Skip to main content

Effects of Hallucinogens on Neuronal Activity

  • Chapter
Behavioral Neurobiology of Psychedelic Drugs

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 36))

Abstract

Hallucinogens evoke sensory, perceptual, affective, and cognitive effects that may be useful to understand the neurobiological basis of mood and psychotic disorders. The present chapter reviews preclinical research carried out in recent years in order to better understand the action of psychotomimetic agents such as the noncompetitive NMDA receptor (NMDA-R) antagonists and serotonergic hallucinogens. Our studies have focused on the mechanisms through which these agents alter cortical activity. Noncompetitive NMDA-R antagonists, such as phencyclidine (PCP) and MK-801 (dizocilpine), as well as the serotonergic hallucinogens DOI and 5-MeO-DMT, produce similar effects on cellular and population activity in prefrontal cortex (PFC); these effects include alterations of pyramidal neuron discharge (with an overall increase in firing), as well as a marked attenuation of the low frequency oscillations (0.2–4 Hz) to which neuronal discharge is coupled in anesthetized rodents. PCP increases c-fos expression in excitatory neurons from various cortical and subcortical areas, particularly the thalamus. This effect of PCP involves the preferential blockade of NMDA-R on GABAergic neurons of the reticular nucleus of the thalamus, which provides feedforward inhibition to the rest of thalamic nuclei. It is still unknown whether serotonergic hallucinogens also affect thalamocortical networks. However, when examined, similar alterations in other cortical areas, such as the primary visual cortex (V1), have been observed, suggesting that these agents affect cortical activity in sensory and associative areas. Interestingly, the disruption of PFC activity induced by PCP, DOI and 5-MeO-DMT is reversed by classical and atypical antipsychotic drugs. This effect suggests a possible link between the mechanisms underlying the disruption of perception by multiple classes of hallucinogenic agents and the therapeutic efficacy of antipsychotic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi-Dargham A et al (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A 97(14):8104–8109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abi-Dargham A et al (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22(9):3708–3719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36(4–5):589–599

    Article  CAS  PubMed  Google Scholar 

  • Aghajanian GK, Marek GJ (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825(1–2):161–171

    Article  CAS  PubMed  Google Scholar 

  • Agurell S et al (1968) Identification of two new beta-carboline alkaloids in South American hallucinogenic plants. Biochem Pharmacol 17(12):2487–2488

    Article  CAS  PubMed  Google Scholar 

  • Amargos-Bosch M et al (2004) Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14(3):281–299

    Article  PubMed  Google Scholar 

  • Amargos-Bosch M et al (2006) Clozapine and olanzapine, but not haloperidol, suppress serotonin efflux in the medial prefrontal cortex elicited by phencyclidine and ketamine. Int J Neuropsychopharmacol 9(5):565–573

    Article  CAS  PubMed  Google Scholar 

  • Angrist B et al (1976) Dimethyltryptamine levels in blood of schizophrenic patients and control subjects. Psychopharmacology 47(1):29–32

    Article  CAS  PubMed  Google Scholar 

  • Anver H et al (2011) NMDA receptor hypofunction phase couples independent gamma-oscillations in the rat visual cortex. Neuropsychopharmacology 36(2):519–528

    Article  CAS  PubMed  Google Scholar 

  • Araneda R, Andrade R (1991) 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40(2):399–412

    Article  CAS  PubMed  Google Scholar 

  • Artigas F (2010) The prefrontal cortex: a target for antipsychotic drugs. Acta Psychiatr Scand 121(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

    Article  CAS  PubMed  Google Scholar 

  • Barre A et al (2016) Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning. Proc Natl Acad Sci U S A 113(10):E1382–E1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basar E, Guntekin B (2008) A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res 1235:172–193

    Article  CAS  PubMed  Google Scholar 

  • Bates AT et al (2009) Low-frequency EEG oscillations associated with information processing in schizophrenia. Schizophr Res 115(2–3):222–230

    Article  PubMed  Google Scholar 

  • Begic D, Hotujac L, Jokic-Begic N (2000) Quantitative EEG in ‘positive’ and ‘negative’ schizophrenia. Acta Psychiatr Scand 101(4):307–311

    CAS  PubMed  Google Scholar 

  • Begic D, Mahnik-Milos M, Grubisin J (2009) EEG characteristics in depression, “negative” and “positive” schizophrena. Psychiatr Danub 21(4):579–584

    PubMed  Google Scholar 

  • Begic D et al (2011) Quantitative electroencephalography in schizophrenia and depression. Psychiatr Danub 23(4):355–362

    PubMed  Google Scholar 

  • Beique JC et al (2007) Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci U S A 104(23):9870–9875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belforte JE et al (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Benington F, Morin RD, Clark LC Jr (1965) 5-methoxy-N, N-dimethyltryptamine, a possible endogenous psychotoxin. Ala J Med Sci 2(4):397–403

    CAS  PubMed  Google Scholar 

  • Berendse HW, Groenewegen HJ (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42(1):73–102

    Article  CAS  PubMed  Google Scholar 

  • Berger H (1929) Electroencephalogram in humans. Archiv fur Psychiatrie und Nervenkrankheiten 87:527–570

    Article  Google Scholar 

  • Binder S et al (2014) Transcranial slow oscillation stimulation during NREM sleep enhances acquisition of the radial maze task and modulates cortical network activity in rats. Front Behav Neurosci 7:220

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodizs R et al (2002) Sleep-dependent hippocampal slow activity correlates with waking memory performance in humans. Neurobiol Learn Mem 78(2):441–457

    Article  PubMed  Google Scholar 

  • Bortolozzi A et al (2003) In vivo modulation of 5-hydroxytryptamine release in mouse prefrontal cortex by local 5-HT(2A) receptors: effect of antipsychotic drugs. Eur J Neurosci 18(5):1235–1246

    Article  PubMed  Google Scholar 

  • Bortolozzi A et al (2005) The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity. J Neurochem 95(6):1597–1607

    Article  CAS  PubMed  Google Scholar 

  • Bortolozzi A et al (2010) Dopamine release induced by atypical antipsychotics in prefrontal cortex requires 5-HT(1A) receptors but not 5-HT(2A) receptors. Int J Neuropsychopharmacol 13(10):1299–1314

    Article  CAS  PubMed  Google Scholar 

  • Breier A et al (1997) Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry 154(6):805–811

    Article  CAS  PubMed  Google Scholar 

  • Brush DE, Bird SB, Boyer EW (2004) Monoamine oxidase inhibitor poisoning resulting from Internet misinformation on illicit substances. J Toxicol Clin Toxicol 42(2):191–195

    Article  CAS  PubMed  Google Scholar 

  • Camchong J et al (2011) Altered functional and anatomical connectivity in schizophrenia. Schizophr Bull 37(3):640–650

    Article  PubMed  Google Scholar 

  • Cardinal RN et al (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26(3):321–352

    Article  PubMed  Google Scholar 

  • Carhart-Harris RL et al (2012) Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci U S A 109(6):2138–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlen M et al (2012) A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry 17(5):537–548

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A (1977) Does dopamine play a role in schizophrenia? Psychol Med 7(4):583–597

    Article  CAS  PubMed  Google Scholar 

  • Carlsson M, Carlsson A (1989) Dramatic synergism between MK-801 and clonidine with respect to locomotor stimulatory effect in monoamine-depleted mice. J Neural Transm 77(1):65–71

    Article  CAS  PubMed  Google Scholar 

  • Cavara NA, Hollmann M (2008) Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol Neurobiol 38(1):16–26

    Article  CAS  PubMed  Google Scholar 

  • Celada P et al. (2008) The hallucinogen DOI reduces low-frequency oscillations in rat prefrontal cortex: reversal by antipsychotic drugs. Biol Psychiatry 64(5):392–400

    Article  CAS  PubMed  Google Scholar 

  • Celada P, Puig MV, Artigas F (2013) Serotonin modulation of cortical neurons and networks. Front Integr Neurosci 7:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crunelli V, Hughes SW (2010) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Davidson RJ, Irwin W (1999) The functional neuroanatomy of emotion and affective style. Trends Cogn Sci 3(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • de Almeida J, Mengod G (2007) Quantitative analysis of glutamatergic and GABAergic neurons expressing 5-HT(2A) receptors in human and monkey prefrontal cortex. J Neurochem 103(2):475–486

    Article  PubMed  CAS  Google Scholar 

  • de Almeida J, Mengod G (2008) Serotonin 1A receptors in human and monkey prefrontal cortex are mainly expressed in pyramidal neurons and in a GABAergic interneuron subpopulation: implications for schizophrenia and its treatment. J Neurochem 107(2):488–496

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J et al (2013) New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 14(3):202–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(Pt 1):279–306

    Article  PubMed  Google Scholar 

  • Diaz-Mataix L et al (2005) Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J Neurosci 25(47):10831–10843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drevets WC (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 11(2):240–249

    Article  CAS  PubMed  Google Scholar 

  • Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5(1):16–25

    Article  PubMed  Google Scholar 

  • Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30(2):319–333

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM (2008) The prefrontal cortex, 4th edn. Academic Press, Los Angeles, California, USA

    Chapter  Google Scholar 

  • Gabbott PL et al (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492(2):145–177

    Article  PubMed  Google Scholar 

  • Galarreta M, Hestrin S (2001) Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci 2(6):425–433

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Vollenweider FX (2008) Serotonin research: contributions to understanding psychoses. Trends Pharmacol Sci 29(9):445–453

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA et al (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156(2–3):117–154

    Article  CAS  PubMed  Google Scholar 

  • Gillin JC, Wyatt RJ (1976) Evidence for and against the involvement of N, N-dimethyl-tryptamine (DMT) and 5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) in schizophrenia. Psychopharmacol Bull 12(4):12–13

    CAS  PubMed  Google Scholar 

  • Glennon RA (1991) Discriminative stimulus properties of hallucinogens and related designer drugs. NIDA Res Monogr 116:25–44

    CAS  Google Scholar 

  • Glennon RA (1994) Classical hallucinogens: an introductory overview. NIDA Res Monogr 146:4–32

    CAS  PubMed  Google Scholar 

  • Gonzalez-Maeso J et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452

    Article  CAS  PubMed  Google Scholar 

  • Goonawardena AV et al (2016) Alterations in high-frequency neuronal oscillations in a cynomolgus macaque test of sustained attention following NMDA receptor antagonism. Neuropsychopharmacology 41(5):1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Uylings HB (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res 126:3–28

    Article  CAS  PubMed  Google Scholar 

  • Hall H et al (2000) Autoradiographic localization of 5-HT(2A) receptors in the human brain using [(3)H]M100907 and [(11)C]M100907. Synapse 38(4):421–431

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ (1999a) The neuropathological effects of antipsychotic drugs. Schizophr Res 40(2):87–99

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ (1999b) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122(Pt 4):593–624

    Article  PubMed  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10(1):40–68; image 5

    Article  CAS  Google Scholar 

  • Hoffman RE, McGlashan TH (1993) Neurodynamics and schizophrenia research: editors’ introduction. Schizophr Bull 19(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27(43):11496–11500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong LE et al (2010) Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 35(3):632–640

    Article  PubMed  Google Scholar 

  • Ichikawa J et al (2001) 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76(5):1521–1531

    Article  CAS  PubMed  Google Scholar 

  • Itoh T et al (2011) LORETA analysis of three-dimensional distribution of delta band activity in schizophrenia: relation to negative symptoms. Neurosci Res 70(4):442–448

    Article  PubMed  Google Scholar 

  • Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 95(2):735–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Jodo E et al (2005) Activation of medial prefrontal cortex by phencyclidine is mediated via a hippocampo-prefrontal pathway. Cereb Cortex 15(5):663–669

    Article  PubMed  Google Scholar 

  • Kargieman L et al (2007) Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine. Proc Natl Acad Sci U S A 104(37):14843–14848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kargieman L et al (2012) Clozapine reverses phencyclidine-induced desynchronization of prefrontal cortex through a 5-HT(1A) receptor-dependent mechanism. Neuropsychopharmacology 37(3):723–733

    Article  CAS  PubMed  Google Scholar 

  • Katayama T et al (2007) Activation of medial prefrontal cortex neurons by phencyclidine is mediated via AMPA/kainate glutamate receptors in anesthetized rats. Neuroscience 150(2):442–448

    Article  CAS  PubMed  Google Scholar 

  • Keshavan MS et al (1998) Delta sleep deficits in schizophrenia: evidence from automated analyses of sleep data. Arch Gen Psychiatry 55(5):443–448

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi M et al (2011) Frontal areas contribute to reduced global coordination of resting-state gamma activities in drug-naive patients with schizophrenia. Schizophr Res 130(1–3):187–194

    Article  PubMed  Google Scholar 

  • Kiss T, Hoffmann WE, Hajos M (2011a) Delta oscillation and short-term plasticity in the rat medial prefrontal cortex: modelling NMDA hypofunction of schizophrenia. Int J Neuropsychopharmacol 14(1):29–42

    Article  CAS  PubMed  Google Scholar 

  • Kiss T et al (2011b) Role of thalamic projection in NMDA receptor-induced disruption of cortical slow oscillation and short-term plasticity. Front Psychiatry 2:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kometer M et al (2015) Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations. Psychopharmacology 232(19):3663–3676

    Article  CAS  PubMed  Google Scholar 

  • Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97(2):153–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korotkova T et al (2010) NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68(3):557–569

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH et al (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 169(3–4):215–233

    Article  CAS  PubMed  Google Scholar 

  • Kuroda M, Yokofujita J, Murakami K (1998) An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Prog Neurobiol 54(4):417–458

    Article  CAS  PubMed  Google Scholar 

  • Kurrasch-Orbaugh DM et al (2003) Serotonin 5-hydroxytryptamine 2A receptor-coupled phospholipase C and phospholipase A2 signaling pathways have different receptor reserves. J Pharmacol Exp Ther 304(1):229–237

    Article  CAS  PubMed  Google Scholar 

  • Laruelle M et al (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93(17):9235–9240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8(6):413–426

    Article  CAS  PubMed  Google Scholar 

  • Leresche N et al (1990) Pacemaker-like and other types of spontaneous membrane potential oscillations of thalamocortical cells. Neurosci Lett 113(1):72–77

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Gonzalez-Burgos G (2006) Pathophysiologically based treatment interventions in schizophrenia. Nat Med 12(9):1016–1022

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28(2):325–334

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6(4):312–324

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA et al (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Lladó-Pelfort L et al (2016) Phencyclidine-induced disruption of oscillatory activity in prefrontal cortex: effects of antipsychotic drugs and receptor ligands. Eur Neuropsychopharmacol 26(3):614–625

    Article  PubMed  CAS  Google Scholar 

  • Llinas RR, Steriade M (2006) Bursting of thalamic neurons and states of vigilance. J Neurophysiol 95(6):3297–3308

    Article  PubMed  Google Scholar 

  • Lopez Hill X, Scorza MC (2012) Role of the anterior thalamic nucleus in the motor hyperactivity induced by systemic MK-801 administration in rats. Neuropharmacology 62(7):2440–2446

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Gil X et al (2007) Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 32(10):2087–2097

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Gil X et al (2012) Importance of inter-hemispheric prefrontal connection in the effects of non-competitive NMDA receptor antagonists. Int J Neuropsychopharmacol 15(7):945–956

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Gimenez JF et al (2001) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL100,907 autoradiography and in situ hybridization studies. J Comp Neurol 429(4):571–589

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ, Aghajanian GK (1998) 5-Hydroxytryptamine-induced excitatory postsynaptic currents in neocortical layer V pyramidal cells: suppression by mu-opiate receptor activation. Neuroscience 86(2):485–497

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ et al (2001) A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience 105(2):379–392

    Article  CAS  PubMed  Google Scholar 

  • Marshall L et al (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444(7119):610–613

    Article  CAS  PubMed  Google Scholar 

  • Martin-Ruiz R et al (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21(24):9856–9866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayberg HS et al (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna DJ (2004) Clinical investigations of the therapeutic potential of ayahuasca: rationale and regulatory challenges. Pharmacol Ther 102(2):111–129

    Article  CAS  PubMed  Google Scholar 

  • McKenna DJ, Towers GH, Abbott F (1984) Monoamine oxidase inhibitors in South American hallucinogenic plants: tryptamine and beta-carboline constituents of ayahuasca. J Ethnopharmacol 10(2):195–223

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY, Massey BW (2011) The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol 11(1):59–67

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  • Miner LA et al (2003) Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience 116(1):107–117

    Article  CAS  PubMed  Google Scholar 

  • Muthukumaraswamy SD et al (2013) Broadband cortical desynchronization underlies the human psychedelic state. J Neurosci 33(38):15171–15183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols DE (2004) Hallucinogens. Pharmacol Ther 101(2):131–181

    Article  CAS  PubMed  Google Scholar 

  • Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunez PL, Srinivasan R (2006) A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol 117(11):2424–2435

    Article  PubMed  PubMed Central  Google Scholar 

  • Oughourlian JM, Rougeul A, Verdeaux J (1971) Action of hallucinogens on electroencephalograms. Therapie 26(5):953–968

    CAS  PubMed  Google Scholar 

  • Palenicek T et al (2013) Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats. Psychopharmacology 225(1):75–93

    Article  CAS  PubMed  Google Scholar 

  • Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7(1):39–47

    Article  CAS  PubMed  Google Scholar 

  • Pazos A, Cortes R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346(2):231–249

    Article  CAS  PubMed  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987) Serotonin receptors in the human brain–IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21(1):123–139

    Article  CAS  PubMed  Google Scholar 

  • Petsche H, Pockberger H, Rappelsberger P (1984) On the search for the sources of the electroencephalogram. Neuroscience 11(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Phillips ML et al (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 54(5):504–514

    Article  PubMed  Google Scholar 

  • Pinault D (2008) N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex. Biol Psychiatry 63(8):730–735

    Article  CAS  PubMed  Google Scholar 

  • Poulin J, Stip E, Godbout R (2008) REM sleep EEG spectral analysis in patients with first-episode schizophrenia. J Psychiatr Res 42(13):1086–1093

    Article  PubMed  Google Scholar 

  • Puig MV et al (2003) In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb Cortex 13(8):870–882

    Article  PubMed  Google Scholar 

  • Puig MV, Artigas F, Celada P (2005) Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb Cortex 15(1):1–14

    Article  PubMed  Google Scholar 

  • Puigdemont D et al (2012) Deep brain stimulation of the subcallosal cingulate gyrus: further evidence in treatment-resistant major depression. Int J Neuropsychopharmacol 15(1):121–133

    Article  PubMed  Google Scholar 

  • Raichle ME et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen H et al (2010) Decreased frontal serotonin2A receptor binding in antipsychotic-naive patients with first-episode schizophrenia. Arch Gen Psychiatry 67(1):9–16

    Article  PubMed  Google Scholar 

  • Rasmussen H et al (2016) Low frontal serotonin 2A receptor binding is a state marker for schizophrenia? Eur Neuropsychopharmacol 26(7):1248–1250

    Article  CAS  PubMed  Google Scholar 

  • Riba J et al (2002) Topographic pharmaco-EEG mapping of the effects of the South American psychoactive beverage ayahuasca in healthy volunteers. Br J Clin Pharmacol 53(6):613–628

    Article  PubMed  PubMed Central  Google Scholar 

  • Riba J et al (2004) Effects of the South American psychoactive beverage ayahuasca on regional brain electrical activity in humans: a functional neuroimaging study using low-resolution electromagnetic tomography. Neuropsychobiology 50(1):89–101

    Article  PubMed  Google Scholar 

  • Riga MS et al (2014) The natural hallucinogen 5-MeO-DMT, component of ayahuasca, disrupts cortical function in rats: reversal by antipsychotic drugs. Int J Neuropsychopharmacol 17(8):1269–1282

    Article  CAS  PubMed  Google Scholar 

  • Rockstroh BS et al (2007) Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network? BMC Psychiatry 7:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Rollema H et al (1997) Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation. Eur J Pharmacol 338(2):R3–R5

    Article  CAS  PubMed  Google Scholar 

  • Santana N et al (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14(10):1100–1109

    Article  PubMed  Google Scholar 

  • Santana N, Mengod G, Artigas F (2009) Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 19(4):849–860

    Article  PubMed  Google Scholar 

  • Santana N et al (2011) Activation of thalamocortical networks by the N-methyl-D-aspartate receptor antagonist phencyclidine: reversal by clozapine. Biol Psychiatry 69(10):918–927

    Article  CAS  PubMed  Google Scholar 

  • Santana N, Mengod G, Artigas F (2013) Expression of alpha(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors. Int J Neuropsychopharmacol 16(5):1139–1151

    Article  CAS  PubMed  Google Scholar 

  • Schenberg EE et al (2015) Acute biphasic effects of ayahuasca. PLoS ONE 10(9):e0137202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schreiber R, Brocco M, Millan MJ (1994) Blockade of the discriminative stimulus effects of DOI by MDL 100,907 and the ‘atypical’ antipsychotics, clozapine and risperidone. Eur J Pharmacol 264(1):99–102

    Article  CAS  PubMed  Google Scholar 

  • Schug RA et al (2011) Resting EEG deficits in accused murderers with schizophrenia. Psychiatry Res 194(1):85–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultes RE, Hofmann A (1991) The botany and chemistry of Hallucinogens. Charles C Thomas Pub Ltd., Springfield, Illinois, USA

    Google Scholar 

  • Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74(1):1–58

    Article  CAS  PubMed  Google Scholar 

  • Sebban C et al (2002) Effects of phencyclidine (PCP) and MK 801 on the EEGq in the prefrontal cortex of conscious rats; antagonism by clozapine, and antagonists of AMPA-, alpha(1)- and 5-HT(2A)-receptors. Br J Pharmacol 135(1):65–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekimoto M et al (2007) Reduced frontal asymmetry of delta waves during all-night sleep in schizophrenia. Schizophr Bull 33(6):1307–1311

    Article  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Seminowicz DA et al (2004) Limbic-frontal circuitry in major depression: a path modeling metanalysis. NeuroImage 22(1):409–418

    Article  CAS  PubMed  Google Scholar 

  • Shergill SS et al (2000) Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry 57(11):1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Skelly LR et al (2008) Diffusion tensor imaging in schizophrenia: relationship to symptoms. Schizophr Res 98(1–3):157–162

    Article  PubMed  Google Scholar 

  • Sklerov J et al (2005) A fatal intoxication following the ingestion of 5-methoxy-N, N-dimethyltryptamine in an ayahuasca preparation. J Anal Toxicol 29(8):838–841

    Article  CAS  PubMed  Google Scholar 

  • Spencer KM (2011) Baseline gamma power during auditory steady-state stimulation in schizophrenia. Front Hum Neurosci 5:190

    PubMed  Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6(4):557–618

    Article  CAS  PubMed  Google Scholar 

  • Steriade M (2006) Grouping of brain rhythms in corticothalamic systems. Neuroscience 137(4):1087–1106

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Nunez A, Amzica F (1993) Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13(8):3266–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y et al (2002) Acute administration of phencyclidine induces tonic activation of medial prefrontal cortex neurons in freely moving rats. Neuroscience 114(3):769–779

    Article  CAS  PubMed  Google Scholar 

  • Swanson CJ et al (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 4(2):131–144

    Article  CAS  PubMed  Google Scholar 

  • Traub RD et al (2000) A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur J Neurosci 12(11):4093–4106

    Article  CAS  PubMed  Google Scholar 

  • Traub RD et al (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J Neurosci 21(23):9478–9486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troyano-Rodriguez E et al (2014) Phencyclidine inhibits the activity of thalamic reticular gamma-aminobutyric acidergic neurons in rat brain. Biol Psychiatry 76(12):937–945

    Article  CAS  PubMed  Google Scholar 

  • Tseng KY et al (2006) Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo. Synapse 59(7):412–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upton N et al. (2014) NMDA receptor antagonist-induced changes in rat EEG power spectra as a model of schizophrenia. Program No. 230.04, in neuroscience 2014 abstracts 2014. Society for Neuroscience, Washington, USA

    Google Scholar 

  • Van Eden CG et al (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuroscience 22(3):849–862

    Article  PubMed  Google Scholar 

  • Vazquez-Borsetti P, Cortes R, Artigas F (2009) Pyramidal neurons in rat prefrontal cortex projecting to ventral tegmental area and dorsal raphe nucleus express 5-HT2A receptors. Cereb Cortex 19(7):1678–1686

    Article  PubMed  Google Scholar 

  • Vazquez-Borsetti P et al (2011) Simultaneous projections from prefrontal cortex to dopaminergic and serotonergic nuclei. Int J Neuropsychopharmacol 14(3):289–302

    Article  CAS  PubMed  Google Scholar 

  • Venables NC, Bernat EM, Sponheim SR (2009) Genetic and disorder-specific aspects of resting state EEG abnormalities in schizophrenia. Schizophr Bull 35(4):826–839

    Article  PubMed  Google Scholar 

  • Villalobos C et al (2005) Serotonergic regulation of calcium-activated potassium currents in rodent prefrontal cortex. Eur J Neurosci 22(5):1120–1126

    Article  PubMed  Google Scholar 

  • Vollenweider FX, Kometer M (2010) The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci 11(9):642–651

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX et al (1997a) Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16(5):357–372

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX et al (1997b) Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol 7(1):9–24

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44(7):660–669

    Article  CAS  PubMed  Google Scholar 

  • Woo TU, Kim AM, Viscidi E (2008) Disease-specific alterations in glutamatergic neurotransmission on inhibitory interneurons in the prefrontal cortex in schizophrenia. Brain Res 1218:267–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood J, Kim Y, Moghaddam B (2012) Disruption of prefrontal cortex large scale neuronal activity by different classes of psychotomimetic drugs. J Neurosci 32(9):3022–3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu AM (2008) Indolealkylamines: biotransformations and potential drug-drug interactions. AAPS J 10(2):242–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Llinas RR, Lisman JE (2009) Inhibition of NMDARs in the Nucleus Reticularis of the Thalamus Produces Delta Frequency Bursting. Front Neural Circuits 3:20

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2012) NMDAR antagonist action in thalamus imposes delta oscillations on the hippocampus. J Neurophysiol 107(11):3181–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the Innovative Medicines Initiative Joint Undertaking (IMI) under Grant Agreement N° 115008 (NEWMEDS). IMI is a public–private partnership between the European Union and the European Federation of Pharmaceutical Industries and Associations. Support from the following grants is also acknowledged: SAF 2015-68346-P (Ministry of Economy and Competitiveness and European Regional Development Fund), PI09/1245 and PI12/00156 (PN de I+D+I 2008–2011, ISCIII-Subdireccion General de Evaluación y Fomento de la Investigación cofinanced by the European Regional Development Fund. “Una manera de hacer Europa”) and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (P82, 11INT3). Support from the Generalitat de Catalunya (SGR20093) is also acknowledged. MR is recipient of a IDIBAPS fellowship.

Statement of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Artigas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lladó-Pelfort, L., Celada, P., Riga, M.S., Troyano-Rodríguez, E., Santana, N., Artigas, F. (2017). Effects of Hallucinogens on Neuronal Activity. In: Halberstadt, A.L., Vollenweider, F.X., Nichols, D.E. (eds) Behavioral Neurobiology of Psychedelic Drugs. Current Topics in Behavioral Neurosciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2017_473

Download citation

Publish with us

Policies and ethics