Skip to main content

Drug Discrimination: Historical Origins, Important Concepts, and Principles

  • Chapter
  • First Online:
The Behavioral Neuroscience of Drug Discrimination

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 39))

Abstract

Research on the stimulus properties of drugs began with studies on state dependent learning during the first half of the twentieth century. From that research, an entirely new approach evolved called drug discrimination. Animals (including humans) could discriminate the presence or absence of a drug; once learned, the drug could serve as a discriminative stimulus, signaling the availability or nonavailability of reinforcement. Early drug discrimination research involved the use of a T-maze task, which evolved in the 1970s into a two-lever operant drug discrimination task that is still used today. A number of important concepts and principles of drug discrimination are discussed. (1) The discriminative stimulus properties of drugs are believed in large part to reflect the subjective effects of drugs. While it has been impossible to directly measure subjective effects in nonhuman animals, drug discrimination studies in human subjects have generally supported the belief that discriminative stimulus properties of drugs in nonhuman animals correlate highly with subjective effects of drugs in humans. In addition to the ability of the drug discrimination procedure to measure the subjective effects of drugs, it has a number of other strengths that help make it a valuable preclinical assay. (2) Drug discrimination can be used for classification of drugs based on shared discriminative stimulus properties. (3) The phenomena of tolerance and cross-tolerance can be studied with drug discrimination. (4) Discriminative stimulus properties of drugs typically have been found to be stereospecific, if a drug is comprised of enantiomers. (5) Discriminative stimulus properties of drugs reflect specific CNS activity at neurotransmitter receptors. (6) Both human and nonhuman subjects display individual differences in their sensitivity to discriminative stimuli and drugs. (7) The drug discrimination procedure has been used extensively as a preclinical assay in drug development. This chapter is the first in the volume The Behavioural Neuroscience of Drug Discrimination, which includes chapters concerning the discriminative stimulus properties of various classes of psychoactive drugs as well as sections on the applications and approaches for using this procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ator NA, Griffiths RR (2003) Principles of drug abuse liability assessment in laboratory animals. Drug Alcohol Depend 70:S55–S72

    CAS  PubMed  Google Scholar 

  • Balster RL (1988) Drugs as chemical stimuli. In: Colpaert FA, Balster RL (eds) Transduction mechanisms of drug stimuli, Psychopharmacology series, vol 4. Springer, Berlin, pp 3–11

    Google Scholar 

  • Balster RL, Bigelow GE (2003) Guidelines and methodological reviews concerning drug abuse liability assessment. Drug Alcohol Depend 70:S13–S40

    PubMed  Google Scholar 

  • Barry H III (1974) Classification of drugs according to their discriminable effects in rats. Fed Proc 33(7):1814–1824

    CAS  PubMed  Google Scholar 

  • Bevins RA, Klebaur JE, Bardo MT (1997) Individual differences in response to novelty, amphetamine-induced activity and drug discrimination in rats. Behav Pharmacol 8(2–3):113–123

    CAS  PubMed  Google Scholar 

  • Bolin BL, Alcorn JL III, Reynolds AR, Lile JA, Rush CR (2016a) (Chapter 12, this volume) human drug discrimination: elucidating the neuropharmacology of commonly abused illicit drugs. In: Porter JH, Prus AJ (eds) The behavioural neuroscience of drug discrimination. Springer, New York, NY

    Google Scholar 

  • Bolin BL, Alcorn JL III, Reynolds AR, Lile JA, Rush CR (2016b) Human drug discrimination: a primer and methodological review. Exp Clin Psychopharmacol 24(4):214–228

    PubMed  PubMed Central  Google Scholar 

  • Burgdorf J, Zhang XL, Nicholson KL, Balster RL, Leander JD, Stanton PK, Gross AL, Kroes RA, Moskal JR (2013) GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology 38(5):729–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castelli MP, Mocci I, Sanna AM, Gessa GL, Pani L (2001) (S)-amisulpride binds with high affinity to cloned dopamine D3 and D2 receptors. Eur J Pharmacol 432:143–147

    CAS  PubMed  Google Scholar 

  • Catania AC (1971) Discriminative stimulus functions of drugs: interpretations. I. In: Thompson T, Pickens R (eds) Stimulus properties of drugs. Appleton-Century-Crofts, New York, NY, pp 87–110

    Google Scholar 

  • Chait LD, Uhlenhuth EH, Johanson CE (1985) The discriminative stimulus and subjective effects of d-amphetamine in humans. Psychopharmacology 86:301–312

    Google Scholar 

  • Chait LD, Uhlenhuth EH, Johanson CE (1986) The discriminative stimulus and subjective effects of phenylpropanolamine, mazindol and d-amphetamine in humans. Pharmacol Biochem Behav 24:1665–1672

    CAS  PubMed  Google Scholar 

  • Collins W (1868) The moonstone. Tinsley Brothers, London

    Google Scholar 

  • Colpaert FC (1995) Drug discrimination: no evidence for tolerance to opiates. Pharmacol Rev 47(4):605–629

    CAS  PubMed  Google Scholar 

  • Colpaert FC (2003) Discovering risperidone: the LSD model of psychopathology. Nat Rev Drug Discov 2(4):315–320

    CAS  PubMed  Google Scholar 

  • Colpaert FC, Balster RL (eds) (1988) Transduction mechanisms of drug stimuli, Psychopharmacology series, vol 4. Springer, New York, NY

    Google Scholar 

  • Colpaert FC, Niemegeers CJ (1975) On the narcotic cuing action of fentanyl and other narcotic analgesic drugs. Arch Int Pharmacodyn Ther 217(1):170–172

    CAS  PubMed  Google Scholar 

  • Colpaert FC, Niemegeers CJ, Janssen PA (1975) The narcotic cue: evidence for the specificity of the stimulus properties of narcotic drugs. Arch Int Pharmacodyn Ther 218(2):268–276

    CAS  PubMed  Google Scholar 

  • Colpaert FC, Kuyps JJ, Niemegeers CJ, Janssen PA (1976) Discriminative stimulus properties of fentanyl and morphine: tolerance and dependence. Pharmacol Biochem Behav 5(4):401–408

    CAS  PubMed  Google Scholar 

  • Combe G (1835) A system of phrenology, 3rd edn. Marsh, Capen and Lyon, Boston, MA

    Google Scholar 

  • Conger JJ (1951) The effects of alcohol on conflict behavior in the albino rat. Q J Stud Alcohol 12:1–29

    CAS  PubMed  Google Scholar 

  • Donahue TJ, Hillhouse TM, Webster KA, Young R, De Oliveira EO, Porter JH (2014) (S)-amisulpride as a discriminative stimulus in C57BL/6 mice and its comparison to the stimulus effects of typical and atypical antipsychotics. Eur J Pharmacol 734:15–22

    CAS  PubMed  Google Scholar 

  • Donahue TJ, Hillhouse TM, Webster KA, Young R, De Oliveira EO, Porter JH (2017) Discriminative stimulus properties of the atypical antipsychotic amisulpride: comparison to its isomers and to other benzamide derivatives, antipsychotic, antidepressant, and antianxiety drugs in C57BL/6 mice. Psychopharmacology 234(23–24):3507–3520

    CAS  PubMed  Google Scholar 

  • Gardner LA, McCullough C (1962) A reinvestigation of the dissociative effect of curareform drugs. (abstract). Am Psychol 17:398

    Google Scholar 

  • Girden E, Culler EA (1937) Conditioned responses in curarized striate muscle in dogs. J Comp Psychol 23:261–274

    Google Scholar 

  • Glennon RA, Young R (2011a) Chapter 2. Methodological considerations. In: Glennon RA, Young R (eds) Drug discrimination: applications to medicinal chemistry and drug studies. Wiley, Hoboken, NJ, pp 19–40

    Google Scholar 

  • Glennon RA, Young R (2011b) Chapter 4. Role of stereochemistry in drug discrimination studies. In: Glennon RA, Young R (eds) Drug discrimination: applications to medicinal chemistry and drug studies. Wiley, Hoboken, NJ, pp 129–161

    Google Scholar 

  • Goudie AJ, Cole JC, Sumnall HR (2007a) Olanzapine and JL13 induce cross-tolerance to the clozapine discriminative stimulus in rats. Behav Pharmacol 18:9–17

    CAS  PubMed  Google Scholar 

  • Goudie AJ, Cooper GD, Cole JC, Sumnall HR (2007b) Cyproheptadine resembles clozapine in vivo following both acute and chronic administration in rats. J Psychopharmacol 21:179–190

    CAS  PubMed  Google Scholar 

  • Grant KA (1999) Strategies for understanding the pharmacological effects of ethanol with discrimination procedures. Pharmacol Biochem Behav 64(2):261–267

    CAS  PubMed  Google Scholar 

  • Grossman SP, Miller NE (1961) Control for stimulus-change in the evaluation of alcohol and chlorpromazine as fear-reducing drugs. Psychopharmacology 2:342–351

    CAS  Google Scholar 

  • Harris RT, Balster BL (1968) Discriminative control by d1-amphetamine and saline of lever choice and response patterning. Psychon Sci 10(3):105–106

    Google Scholar 

  • Harris RT, Balster BL (1971) An analysis of the function of drugs in the stimulus control of operant behavior. In: Thompson T, Pickens R (eds) Stimulus properties of drugs. Appleton Century Crofts, New York, NY, pp 111–132

    Google Scholar 

  • Hippius H (1991) A historical perspective of clozapine. J Clin Psychiatry 60(suppl 12):22–23

    Google Scholar 

  • Hirschhorn ID, Rosecrans JA (1976) Generalization of morphine and lysergic acid diethylamide (LSD) stimulus properties to narcotic analgesics. Psychopharmacology (Berl) 47(1):65–69

    CAS  PubMed  Google Scholar 

  • In Vivo Pharmacology Training Group (2002) The fall and rise of in vivo pharmacology. Trends Pharmacol Sci 23(1):13–18

    Google Scholar 

  • Kelley BM, Porter JH (1997) The role of muscarinic cholinergic receptors in the discriminative stimulus properties of clozapine in rats. Pharmacol Biochem Behav 57(4):707–719

    CAS  PubMed  Google Scholar 

  • Kubena RK, Barry H III (1969a) Two procedures for training differential responses in alcohol and nondrug conditions. J Pharm Sci 58(1):99–101

    CAS  PubMed  Google Scholar 

  • Kubena RK, Barry H III (1969b) Generalization by rats of alcohol and atropine stimulus characteristics to other drugs. Psychopharmacologia (Berl) 15:196–206

    CAS  Google Scholar 

  • Marchese G, Bartholini F, Ruiu S, Casti P, Saba P, Gessa G, Pan L (2002a) Effect of the amisulpride isomers on rat catalepsy. Eur J Pharmacol 444:69–74

    CAS  PubMed  Google Scholar 

  • Marchese G, Ruiu S, Casti P, Saba P, Gessa GL, Pani L (2002b) Effect of the amisulpride isomers on rat prolactinemia. Eur J Pharmacol 448:263–266

    CAS  PubMed  Google Scholar 

  • McMahon LR (2015) The rise (and fall?) of drug discrimination research. Drug Alcohol Depend 151:284–288

    PubMed  PubMed Central  Google Scholar 

  • Millan MJ, Schreiber R, Monneyron S, Denorme B, Melon C, Queriaux S, Dekeyne A (1999) S-16924, a novel, potential antipsychotic with marked serotonin1A agonist properties. IV. A drug discrimination comparison with clozapine. Journal of Pharmacology & Experimental Therapeutics 289(1):427–436

    CAS  Google Scholar 

  • Miller NE (1957) Objective techniques for studying motivational effects on animals. In: Garattini S, Ghetti V (eds) Psychotropic drugs, proceedings of the international symposium on psychotropic drugs. Elsevier, North-Holland, Amsterdam, pp 83–103

    Google Scholar 

  • Miller NE, Barry H III (1960) Motivational effects of drugs: methods which illustrate some general problems in psychopharmacology. Psychopharmacologia 1:169–199

    CAS  PubMed  Google Scholar 

  • Moore NA, Tye NC, Axton MS, Risius FC (1992) The behavioral pharmacology of olanzapine, a novel “atypical” antipsychotic agent. J Pharmacol Exp Ther 262:545–551

    CAS  PubMed  Google Scholar 

  • Morgan D, Picker MJ (1996) Contribution of individual differences to discriminative stimulus, antinociceptive and rate-decreasing effects of opioids: importance of the drug’s relative intrinsic efficacy at the mu receptor. Behav Pharmacol 7(3):261–284

    CAS  PubMed  Google Scholar 

  • Morgan CT, Stellar E (1950) Physiological psychology, 2nd edn. McGraw-Hill, New York, NY

    Google Scholar 

  • Nadal R (2001) Pharmacology of the atypical antipsychotic remoxipride, a dopamine D2 receptor antagonist. CNS Drug Rev 7(3):26–282

    Google Scholar 

  • O’Neal MF, Means LW, Porter JH, Rosecrans JA, Mokler DJ (1988) Rats that acquire a THC discrimination more rapidly are more sensitive to THC and faster in reaching operant criteria. Pharmacol Biochem Behav 29:67–71

    PubMed  Google Scholar 

  • Overton DA (1961) Discriminative behavior based on the presence or absence of drug effects (abstract). Am Psychol 16:453–454

    Google Scholar 

  • Overton DA (1964) State-dependent or “dissociated” learning produced with pentobarbital. J Comp Physiol Psychol 57:3–12

    CAS  PubMed  Google Scholar 

  • Overton DA (1966) State-dependent learning produced by depressant and atropine-like drugs. Psychopharmacologia 10:6–31

    CAS  PubMed  Google Scholar 

  • Overton DA (1968) Dissociated learning in drug states (state-dependent learning). In: Efron DH, Colle JO, Levine J, Wittenborn R (eds) Psychopharmacology, a review of progress, 1957–1967. PHS Pub No 1836. Sept. of Docs., US Govt. Print. Office, Washington, DC, pp 918–930

    Google Scholar 

  • Overton DA (1971) Discriminative control of behavior by drug states. In: Thompson T, Pickens R (eds) Stimulus properties of drugs. Appleton-Century-Crofts, New York, NY, pp 87–110

    Google Scholar 

  • Overton DA (1982) Comparison of the degree of discriminability of various drugs using the T-maze drug discrimination paradigm. Psychopharmacology 76:385–395

    CAS  PubMed  Google Scholar 

  • Overton DA (1991) Historical context of state dependent learning and discriminative drug effects. Behav Pharmacol 2:253–264

    PubMed  Google Scholar 

  • Overton DA, Rosecrans JA, Barry H III (1999) Creation and first 20 years of the society for the stimulus properties of drugs (SSPD). Pharmacol Biochem Behav 64(2):347–352

    CAS  PubMed  Google Scholar 

  • Perkins KA (2011) Nicotine discrimination in humans. In: Glennon RA, Young R (eds) Drug discrimination: applications to medicinal chemistry and drug studies. Wiley, Hoboken, NJ, pp 129–161

    Google Scholar 

  • Philibin SD, Prus AJ, Pehrson AL, Porter JH (2005) Serotonin receptor mechanisms mediate the discriminative stimulus properties of the atypical antipsychotic clozapine in C57BL/6 mice. Psychopharmacology 180:49–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Philibin SD, Walentiny DM, Vunck SA, Prus AJ, Meltzer HY, Porter JH (2009) Further characterization of the discriminative stimulus properties of the atypical antipsychotic drug clozapine in C57BL/6 mice and a comparison to clozapine’s major metabolite N-desmethylclozapine. Psychopharmacology 203:303–315

    CAS  PubMed  Google Scholar 

  • Porter JH, Prus AJ (2009) Discriminative stimulus properties of atypical and typical antipsychotic drugs: a review of preclinical studies. Psychopharmacology 203:279–294

    CAS  PubMed  Google Scholar 

  • Porter JH, Varvel SA, Vann RE, Philibin SD, Wise LE (2000) Clozapine discrimination with a low training dose distinguishes atypical from typical antipsychotic drugs in rats. Psychopharmacology 149:189–193

    CAS  PubMed  Google Scholar 

  • Preston KL, Bigelow GE (1991) Subjective and discriminative effects of drugs. Behav Pharmacol 2:293–313

    PubMed  Google Scholar 

  • Quarta D, Naylor CG, Barik J, Fernandes C, Wonnacott S, Stolerman IP (2009) Drug discrimination and neurochemical studies in alpha7 null mutant mice: tests for the role of nicotinic alpha7 receptors in dopamine release. Psychopharmacology (Berl) 203(2):399–410

    CAS  PubMed  Google Scholar 

  • Ribot T (1882) Diseases of memory. Kegan, Paul Trench and Co., London

    Google Scholar 

  • Ribot T (1891) The diseases of personality, 4th edn. Open Court, Chicago, IL

    Google Scholar 

  • Riley AL, Clasen MM, Friar MA (2016) (Chapter 13, this volume) conditioned taste avoidance drug discrimination procedure: assessments and applications. In: Porter JH, Prus AJ (eds) The behavioural neuroscience of drug discrimination. Springer, New York, NY

    Google Scholar 

  • Rosecrans JA, Glennon RA (1979) Drug-induced cues in studying mechanisms of drug action. Neuropsychopharmacology 18:981–989

    CAS  Google Scholar 

  • Schechter MD (1983) Drug sensitivity of individual rats determines degree of drug discrimination. Pharmacol Biochem Behav 19:1–4

    CAS  PubMed  Google Scholar 

  • Schuster CR, Balster RL (1977) The discriminative stimulus properties of drugs. In: Thompson T, Dews PB (eds) Advances in behavioral pharmacology, vol 1. Academic Press, New York, NY, pp 86–138

    Google Scholar 

  • Schuster CR, Johanson CE (1988) Relationship between the discriminative stimulus properties and subjective effects of drugs. Psychopharmacol Ser 4:161–175

    CAS  PubMed  Google Scholar 

  • Shannon HE, Holtzman SG (1976) Evaluation of the discriminative effects of morphine in the rats. Evaluation of the discriminative effects of morphine in the rat. J Pharmacol Exp Ther 198:54–65

    CAS  PubMed  Google Scholar 

  • Solinas M, Panlilio LV, Justinova Z, Yasar S, Goldberg SR (2006) Using drug-discrimination techniques to study the abuse-related effects of psychoactive drugs in rats. Nat Protoc 1(3):1194–1206

    CAS  PubMed  Google Scholar 

  • Stewart J (1962) Differential responses based on the physiological consequences of pharmacological agents. Psychopharmacologia 3:132–138

    CAS  PubMed  Google Scholar 

  • Stolerman IP, Rasul F, Shine PJ (1989) Trends in drug discrimination research analysed with a cross-indexed bibliography, 1984–1987. Psychopharmacology (Berl) 98(1):1–19

    CAS  PubMed  Google Scholar 

  • Stolerman IP, Mariathasan EA, White J-AW, Olufsen KS (1999) Drug mixtures and ethanol as compound internal stimuli. Pharmacol Biochem Behav 64(2):221–228

    CAS  PubMed  Google Scholar 

  • Stolerman IP, Childs E, Matthew M, Ford MM, Grant KA (2011) Role of training dose in drug discrimination: a review. Behav Pharmacol 22:415–429

    PubMed  PubMed Central  Google Scholar 

  • Wiebelhaus JM, Webster KA, Meltzer HY, Porter JH (2011) The metabolites N-desmethylclozapine and N-desmethylolanzapine produce cross-tolerance to the discriminative stimulus of the atypical antipsychotic clozapine in C57BL/6 mice. Behav Pharmacol 22:458–467

    CAS  PubMed  Google Scholar 

  • Young A (1991) Tolerance to drugs acting as discriminative stimuli. In: Glennon R, Jarbe T, Frankenheim J (eds) Drug discrimination: applications to drug abuse research, NIDA research monograph, vol 116. National Institute of Drug Abuse, Rockville, MD, pp 197–212

    Google Scholar 

  • Young R (2009) Chapter 3. Drug discrimination. In: Buccafusco JL (ed) Methods of behavioral analysis in neuroscience, 2nd edn. CRC Press, Boca Raton, FL, pp 39–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Porter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Porter, J.H., Prus, A.J., Overton, D.A. (2018). Drug Discrimination: Historical Origins, Important Concepts, and Principles. In: Porter, J.H., Prus, A.J. (eds) The Behavioral Neuroscience of Drug Discrimination. Current Topics in Behavioral Neurosciences, vol 39. Springer, Cham. https://doi.org/10.1007/7854_2018_40

Download citation

Publish with us

Policies and ethics