrosiers AR, Nephew BC, Babb JA, Guilarte-Walker Y, Moore Simas TA, Deligiannidis KM (2017) Association of peripartum synthetic oxytocin administration and depressive and anxiety disorders within the first postpartum year. Depress Anxiety 34(2):137–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger TH, Haake P, Hartmann U, Schedlowski M, Exton MS (2002) Orgasm-induced prolactin secretion: feedback control of sexual drive? Neurosci Biobehav Rev 26(1):31–44

    CAS  PubMed  Google Scholar 

  • Kuroda KO, Tachikawa K, Yoshida S, Tsuneoka Y, Numan M (2011) Neuromolecular basis of parental behavior in laboratory mice and rats: with special emphasis on technical issues of using mouse genetics. Prog Neuro-Psychopharmacol Biol Psychiatry 35(5):1205–1231

    CAS  Google Scholar 

  • Ladyman SR, Grattan DR (2004) Region-specific reduction in leptin-induced phosphorylation of signal transducer and activator of transcription-3 (STAT3) in the rat hypothalamus is associated with leptin resistance during pregnancy. Endocrinology 145(8):3704–3711

    CAS  PubMed  Google Scholar 

  • Ladyman SR, Grattan DR (2005) Suppression of leptin receptor messenger ribonucleic acid and leptin responsiveness in the ventromedial nucleus of the hypothalamus during pregnancy in the rat. Endocrinology 146(9):3868–3874

    CAS  PubMed  Google Scholar 

  • Ladyman SR, Grattan DR (2017) Region-specific suppression of hypothalamic responses to insulin to adapt to elevated maternal insulin secretion during pregnancy. Endocrinology 158:4257–4269

    CAS  PubMed  Google Scholar 

  • Ladyman SR, Grattan DR (2016) Central effects of leptin on glucose homeostasis are modified during pregnancy in the rat. J Neuroendocrinol 28(10). https://doi.org/10.1111/jne.12431

  • Ladyman SR, Tups A, Augustine RA, Swahn-Azavedo A, Kokay IC, Grattan DR (2009) Loss of hypothalamic response to leptin during pregnancy associated with development of melanocortin resistance. J Neuroendocrinol 21(5):449–456

    CAS  PubMed  Google Scholar 

  • Ladyman SR, Augustine RA, Grattan DR (2010) Hormone interactions regulating energy balance during pregnancy. J Neuroendocrinol 22(7):805–817

    CAS  PubMed  Google Scholar 

  • Ladyman SR, Sapsford TJ, Grattan DR (2011) Loss of acute satiety response to cholecystokinin in pregnant rats. J Neuroendocrinol 23(11):1091–1098

    CAS  PubMed  Google Scholar 

  • Ladyman SR, Fieldwick DM, Grattan DR (2012) Suppression of leptin-induced hypothalamic JAK/STAT signalling and feeding response during pregnancy in the mouse. Reproduction 144(1):83–90

    CAS  PubMed  Google Scholar 

  • Ladyman SR, Augustine RA, Scherf E, Phillipps HR, Brown CH, Grattan DR (2016) Attenuated hypothalamic responses to alpha-melanocyte stimulating hormone during pregnancy in the rat. J Physiol Lond 594(4):1087–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert KG (2012) The parental brain: transformations and adaptations. Physiol Behav 107(5):792–800

    CAS  PubMed  Google Scholar 

  • Lambert KG, Kinsley CH (1993) Sex differences and gonadal hormones influence susceptibility to the activity-stress paradigm. Physiol Behav 53(6):1085–1090

    CAS  PubMed  Google Scholar 

  • Lambert KG, Berry AE, Griffins G, Amory-Meyers E, Madonia-Lomas L, Love G, Kinsley CH (2005) Pup exposure differentially enhances foraging ability in primiparous and nulliparous rats. Physiol Behav 84(5):799–806

    CAS  PubMed  Google Scholar 

  • Larsen CM, Grattan DR (2010) Prolactin-induced mitogenesis in the subventricular zone of the maternal brain during early pregnancy is essential for normal postpartum behavioral responses in the mother. Endocrinology 151(8):3805–3814

    CAS  PubMed  Google Scholar 

  • Lee AW, Brown RE (2007) Comparison of medial preoptic, amygdala, and nucleus accumbens lesions on parental behavior in California mice (Peromyscus californicus). Physiol Behav 92(4):617–628

    CAS  PubMed  Google Scholar 

  • Lee Y, Voogt J (1999) Feedback effects of placental lactogens on prolactin levels and Fos-related antigen immunoreactivity of tuberoinfundibular dopaminergic neurons in the arcuate nucleus during pregnancy in the rat. Endocrinology 140(5):2159–2166

    CAS  PubMed  Google Scholar 

  • Lee A, Clancy S, Fleming AS (2000) Mother rats bar-press for pups: effects of lesions of the mpoa and limbic sites on maternal behavior and operant responding for pup-reinforcement. Behav Brain Res 108(2):215–231

    CAS  PubMed  Google Scholar 

  • Lee H, Kim DW, Remedios R, Anthony TE, Chang A, Madisen L, Zeng H, Anderson DJ (2014) Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509(7502):627–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lei K, Liu Y, Smith AS, Lonstein JS, Wang Z (2017) Effects of pair bonding on parental behavior and dopamine activity in the nucleus accumbens in male prairie voles. Eur J Neurosci 46(7):2276–2284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leng G, Russell JA (2016) The peptide oxytocin antagonist F-792, when given systemically, does not act centrally in lactating rats. J Neuroendocrinol 28(4). https://doi.org/10.1111/jne.12331

  • Levy F (2016) Neuroendocrine control of maternal behavior in non-human and human mammals. Ann Endocrinol (Paris) 77(2):114–125

    Google Scholar 

  • Levy F, Keller M, Poindron P (2004) Olfactory regulation of maternal behavior in mammals. Horm Behav 46(3):284–302

    CAS  PubMed  Google Scholar 

  • Li C, Chen P, Smith MS (1998) The acute suckling stimulus induces expression of neuropeptide Y (NPY) in cells in the dorsomedial hypothalamus and increases NPY expression in the arcuate nucleus. Endocrinology 139(4):1645–1652

    CAS  PubMed  Google Scholar 

  • Lieberwirth C, Wang Y, Jia X, Liu Y, Wang Z (2013) Fatherhood reduces the survival of adult-generated cells and affects various types of behavior in the prairie vole (Microtus ochrogaster). Eur J Neurosci 38(9):3345–3355

    PubMed  PubMed Central  Google Scholar 

  • Lightman SL, Young WS 3rd. (1989) Lactation inhibits stress-mediated secretion of corticosterone and oxytocin and hypothalamic accumulation of corticotropin-releasing factor and enkephalin messenger ribonucleic acids. Endocrinology 124(5):2358–2364

    CAS  PubMed  Google Scholar 

  • Lightman SL, Windle RJ, Wood SA, Kershaw YM, Shanks N, Ingram CD (2001) Peripartum plasticity within the hypothalamo-pituitary-adrenal axis. Prog Brain Res 133:111–129

    CAS  PubMed  Google Scholar 

  • Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470(7333):221–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Brown RS, Herbison AE, Grattan DR (2014) Lactational anovulation in mice results from a selective loss of kisspeptin input to GnRH neurons. Endocrinology 155(1):193–203

    CAS  PubMed  Google Scholar 

  • Lonstein JS, De Vries GJ (1999) Sex differences in the parental behaviour of adult virgin prairie voles: independence from gonadal hormones and vasopressin. J Neuroendocrinol 11(6):441–449

    CAS  PubMed  Google Scholar 

  • Lonstein JS, de Vries GJ (2000) Sex differences in the parental behavior of rodents. Neurosci Biobehav Rev 24(6):669–686

    CAS  PubMed  Google Scholar 

  • Lonstein JS, Rood BD, De Vries GJ (2002) Parental responsiveness is feminized after neonatal castration in virgin male prairie voles, but is not masculinized by perinatal testosterone in virgin females. Horm Behav 41(1):80–87

    CAS  PubMed  Google Scholar 

  • Lonstein JS, Levy F, Fleming AS (2015) Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals. Horm Behav 73:156–185

    PubMed  PubMed Central  Google Scholar 

  • Lorberbaum JP, Newman JD, Horwitz AR, Dubno JR, Lydiard RB, Hamner MB, Bohning DE, George MS (2002) A potential role for thalamocingulate circuitry in human maternal behavior. Biol Psychiatry 51(6):431–445

    PubMed  Google Scholar 

  • Lubin DA, Elliott JC, Black MC, Johns JM (2003) An oxytocin antagonist infused into the central nucleus of the amygdala increases maternal aggressive behavior. Behav Neurosci 117(2):195–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas BK, Ormandy CJ, Binart N, Bridges RS, Kelly PA (1998) Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology 139(10):4102–4107

    CAS  PubMed  Google Scholar 

  • Ludwig M, Stern J (2015) Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin. Philos Trans R Soc Lond Ser B Biol Sci 370(1672). https://doi.org/10.1098/rstb.2014.0182

    Google Scholar 

  • Ma S, Shipston MJ, Morilak D, Russell JA (2005) Reduced hypothalamic vasopressin secretion underlies attenuated adrenocorticotropin stress responses in pregnant rats. Endocrinology 146(3):1626–1637

    CAS  PubMed  Google Scholar 

  • Mah BL, Van Ijzendoorn MH, Smith R, Bakermans-Kranenburg MJ (2013) Oxytocin in postnatally depressed mothers: its influence on mood and expressed emotion. Prog Neuro-Psychopharmacol Biol Psychiatry 40:267–272

    CAS  Google Scholar 

  • Mann PE, Babb JA (2004) Disinhibition of maternal behavior following neurotoxic lesions of the hypothalamus in primigravid rats. Brain Res 1025(1–2):51–58

    CAS  PubMed  Google Scholar 

  • Martin CE, Cake MH, Hartmann PE, Cook IF (1977) Relationship between foetal corticosteroids, maternal progesterone and parturition in the rat. Acta Endocrinol 84(1):167–176

    CAS  PubMed  Google Scholar 

  • Matsushita N, Muroi Y, Kinoshita K, Ishii T (2015) Comparison of c-Fos expression in brain regions involved in maternal behavior of virgin and lactating female mice. Neurosci Lett 590:166–171

    CAS  PubMed  Google Scholar 

  • Mattson BJ, Morrell JI (2005) Preference for cocaine- versus pup-associated cues differentially activates neurons expressing either Fos or cocaine- and amphetamine-regulated transcript in lactating, maternal rodents. Neuroscience 135(2):315–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer AD, Rosenblatt JS (1980) Hormonal interaction with stimulus and situational factors in the initiation of maternal behavior in nonpregnant rats. J Comp Physiol Psychol 94(6):1040–1059

    CAS  PubMed  Google Scholar 

  • McCarthy MM, vom Saal FS (1985) The influence of reproductive state on infanticide by wild female house mice (Mus musculus). Physiol Behav 35(6):843–849

    CAS  PubMed  Google Scholar 

  • McGowan MK, Andrews KM, Grossman SP (1992) Chronic intrahypothalamic infusions of insulin or insulin antibodies alter body weight and food intake in the rat. Physiol Behav 51(4):753–766

    CAS  PubMed  Google Scholar 

  • McHenry JA, Otis JM, Rossi MA, Robinson JE, Kosyk O, Miller NW, McElligott ZA, Budygin EA, Rubinow DR, Stuber GD (2017) Hormonal gain control of a medial preoptic area social reward circuit. Nat Neurosci 20(3):449–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinley MJ, Yao ST, Uschakov A, McAllen RM, Rundgren M, Martelli D (2015) The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol (Oxf) 214(1):8–32

    CAS  Google Scholar 

  • McNeilly AS (2001) Lactational control of reproduction. Reprod Fertil Dev 13(7–8):583–590

    CAS  PubMed  Google Scholar 

  • Meaney MJ, Szyf M, Seckl JR (2007) Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med 13(7):269–277

    CAS  PubMed  Google Scholar 

  • Naef L, Woodside B (2007) Prolactin/leptin interactions in the control of food intake in rats. Endocrinology 148:5977–5983

    CAS  PubMed  Google Scholar 

  • Nagaishi VS, Cardinali LI, Zampieri TT, Furigo IC, Metzger M, Donato J Jr (2014) Possible crosstalk between leptin and prolactin during pregnancy. Neuroscience 259:71–83

    CAS  PubMed  Google Scholar 

  • Nephew BC, Bridges RS (2008) Central actions of arginine vasopressin and a V1a receptor antagonist on maternal aggression, maternal behavior, and grooming in lactating rats. Pharmacol Biochem Behav 91(1):77–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann I, Landgraf R, Bauce L, Pittman QJ (1995) Osmotic responsiveness and cross talk involving oxytocin, but not vasopressin or amino acids, between the supraoptic nuclei in virgin and lactating rats. J Neurosci 15(5 Pt 1):3408–3417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann ID, Johnstone HA, Hatzinger M, Liebsch G, Shipston M, Russell JA, Landgraf R, Douglas AJ (1998) Attenuated neuroendocrine responses to emotional and physical stressors in pregnant rats involve adenohypophysial changes. J Physiol Lond 508(Pt 1):289–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann ID, Torner L, Wigger A (2000a) Brain oxytocin: differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience 95(2):567–575

    CAS  PubMed  Google Scholar 

  • Neumann ID, Wigger A, Torner L, Holsboer F, Landgraf R (2000b) Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: partial action within the paraventricular nucleus. J Neuroendocrinol 12(3):235–243

    CAS  PubMed  Google Scholar 

  • Nishimori K, Young LJ, Guo Q, Wang Z, Insel TR, Matzuk MM (1996) Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci U S A 93(21):11699–11704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishitani S, Kuwamoto S, Takahira A, Miyamura T, Shinohara K (2014) Maternal prefrontal cortex activation by newborn infant odors. Chem Senses 39(3):195–202

    CAS  PubMed  Google Scholar 

  • Numan M (1974) Medial preoptic area and maternal behavior in the female rat. J Comp Physiol Psychol 87(4):746–759

    CAS  PubMed  Google Scholar 

  • Numan M (2006) Hypothalamic neural circuits regulating maternal responsiveness toward infants. Behav Cogn Neurosci Rev 5(4):163–190

    PubMed  Google Scholar 

  • Numan M (2007) Motivational systems and the neural circuitry of maternal behavior in the rat. Dev Psychobiol 49(1):12–21

    CAS  PubMed  Google Scholar 

  • Numan M, Sheehan TP (1997) Neuroanatomical circuitry for mammalian maternal behavior. Ann N Y Acad Sci 807:101–125

    CAS  PubMed  Google Scholar 

  • Numan M, Smith HG (1984) Maternal behavior in rats: evidence for the involvement of preoptic projections to the ventral tegmental area. Behav Neurosci 98(4):712–727

    CAS  PubMed  Google Scholar 

  • Numan M, Stolzenberg DS (2009) Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Front Neuroendocrinol 30(1):46–64

    CAS  PubMed  Google Scholar 

  • Numan M, Rosenblatt JS, Komisaruk BR (1977) Medial preoptic area and onset of maternal behavior in the rat. J Comp Physiol Psychol 91(1):146–164

    CAS  PubMed  Google Scholar 

  • Numan M, Morrell JI, Pfaff DW (1985) Anatomical identification of neurons in selected brain regions associated with maternal behavior deficits induced by knife cuts of the lateral hypothalamus in rats. J Comp Neurol 237(4):552–564

    CAS  PubMed  Google Scholar 

  • Numan M, Corodimas KP, Numan MJ, Factor EM, Piers WD (1988) Axon-sparing lesions of the preoptic region and substantia innominata disrupt maternal behavior in rats. Behav Neurosci 102(3):381–396

    CAS  PubMed  Google Scholar 

  • Numan M, McSparren J, Numan MJ (1990) Dorsolateral connections of the medial preoptic area and maternal behavior in rats. Behav Neurosci 104(6):964–979

    CAS  PubMed  Google Scholar 

  • Numan M, Numan MJ, Marzella SR, Palumbo A (1998) Expression of c-fos, fos B, and egr-1 in the medial preoptic area and bed nucleus of the stria terminalis during maternal behavior in rats. Brain Res 792(2):348–352

    CAS  PubMed  Google Scholar 

  • Numan M, Numan MJ, Pliakou N, Stolzenberg DS, Mullins OJ, Murphy JM, Smith CD (2005) The effects of D1 or D2 dopamine receptor antagonism in the medial preoptic area, ventral pallidum, or nucleus accumbens on the maternal retrieval response and other aspects of maternal behavior in rats. Behav Neurosci 119(6):1588–1604

    CAS  PubMed  Google Scholar 

  • Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L (2002a) Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5(6):566–572

    CAS  PubMed  Google Scholar 

  • Obici S, Zhang BB, Karkanias G, Rossetti L (2002b) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8(12):1376–1382

    CAS  PubMed  Google Scholar 

  • Oftedal OT (2000) Use of maternal reserves as a lactation strategy in large mammals. Proc Nutr Soc 59(1):99–106

    CAS  PubMed  Google Scholar 

  • Ogawa S, Eng V, Taylor J, Lubahn DB, Korach KS, Pfaff DW (1998) Roles of estrogen receptor-alpha gene expression in reproduction-related behaviors in female mice. Endocrinology 139(12):5070–5081

    CAS  PubMed  Google Scholar 

  • Ogren L, Southard JN, Colosi P, Linzer DI, Talamantes F (1989) Mouse placental lactogen-I: RIA and gestational profile in maternal serum. Endocrinology 125(5):2253–2257

    CAS  PubMed  Google Scholar 

  • Olazabal DE (2014) Comparative analysis of oxytocin receptor density in the nucleus accumbens: an adaptation for female and male alloparental care? J Physiol Paris 108(2–3):213–220

    PubMed  Google Scholar 

  • Olazabal DE, Young LJ (2006) Oxytocin receptors in the nucleus accumbens facilitate “spontaneous” maternal behavior in adult female prairie voles. Neuroscience 141(2):559–568

    CAS  PubMed  Google Scholar 

  • Parker VJ, Douglas AJ (2010) Stress in early pregnancy: maternal neuro-endocrine-immune responses and effects. J Reprod Immunol 85(1):86–92

    CAS  PubMed  Google Scholar 

  • Pau CY, Pau KY, Berria M, Spies HG (2000) Ovarian influence on gonadotropin and prolactin release in mated rabbits. Endocrine 13(1):25–35

    CAS  PubMed  Google Scholar 

  • Pawluski JL, Lonstein JS, Fleming AS (2017) The neurobiology of postpartum anxiety and depression. Trends Neurosci 40(2):106–120

    CAS  PubMed  Google Scholar 

  • Pedersen CA, Boccia ML (2003) Oxytocin antagonism alters rat dams’ oral grooming and upright posturing over pups. Physiol Behav 80(2–3):233–241

    CAS  PubMed  Google Scholar 

  • Pedersen CA, Prange AJ Jr (1979) Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proc Natl Acad Sci U S A 76(12):6661–6665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen CA, Ascher JA, Monroe YL, Prange AJ Jr (1982) Oxytocin induces maternal behavior in virgin female rats. Science 216(4546):648–650

    CAS  PubMed  Google Scholar 

  • Pedersen CA, Caldwell JD, Peterson G, Walker CH, Mason GA (1992) Oxytocin activation of maternal behavior in the rat. Ann N Y Acad Sci 652:58–69

    CAS  PubMed  Google Scholar 

  • Pedersen CA, Caldwell JD, Walker C, Ayers G, Mason GA (1994) Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav Neurosci 108(6):1163–1171

    CAS  PubMed  Google Scholar 

  • Perrigo G, Bryant WC, vom Saal FS (1990) A unique timing system prevents male mice from harming their own offspring. Anim Behav 39:535–539

    Google Scholar 

  • Pihoker C, Robertson MC, Freemark M (1993) Rat placental lactogen-I binds to the choroid plexus and hypothalamus of the pregnant rat. J Endocrinol 139(2):235–242

    CAS  PubMed  Google Scholar 

  • Quek VS, Trayhurn P (1990) Calorimetric study of the energetics of pregnancy in golden hamsters. Am J Phys 259(4 Pt 2):R807–R812

    CAS  Google Scholar 

  • Ribeiro AC, Musatov S, Shteyler A, Simanduyev S, Arrieta-Cruz I, Ogawa S, Pfaff DW (2012) siRNA silencing of estrogen receptor-alpha expression specifically in medial preoptic area neurons abolishes maternal care in female mice. Proc Natl Acad Sci U S A 109(40):16324–16329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riddle O, Lahr EL, Bates RW (1935) Maternal behavior induced in virgin rats by prolactin. Exp Biol Med 32(5):730–734

    Google Scholar 

  • Rilling JK (2013) The neural and hormonal bases of human parental care. Neuropsychologia 51(4):731–747

    PubMed  Google Scholar 

  • Robertson MC, Friesen HG (1981) Two forms of rat placental lactogen revealed by radioimmunoassay. Endocrinology 108(6):2388–2390

    CAS  PubMed  Google Scholar 

  • Robertson MC, Gillespie B, Friesen HG (1982) Characterization of the two forms of rat placental lactogen (rPL): rPL-I and rPL-II. Endocrinology 111(6):1862–1866

    CAS  PubMed  Google Scholar 

  • Rodrigues SM, Saslow LR, Garcia N, John OP, Keltner D (2009) Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proc Natl Acad Sci U S A 106(50):21437–21441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romano N, Yip SH, Hodson DJ, Guillou A, Parnaudeau S, Kirk S, Tronche F, Bonnefont X, Le Tissier P, Bunn SJ, Grattan DR, Mollard P, Martin AO (2013) Plasticity of hypothalamic dopamine neurons during lactation results in dissociation of electrical activity and release. J Neurosci 33(10):4424–4433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romero R, Erez O, Maymon E, Chaemsaithong P, Xu Z, Pacora P, Chaiworapongsa T, Done B, Hassan SS, Tarca AL (2017) The maternal plasma proteome changes as a function of gestational age in normal pregnancy: a longitudinal study. Am J Obstet Gynecol 217(1):67.e1–67e21

    CAS  Google Scholar 

  • Rosenblatt JS (1967) Nonhormonal basis of maternal behavior in the rat. Science 156(3781):1512–1514

    CAS  PubMed  Google Scholar 

  • Rosenblatt JS (1969) The development of maternal responsiveness in the rat. Am J Orthopsychiatry 39(1):36–56

    CAS  PubMed  Google Scholar 

  • Ross HE, Young LJ (2009) Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrinol 30(4):534–547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossoni E, Feng J, Tirozzi B, Brown D, Leng G, Moos F (2008) Emergent synchronous bursting of oxytocin neuronal network. PLoS Comput Biol 4(7):e1000123

    PubMed  PubMed Central  Google Scholar 

  • Rutherford HJ, Williams SK, Moy S, Mayes LC, Johns JM (2011) Disruption of maternal parenting circuitry by addictive process: rewiring of reward and stress systems. Front Psych 2:37

    Google Scholar 

  • Salais-Lopez H, Lanuza E, Agustin-Pavon C, Martinez-Garcia F (2017) Tuning the brain for motherhood: prolactin-like central signalling in virgin, pregnant, and lactating female mice. Brain Struct Funct 222(2):895–921

    CAS  PubMed  Google Scholar 

  • Saltzman W, Maestripieri D (2011) The neuroendocrinology of primate maternal behavior. Prog Neuro-Psychopharmacol Biol Psychiatry 35(5):1192–1204

    CAS  Google Scholar 

  • Saltzman W, Ziegler TE (2014) Functional significance of hormonal changes in mammalian fathers. J Neuroendocrinol 26(10):685–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saltzman W, Harris BN, de Jong TR, Perea-Rodriguez JP, Horrell ND, Zhao M, Andrew JR (2017) Paternal care in biparental rodents: intra- and inter-individual variation. Integr Comp Biol 57(3):589–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandman CA, Glynn L, Schetter CD, Wadhwa P, Garite T, Chicz-DeMet A, Hobel C (2006) Elevated maternal cortisol early in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): priming the placental clock. Peptides 27(6):1457–1463

    CAS  PubMed  Google Scholar 

  • Schneider JS, Stone MK, Wynne-Edwards KE, Horton TH, Lydon J, O’Malley B, Levine JE (2003) Progesterone receptors mediate male aggression toward infants. Proc Natl Acad Sci U S A 100(5):2951–2956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider JS, Burgess C, Horton TH, Levine JE (2009) Effects of progesterone on male-mediated infant-directed aggression. Behav Brain Res 199(2):340–344

    CAS  PubMed  Google Scholar 

  • Scott N, Prigge M, Yizhar O, Kimchi T (2015) A sexually dimorphic hypothalamic circuit controls maternal care and oxytocin secretion. Nature 525(7570):519–522

    CAS  PubMed  Google Scholar 

  • Shaik AA (1971) Estrone and estradiol levels in the ovarian venous blood from rats during estrous cycle and pregnancy. Biol Reprod 5:297–307

    Google Scholar 

  • Shanks N, Windle RJ, Perks P, Wood S, Ingram CD, Lightman SL (1999) The hypothalamic-pituitary-adrenal axis response to endotoxin is attenuated during lactation. [Erratum appears in J Neuroendocrinol 2000 May;12(5):471]. J Neuroendocrinol 11(11):857–865

    CAS  PubMed  Google Scholar 

  • Sheehan T, Numan M (2002) Estrogen, progesterone, and pregnancy termination alter neural activity in brain regions that control maternal behavior in rats. Neuroendocrinology 75(1):12–23

    CAS  PubMed  Google Scholar 

  • Shingo T, Gregg C, Enwere E, Fujikawa H, Hassam R, Geary C, Cross JC, Weiss S (2003) Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299(5603):117–120

    CAS  PubMed  Google Scholar 

  • Siegel HI, Rosenblatt JS (1975a) Estrogen-induced maternal behavior in hysterectomized-overiectomized virgin rats. Physiol Behav 14(04):465–471

    CAS  PubMed  Google Scholar 

  • Siegel HI, Rosenblatt JS (1975b) Hormonal basis of hysterectomy-induced maternal behavior during pregnancy in the rat. Horm Behav 6(3):211–222

    CAS  PubMed  Google Scholar 

  • Sirzen-Zelenskaya A, Gonzalez-Iglesias AE, Boutet de Monvel J, Bertram R, Freeman ME, Gerber U, Egli M (2011) Prolactin induces a hyperpolarising current in rat paraventricular oxytocinergic neurones. J Neuroendocrinol 23(10):883–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MS (1993) Lactation alters neuropeptide-Y and proopiomelanocortin gene expression in the arcuate nucleus of the rat. Endocrinology 133(3):1258–1265

    CAS  PubMed  Google Scholar 

  • Son SJ, Filosa JA, Potapenko ES, Biancardi VC, Zheng H, Patel KP, Tobin VA, Ludwig M, Stern JE (2013) Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron 78(6):1036–1049

    CAS  PubMed  Google Scholar 

  • Sorenson RL, Brelje TC (1997) Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 29(6):301–307

    CAS  PubMed  Google Scholar 

  • Stack E, Numan M (2000) The temporal course of expression of c-Fos and Fos B within the medial preoptic area and other brain regions of postpartum female rats during prolonged mother-young interactions. Behav Neurosci 114:609–622

    CAS  PubMed  Google Scholar 

  • Stack EC, Balakrishnan R, Numan MJ, Numan M (2002) A functional neuroanatomical investigation of the role of the medial preoptic area in neural circuits regulating maternal behavior. Behav Brain Res 131(1–2):17–36

    PubMed  Google Scholar 

  • Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28(1):117–149

    CAS  PubMed  Google Scholar 

  • Stolzenberg DS, Numan M (2011) Hypothalamic interaction with the mesolimbic DA system in the control of the maternal and sexual behaviors in rats. Neurosci Biobehav Rev 35(3):826–847

    CAS  PubMed  Google Scholar 

  • Stolzenberg DS, McKenna JB, Keough S, Hancock R, Numan MJ, Numan M (2007) Dopamine D1 receptor stimulation of the nucleus accumbens or the medial preoptic area promotes the onset of maternal behavior in pregnancy-terminated rats. Behav Neurosci 121(5):907–919

    CAS  PubMed  Google Scholar 

  • Storey AE, Walsh CJ, Quinton RL, Wynne-Edwards KE (2000) Hormonal correlates of paternal responsiveness in new and expectant fathers. Evol Hum Behav 21(2):79–95

    CAS  PubMed  Google Scholar 

  • Strubbe JH, Mein CG (1977) Increased feeding in response to bilateral injection of insulin antibodies in the VMH. Physiol Behav 19(2):309–313

    CAS  PubMed  Google Scholar 

  • Swain JE (2011) The human parental brain: in vivo neuroimaging. Prog Neuro-Psychopharmacol Biol Psychiatry 35(5):1242–1254

    Google Scholar 

  • Swain JE, Ho SS (2017) Neuroendocrine mechanisms for parental sensitivity: overview, recent advances and future directions. Curr Opin Psychol 15:105–110

    PubMed  Google Scholar 

  • Swain JE, Kim P, Ho SS (2011) Neuroendocrinology of parental response to baby-cry. J Neuroendocrinol 23(11):1036–1041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swain JE, Dayton CJ, Kim P, Tolman RM, Volling BL (2014a) Progress on the paternal brain: theory, animal models, human brain research, and mental health implications. Infant Ment Health J 35(5):394–408

    CAS  PubMed  Google Scholar 

  • Swain JE, Kim P, Spicer J, Ho SS, Dayton CJ, Elmadih A, Abel KM (2014b) Approaching the biology of human parental attachment: brain imaging, oxytocin and coordinated assessments of mothers and fathers. Brain Res 1580:78–101

    CAS  PubMed  Google Scholar 

  • Tachikawa KS, Yoshihara Y, Kuroda KO (2013) Behavioral transition from attack to parenting in male mice: a crucial role of the vomeronasal system. J Neurosci 33(12):5120–5126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T, Yanagisawa T, Kimura T, Matzuk MM, Young LJ, Nishimori K (2005) Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci U S A 102(44):16096–16101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terkel J, Blake CA, Sawyer CH (1972) Serum prolactin levels in lactating rats after suckling or exposure to ether. Endocrinology 91(1):49–53

    CAS  PubMed  Google Scholar 

  • Terkel J, Bridges RS, Sawyer CH (1979) Effects of transecting lateral neural connections of the medial preoptic area on maternal behavior in the rat: nest building, pup retrieval and prolactin secretion. Brain Res 169(2):369–380

    CAS  PubMed  Google Scholar 

  • Tonkowicz PA, Voogt JL (1983) Termination of prolactin surges with development of placental lactogen secretion in the pregnant rat. Endocrinology 113(4):1314–1318

    CAS  PubMed  Google Scholar 

  • Torner L, Toschi N, Pohlinger A, Landgraf R, Neumann ID (2001) Anxiolytic and anti-stress effects of brain prolactin: improved efficacy of antisense targeting of the prolactin receptor by molecular modeling. J Neurosci 21(9):3207–3214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torner L, Toschi N, Nava G, Clapp C, Neumann ID (2002) Increased hypothalamic expression of prolactin in lactation: involvement in behavioural and neuroendocrine stress responses. Eur J Neurosci 15(8):1381–1389

    PubMed  Google Scholar 

  • Toufexis DJ, Tesolin S, Huang N, Walker C (1999) Altered pituitary sensitivity to corticotropin-releasing factor and arginine vasopressin participates in the stress hyporesponsiveness of lactation in the rat. J Neuroendocrinol 11(10):757–764

    CAS  PubMed  Google Scholar 

  • Townsend J, Cave BJ, Norman MR, Flynn A, Uney JB, Tortonese DJ, Wakerley JB (2005) Effects of prolactin on hypothalamic supraoptic neurones: evidence for modulation of STAT5 expression and electrical activity. Neuro Endocrinol Lett 26(2):125–130

    CAS  PubMed  Google Scholar 

  • Tsukamura H, Maeda K (2001) Non-metabolic and metabolic factors causing lactational anestrus: rat models uncovering the neuroendocrine mechanism underlying the suckling-induced changes in the mother. Prog Brain Res 133:187–205

    CAS  PubMed  Google Scholar 

  • Tsuneoka Y, Maruyama T, Yoshida S, Nishimori K, Kato T, Numan M, Kuroda KO (2013) Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol 521(7):1633–1663

    CAS  PubMed  Google Scholar 

  • Tsuneoka Y, Tokita K, Yoshihara C, Amano T, Esposito G, Huang AJ, Yu LM, Odaka Y, Shinozuka K, McHugh TJ, Kuroda KO (2015) Distinct preoptic-BST nuclei dissociate paternal and infanticidal behavior in mice. EMBO J 34(21):2652–2670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10(6):397–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valeggia C, Ellison PT (2009) Interactions between metabolic and reproductive functions in the resumption of postpartum fecundity. Am J Hum Biol 21(4):559–566

    PubMed  PubMed Central  Google Scholar 

  • van Anders SM, Tolman RM, Volling BL (2012) Baby cries and nurturance affect testosterone in men. Horm Behav 61(1):31–36

    PubMed  Google Scholar 

  • van Hemel SB (1973) Pup retrieving as a reinforcer in nulliparous mice. J Exp Anal Behav 19(2):233–238

    PubMed  PubMed Central  Google Scholar 

  • Vannuccini S, Bocchi C, Severi FM, Challis JR, Petraglia F (2016) Endocrinology of human parturition. Ann Endocrinol (Paris) 77(2):105–113

    Google Scholar 

  • Veening JG, de Jong TR, Waldinger MD, Korte SM, Olivier B (2015) The role of oxytocin in male and female reproductive behavior. Eur J Pharmacol 753:209–228

    CAS  PubMed  Google Scholar 

  • vom Saal FS (1985) Time-contingent change in infanticide and parental behavior induced by ejaculation in male mice. Physiol Behav 34(1):7–15

    CAS  PubMed  Google Scholar 

  • Voogt J, Robertson M, Friesen H (1982) Inverse relationship of prolactin and rat placental lactogen during pregnancy. Biol Reprod 26(5):800–805

    CAS  PubMed  Google Scholar 

  • Wade GN, Jennings G, Trayhurn P (1986) Energy balance and brown adipose tissue thermogenesis during pregnancy in Syrian hamsters. Am J Phys 250(5 Pt 2):R845–R850

    CAS  Google Scholar 

  • Waldherr M, Neumann ID (2007) Centrally released oxytocin mediates mating-induced anxiolysis in male rats. Proc Natl Acad Sci U S A 104(42):16681–16684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker CD, Lightman SL, Steele MK, Dallman MF (1992) Suckling is a persistent stimulus to the adrenocortical system of the rat. Endocrinology 130(1):115–125

    CAS  PubMed  Google Scholar 

  • Walker CD, Trottier G, Rochford J, Lavallee D (1995) Dissociation between behavioral and hormonal responses to the forced swim stress in lactating rats. J Neuroendocrinol 7(8):615–622

    CAS  PubMed  Google Scholar 

  • Wang Z, Insel TR (1996) Parental behavior in voles. In: Rosenblatt JS, Snowden CT (eds) Advances in the study of behavior: parental care: evolution, mechanism, and adaptive significance. Academic, Cambridge, pp 361–384

    Google Scholar 

  • Wang Z, Ferris CF, De Vries GJ (1994) Role of septal vasopressin innervation in paternal behavior in prairie voles (Microtus ochrogaster). Proc Natl Acad Sci U S A 91(1):400–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Tai F, Yu P, Wu R (2012) Reinforcing properties of pups versus cocaine for fathers and associated central expression of Fos and tyrosine hydroxylase in mandarin voles (Microtus mandarinus). Behav Brain Res 230(1):149–157

    CAS  PubMed  Google Scholar 

  • Wersinger SR, Caldwell HK, Christiansen M, Young WS 3rd. (2007a) Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain Behav 6(7):653–660

    CAS  PubMed  Google Scholar 

  • Wersinger SR, Caldwell HK, Martinez L, Gold P, Hu SB, Young WS 3rd. (2007b) Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav 6(6):540–551

    CAS  PubMed  Google Scholar 

  • Windle RJ, Shanks N, Lightman SL, Ingram CD (1997) Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology 138(7):2829–2834

    CAS  PubMed  Google Scholar 

  • Windle RJ, Kershaw YM, Shanks N, Wood SA, Lightman SL, Ingram CD (2004) Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo-pituitary-adrenal activity. J Neurosci 24(12):2974–2982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wingfield JC, Hegner RE, Dufty AMJ, Ball GF (1990) The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136:829–846

    Google Scholar 

  • Woodside B (2007) Prolactin and the hyperphagia of lactation. Physiol Behav 91(4):375–382

    CAS  PubMed  Google Scholar 

  • Woodside B, Amir S (1997) Lactation reduces Fos induction in the paraventricular and supraoptic nuclei of the hypothalamus after urethane administration in rats. Brain Res 752(1–2):319–323

    CAS  PubMed  Google Scholar 

  • Woodside B, Abizaid A, Walker C (2000) Changes in leptin levels during lactation: implications for lactational hyperphagia and anovulation. Horm Behav 37(4):353–365

    CAS  PubMed  Google Scholar 

  • Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG (2014) Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509(7500):325–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wynne-Edwards KE, Timonin ME (2007) Paternal care in rodents: weakening support for hormonal regulation of the transition to behavioral fatherhood in rodent animal models of biparental care. Horm Behav 52(1):114–121

    CAS  PubMed  Google Scholar 

  • Yang CF, Chiang MC, Gray DC, Prabhakaran M, Alvarado M, Juntti SA, Unger EK, Wells JA, Shah NM (2013) Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153(4):896–909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshihara C, Numan M, Kuroda KO (2017) Oxytocin and parental behaviors. Curr Top Behav Neurosci 35:119–153

    Google Scholar 

  • Young WS 3rd, Shepard E, Amico J, Hennighausen L, Wagner KU, LaMarca ME, McKinney C, Ginns EI (1996) Deficiency in mouse oxytocin prevents milk ejection, but not fertility or parturition. J Neuroendocrinol 8(11):847–853

    CAS  PubMed  Google Scholar 

  • Zakar T, Hertelendy F (2007) Progesterone withdrawal: key to parturition. Am J Obstet Gynecol 196(4):289–296

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary S. E. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smiley, K.O., Ladyman, S.R., Gustafson, P., Grattan, D.R., Brown, R.S.E. (2019). Neuroendocrinology and Adaptive Physiology of Maternal Care. In: Coolen, L., Grattan, D. (eds) Neuroendocrine Regulation of Behavior. Current Topics in Behavioral Neurosciences, vol 43. Springer, Cham. https://doi.org/10.1007/7854_2019_122

Download citation

Publish with us

Policies and ethics