Skip to main content

Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action

  • Chapter
  • First Online:
Behavioral Neuroscience of Motivation

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 27))

Abstract

Many brain areas are activated by the possibility and receipt of reward. Are all of these brain areas reporting the same information about reward? Or are these signals related to other functions that accompany reward-guided learning and decision-making? Through carefully controlled behavioral studies, it has been shown that reward-related activity can represent reward expectations related to future outcomes, errors in those expectations, motivation, and signals related to goal- and habit-driven behaviors. These dissociations have been accomplished by manipulating the predictability of positively and negatively valued events. Here, we review single neuron recordings in behaving animals that have addressed this issue. We describe data showing that several brain areas, including orbitofrontal cortex, anterior cingulate, and basolateral amygdala signal reward prediction. In addition, anterior cingulate, basolateral amygdala, and dopamine neurons also signal errors in reward prediction, but in different ways. For these areas, we will describe how unexpected manipulations of positive and negative value can dissociate signed from unsigned reward prediction errors. All of these signals feed into striatum to modify signals that motivate behavior in ventral striatum and guide responding via associative encoding in dorsolateral striatum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambroggi F, Ishikawa A, Fields HL, Nicola SM (2008) Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59:648–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiez C, Joseph JP, Procyk E (2005) Anterior cingulate error-related activity is modulated by predicted reward. Eur J Neurosci 21:3447–3452

    Article  PubMed  PubMed Central  Google Scholar 

  • Amiez C, Joseph JP, Procyk E (2006) Reward encoding in the monkey anterior cingulate cortex. Cereb Cortex 16:1040–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson AK (2005) Affective influences on the attentional dynamics supporting awareness. J Exp Psychol Gen 134:258–281

    Article  PubMed  Google Scholar 

  • Anderson BA, Laurent PA, Yantis S (2011) Value-driven attentional capture. Proc Natl Acad Sci USA 108:10367–10371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anstrom KK, Miczek KA, Budygin EA (2009) Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience 161:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apicella P, Ljungberg T, Scarnati E, Schultz W (1991) Responses to reward in monkey dorsal and ventral striatum. Exp Brain Res. Experimentelle Hirnforschung. Experimentation cerebrale 85:491–500

    Google Scholar 

  • Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacol: Official Publ Am Coll Neuropsychopharmacol 35:48–69

    Article  Google Scholar 

  • Balleine BW, Daw ND, O’Doherty JP (2008) Multiple forms of value learning and the function of dopamine. In: Glimcher PW, Camerer CF, Fehr E, Poldrack RA (eds) Neuroeconomics: decision making and the brain. Elsevier, Amsterdam

    Google Scholar 

  • Barto A (ed) (1995) Adaptive critics and the basal ganglia. MIT Press, Cambridge

    Google Scholar 

  • Bechara A, Damasio H, Damasio AR, Lee GP (1999) Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J Neurosci 19:5473–5481

    CAS  PubMed  Google Scholar 

  • Belova MA, Paton JJ, Morrison SE, Salzman CD (2007) Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron 55:970–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belova MA, Patton JJ, Salzman CD (2008) Moment-to-moment tracking of state value in the amygdala. J Neurosci 28:10023–10030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191:391–431

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    Article  CAS  PubMed  Google Scholar 

  • Bissonette GB et al (2013) Separate populations of neurons in ventral striatum encode value and motivation. PLoS ONE 8:e64673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bissonette GB, Gentry RN, Padmala S, Pessoa L, Roesch MR (2014) Impact of appetitive and aversive outcomes on brain responses: linking the animal and human literatures. Frontiers Syst Neurosci 8:24

    Article  Google Scholar 

  • Blokland A (1998) Reaction time responding in rats. Neurosci Biobehav Rev 22:847–864

    Article  CAS  PubMed  Google Scholar 

  • Brinschwitz K et al (2010) Glutamatergic axons from the lateral habenula mainly terminate on GABAergic neurons of the ventral midbrain. Neuroscience 168:463–476

    Article  CAS  PubMed  Google Scholar 

  • Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci USA 106:4894–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010a) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010b) Distinct tonic and phasic anticipatory activity in lateral habenula and dopamine neurons. Neuron 67:144–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryden DW, Johnson EE, Tobia SC, Kashtelyan V, Roesch MR (2011a) Attention for learning signals in anterior cingulate cortex. J Neurosci: Official J Soc Neurosci 31:18266–18274

    Article  CAS  Google Scholar 

  • Bryden DW, Johnson EE, Diao X, Roesch MR (2011b) Impact of expected value on neural activity in rat substantia nigra pars reticulata. Eur J Neurosci 33:2308–2317

    Article  PubMed  PubMed Central  Google Scholar 

  • Burke KA, Franz TM, Miller DN, Schoenbaum G (2008) The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature 454:340–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton AC, Bissonette GB, Lichtenberg NT, Kashtelyan V, Roesch MR (2013) Ventral striatum lesions enhance stimulus and response encoding in dorsal striatum. Biol Psychiatry

    Google Scholar 

  • Burton AC, Bissonette GB, Lichtenberg NT, Kashtelyan V, Roesch MR (2014) Ventral striatum lesions enhance stimulus and response encoding in dorsal striatum. Biol Psychiatry 75:132–139

    Article  PubMed  Google Scholar 

  • Burton AC, Nakamura K, Roesch MR (2015) From ventral-medial to dorsal-lateral striatum: neural correlates of reward-guided decision-making. Neurobiol Learn Mem 117:51–59

    Article  PubMed  Google Scholar 

  • Cai X, Kim S, Lee D (2011) Heterogeneous coding of temporally discounted values in the dorsal and ventral striatum during intertemporal choice. Neuron 69:170–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinal RN (2006) Neural systems implicated in delayed and probabilistic reinforcement. Neural Netw 19:1277–1301

    Article  PubMed  Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499–2501

    Article  CAS  PubMed  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002a) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Cardinal RN et al (2002b) Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav Neurosci 116:553–567

    Article  PubMed  Google Scholar 

  • Carelli RM, Deadwyler SA (1994) A comparison of nucleus accumbens neuronal firing patterns during cocaine self-administration and water reinforcement in rats. J Neurosci 14:7735–7746

    CAS  PubMed  Google Scholar 

  • Carter CS et al (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–749

    Article  CAS  PubMed  Google Scholar 

  • Cassell MD, Wright DJ (1986) Topography of projections from the medial prefrontal cortex to the amygdala in the rat. Brain Res Bull 17:321–333

    Article  CAS  PubMed  Google Scholar 

  • Catanese J, van der Meer M (2013) A network state linking motivation and action in the nucleus accumbens. Neuron 78:753–754

    Article  CAS  PubMed  Google Scholar 

  • Churchwell JC, Morris AM, Heurtelou NM, Kesner RP (2009) Interactions between the prefrontal cortex and amygdala during delay discounting and reversal. Behav Neurosci 123:1185–1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Cousens GA, Otto T (2003) Neural substrates of olfactory discrimination learning with auditory secondary reinforcement. I. Contributions of the basolateral amygdaloid complex and orbitofrontal cortex. Integr Physiol Behav Sci 38:272–294

    Article  PubMed  Google Scholar 

  • Cromwell HC, Hassani OK, Schultz W (2005) Relative reward processing in primate striatum. Exp Brain Res. Experimentelle Hirnforschung. Experimentation cerebrale 162:520–525

    Google Scholar 

  • Daw ND, Kakade S, Dayan P (2002) Opponent interactions between serotonin and dopamine. Neural Networks: Official J Int Neural Network Soc 15:603–616

    Article  Google Scholar 

  • Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8:1704–1711

    Article  CAS  PubMed  Google Scholar 

  • Day JJ, Jones JL, Carelli RM (2011) Nucleus accumbens neurons encode predicted and ongoing reward costs in rats. Eur J Neurosci 33:308–321

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    Article  PubMed  Google Scholar 

  • Di Ciano P, Cardinal RN, Cowell RA, Little SJ, Everitt BJ (2001) Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. J Neurosci 21:9471–9477

    PubMed  Google Scholar 

  • Dziewiatkowski J et al (1998) The projection of the amygdaloid nuclei to various areas of the limbic cortex in the rat. Folia Morphol (Warsz) 57:301–308

    CAS  Google Scholar 

  • Floresco SB, St Onge JR, Ghods-Sharifi S, Winstanley CA (2008) Cortico-limbic-striatal circuits subserving different forms of cost-benefit decision making. Cogn Affect Behav Neurosci 8:375–389

    Google Scholar 

  • Gallagher M (2000) The amygdala and associative learning. In: Aggleton JP (ed) The amygdala: a functional analysis. Oxford University Press, Oxford, pp 311–330

    Google Scholar 

  • Ghods-Sharifi S, Floresco SB (2010) Differential effects on effort discounting induced by inactivations of the nucleus accumbens core or shell. Behav Neurosci 124:179–191

    Article  PubMed  Google Scholar 

  • Ghods-Sharifi S., St Onge, J.R. & Floresco, S.B. Fundamental contribution by the basolateral amygdala to different forms of decision making. J Neurosci 29, 5251-5259 (2009)

    Google Scholar 

  • Giertler C, Bohn I, Hauber W (2003) The rat nucleus accumbens is involved in guiding of instrumental responses by stimuli predicting reward magnitude. Eur J Neurosci 18:1993–1996

    Article  PubMed  Google Scholar 

  • Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev Neurosci 30:535–574

    Article  CAS  PubMed  Google Scholar 

  • Goldstein BL et al (2012) Ventral striatum encodes past and predicted value independent of motor contingencies. J Neurosci: Official J Soc Neurosci 32:2027–2036

    Article  CAS  Google Scholar 

  • Gruber AJ, Hussain RJ, O’Donnell P (2009) The nucleus accumbens: a switchboard for goal-directed behaviors. PLoS ONE 4:e5062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gruber AJ et al (2010) More is less: a disinhibited prefrontal cortex impairs cognitive flexibility. J Neurosci 30:17102–17110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330

    Article  PubMed  Google Scholar 

  • Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacol: Official Publ Am Coll Neuropsychopharmacol 35:4–26

    Article  Google Scholar 

  • Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    CAS  PubMed  Google Scholar 

  • Haney RZ, Calu DJ, Takahashi YK, Hughes BW, Schoenbaum G (2010) Inactivation of the central but not the basolateral nucleus of the amygdala disrupts learning in response to overexpectation of reward. J Neurosci 30:2911–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield T, Han JS, Conley M, Gallagher M, Holland P (1996) Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J Neurosci 16:5256–5265

    CAS  PubMed  Google Scholar 

  • Hayden BY, Heilbronner SR, Pearson JM, Platt ML (2011) Surprise signals in anterior cingulate cortex: neuronal encoding of unsigned reward prediction errors driving adjustment in behavior. J Neurosci 31:4178–4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez A, Burton AC, O’Donnell P, Schoenbaum G, Roesch MR (2015) Altered basolateral amygdala encoding in an animal model of schizophrenia. J Neurosci 35:6394–6400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hikosaka O (2010) The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11:503–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillman KL, Bilkey DK (2010) Neurons in the rat anterior cingulate cortex dynamically encode cost-benefit in a spatial decision-making task. J Neurosci 30:7705–7713

    Article  CAS  PubMed  Google Scholar 

  • Hollerman JR, Tremblay L, Schultz W (1998) Influence of reward expectation on behavior-related neuronal activity in primate striatum. J Neurophysiol 80:947–963

    CAS  PubMed  Google Scholar 

  • Holroyd CB, Coles MG (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709

    Article  PubMed  Google Scholar 

  • Hong S, Hikosaka O (2008) The globus pallidus sends reward-related signals to the lateral habenula. Neuron 60:720–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S, Jhou TC, Smith M, Saleem KS, Hikosaka O (2011) Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J Neurosci 31:11457–11471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa T, Kato K, Inoue M, Mikami A (2007) Neurons in the macaque orbitofrontal cortex code relative preference of both rewarding and aversive outcomes. Neurosci Res 57:434–445

    Article  PubMed  Google Scholar 

  • Houk J, Adams JL, Barto AG (ed) (1995) A model of how the basal ganglia generate and use neural signals that predict reinforcement

    Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev 31:6–41

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Doya K (2009) Validation of decision-making models and analysis of decision variables in the rat basal ganglia. J Neurosci 29:9861–9874

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Stuphorn V, Brown JW, Schall JD (2003) Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302:120–122

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo AD, Suda RK, Murray EA (2004) Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J Neurosci 24:7540–7548

    Article  CAS  PubMed  Google Scholar 

  • Janak PH, Chen MT, Caulder T (2004) Dynamics of neural coding in the accumbens during extinction and reinstatement of rewarded behavior. Behav Brain Res 154:125–135

    Article  PubMed  Google Scholar 

  • Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC (2009) The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61:786–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Shepard PD (2007) Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism. J Neurosci 27:6923–6930

    Article  CAS  PubMed  Google Scholar 

  • Jo YS, Lee J, Mizumori SJ (2013) Effects of prefrontal cortical inactivation on neural activity in the ventral tegmental area. J Neurosci 33:8159–8171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joel D, Niv Y, Ruppin E (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Networks: Official J Int Neural Network Soc 15:535–547

    Article  Google Scholar 

  • Johansen JP, Tarpley JW, LeDoux JE, Blair HT (2010) Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray. Nat Neurosci 13:979–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones B, Mishkin M (1972) Limbic lesions and the problem of stimulus-reinforcement associations. Exp Neurol 36:362–377

    Article  CAS  PubMed  Google Scholar 

  • Kalenscher T, Lansink CS, Lankelma JV, Pennartz CM (2010) Reward-associated gamma oscillations in ventral striatum are regionally differentiated and modulate local firing activity. J Neurophysiol 103:1658–1672

    Article  PubMed  Google Scholar 

  • Kaping D, Vinck M, Hutchison RM, Everling S, Womelsdorf T (2011) Specific contributions of ventromedial, anterior cingulate, and lateral prefrontal cortex for attentional selection and stimulus valuation. PLoS Biol 9:e1001224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karachi C et al (2002) Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity. J Comp Neurol 450:122–134

    Article  PubMed  Google Scholar 

  • Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier MJ, Barrot M (2009) Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol 513:597–621

    Article  PubMed  Google Scholar 

  • Kennerley SW, Wallis JD (2009) Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables. Eur J Neurosci 29:2061–2073

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF (2006) Optimal decision making and the anterior cingulate cortex. Nat Neurosci 9:940–947

    Article  CAS  PubMed  Google Scholar 

  • Kennerley SW, Dahmubed AF, Lara AH, Wallis JD (2009) Neurons in the frontal lobe encode the value of multiple decision variables. J Cogn Neurosci 21:1162–1178

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennerley SW, Behrens TE, Wallis JD (2011) Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nat Neurosci 14:1581–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesner RP, Williams JM (1995) Memory for magnitude of reinforcement: dissociation between amygdala and hippocampus. Neurobiol Learn Mem 64:237–244

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Hwang J, Lee D (2008) Prefrontal coding of temporally discounted values during intertemporal choice. Neuron 59:161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Sul JH, Huh N, Lee D, Jung MW (2009) Role of striatum in updating values of chosen actions. J Neurosci: Official J Soc Neurosci 29:14701–14712

    Article  CAS  Google Scholar 

  • Klavir O, Genud-Gabai R, Paz R (2013) Functional connectivity between amygdala and cingulate cortex for adaptive aversive learning. Neuron 80:1290–1300

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Schmid A, Schnitzler HU (2000) Role of muscles accumbens dopamine D1 and D2 receptors in instrumental and Pavlovian paradigms of conditioned reward. Psychopharmacology 152:67–73

    Article  CAS  PubMed  Google Scholar 

  • Lammel S, Ion DI, Roeper J, Malenka RC (2011) Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70:855–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang PJ, Davis M (2006) Emotion, motivation, and the brain: reflex foundations in animal and human research. Prog Brain Res 156:3–29

    Article  PubMed  Google Scholar 

  • Lansink CS, Goltstein PM, Lankelma JV, Pennartz CM (2010) Fast-spiking interneurons of the rat ventral striatum: temporal coordination of activity with principal cells and responsiveness to reward. Eur J Neurosci 32:494–508

    Article  PubMed  Google Scholar 

  • Lau B, Glimcher PW (2007) Action and outcome encoding in the primate caudate nucleus. J Neurosci 27:14502–14514

    Article  CAS  PubMed  Google Scholar 

  • Lau B, Glimcher PW (2008) Value representations in the primate striatum during matching behavior. Neuron 58:451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leathers ML, Olson CR (2012) In monkeys making value-based decisions, LIP neurons encode cue salience and not action value. Science 338:132–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leathers ML, Olson CR (2013) Response to comment on “in monkeys making value-based decisions, LIP neurons encode cue salience and not action value”. Science 340:430

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE (2000) The amygdala and emotion: a view through fear. In: Aggleton JP (ed) The amygdala: a functional analysis. Oxford University Press, New York, pp 289–310

    Google Scholar 

  • Lex B, Hauber W (2010) The role of nucleus accumbens dopamine in outcome encoding in instrumental and Pavlovian conditioning. Neurobiol Learn Mem 93:283–290

    Article  CAS  PubMed  Google Scholar 

  • Lichtenberg NT, Kashtelyan V, Burton AC, Bissonette GB, Roesch MR (2013) Nucleus accumbens core lesions enhance two-way active avoidance. Neurosci

    Google Scholar 

  • Louie K, Glimcher PW (2010) Separating value from choice: delay discounting activity in the lateral intraparietal area. J Neurosci 30:5498–5507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magno E, Foxe JJ, Molholm S, Robertson IH, Garavan H (2006) The anterior cingulate and error avoidance. J Neurosci 26:4769–4773

    Article  CAS  PubMed  Google Scholar 

  • Malkova L, Gaffan D, Murray EA (1997) Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J Neurosci 17:6011–6020

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Hikosaka O (2007) Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447:1111–1115

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Hikosaka O (2009) Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459:837–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto M, Matsumoto K, Abe H, Tanaka K (2007) Medial prefrontal cell activity signaling prediction errors of action values. Nat Neurosci 10:647–656

    Article  CAS  PubMed  Google Scholar 

  • McCullough LD, Salamone JD (1992) Involvement of nucleus accumbens dopamine in the motor activity induced by periodic food presentation: a microdialysis and behavioral study. Brain Res 592:29–36

    Article  CAS  PubMed  Google Scholar 

  • McGinty VB, Lardeux S, Taha SA, Kim JJ, Nicola SM (2013) Invigoration of reward seeking by cue and proximity encoding in the nucleus accumbens. Neuron 78:910–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monosov IE, Hikosaka O (2012) Regionally distinct processing of rewards and punishments by the primate ventromedial prefrontal cortex. J Neurosci 32:10318–10330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci: Official J Soc Neurosci 16:1936–1947

    CAS  Google Scholar 

  • Morrison SE, Saez A, Lau B, Salzman CD (2011) Different time courses for learning-related changes in amygdala and orbitofrontal cortex. Neuron 71:1127–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray EA (2007) The amygdala, reward and emotion. Trends Cogn Sci 11:489–497

    Article  PubMed  Google Scholar 

  • Nakamura K, Santos GS, Matsuzaki R, Nakahara H (2012) Differential reward coding in the subdivisions of the primate caudate during an oculomotor task. J Neurosci 32:15963–15982

    Article  CAS  PubMed  Google Scholar 

  • Newsome WT, Glimcher PW, Gottlieb J, Lee D, Platt ML (2013) Comment on “in monkeys making value-based decisions, LIP neurons encode cue salience and not action value”. Science 340:430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicola SM, Yun IA, Wakabayashi KT, Fields HL (2004) Cue-evoked firing of nucleus accumbens neurons encodes motivational significance during a discriminative stimulus task. J Neurophysiol 91:1840–1865

    Article  PubMed  Google Scholar 

  • Nishizawa K et al (2012) Striatal indirect pathway contributes to selection accuracy of learned motor actions. J Neurosci: Official J Soc Neurosci 32:13421–13432

    Article  CAS  Google Scholar 

  • Niv Y, Schoenbaum G (2008) Dialogues on prediction errors. Trends in cognitive sciences 12:265–272

    Article  PubMed  Google Scholar 

  • Nunes EJ, Randall PA, Podurgiel S, Correa M, Salamone JD (2013) Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors. Neurosci Biobehav Rev 37:2015–2025

    Article  CAS  PubMed  Google Scholar 

  • O’Doherty J et al (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–454

    Article  PubMed  CAS  Google Scholar 

  • Oleson EB, Gentry RN, Chioma VC, Cheer JF (2012) Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance. J Neurosci: Official J Soc Neurosci 32:14804–14808

    Article  CAS  Google Scholar 

  • Oliveira FT, McDonald JJ, Goodman D (2007) Performance monitoring in the anterior cingulate is not all error related: expectancy deviation and the representation of action-outcome associations. J Cogn Neurosci 19:1994–2004

    Article  PubMed  Google Scholar 

  • Omelchenko N, Bell R, Sesack SR (2009) Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area. Eur J Neurosci 30:1239–1250

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostlund SB, Balleine BW (2007) Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental learning. J Neurosci 27:4819–4825

    Article  CAS  PubMed  Google Scholar 

  • Padoa-Schioppa C (2007) Orbitofrontal cortex and the computation of economic value. Ann N Y Acad Sci 1121:232–253

    Article  PubMed  Google Scholar 

  • Padoa-Schioppa C (2011) Neurobiology of economic choice: a good-based model. Annu Rev Neurosci 34:333–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padoa-Schioppa C, Assad JA (2008) The representation of economic value in the orbitofrontal cortex is invariant for changes of menu. Nat Neurosci 11:95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padoa-Schioppa C, Cai X (2011) The orbitofrontal cortex and the computation of subjective value: consolidated concepts and new perspectives. Ann N Y Acad Sci 1239:130–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkinson JA et al (2001) The role of the primate amygdala in conditioned reinforcement. J Neurosci 21:7770–7780

    CAS  PubMed  Google Scholar 

  • Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2:417–424

    Article  CAS  PubMed  Google Scholar 

  • Pearce JM, Hall G (1980) A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev 87:532–552

    Article  CAS  PubMed  Google Scholar 

  • Phelps EA, Ling S, Carrasco M (2006) Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychol Sci 17:292–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickens CL et al (2003) Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J Neurosci 23:11078–11084

    CAS  PubMed  Google Scholar 

  • Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. Nature 400:233–238

    Article  CAS  PubMed  Google Scholar 

  • Quilodran R, Rothe M, Procyk E (2008) Behavioral shifts and action valuation in the anterior cingulate cortex. Neuron 57:314–325

    Article  CAS  PubMed  Google Scholar 

  • Rangel A, Hare T (2010) Neural computations associated with goal-directed choice. Curr Opin Neurobiol 20:262–270

    Article  CAS  PubMed  Google Scholar 

  • Redish AD (2004) Addiction as a computational process gone awry. Science 306:1944–1947

    Article  CAS  PubMed  Google Scholar 

  • Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF (eds) Classical conditioning II: current research and theory. Appleton-Century-Crofts, New York, pp 64–99

    Google Scholar 

  • Rich EL, Wallis JD (2014) Medial-lateral organization of the orbitofrontal cortex. J Cogn Neurosci 26:1347–1362

    Article  PubMed  PubMed Central  Google Scholar 

  • Roesch MR, Bryden DW (2011) Impact of size and delay on neural activity in the rat limbic corticostriatal system. Frontiers Neurosci 5:130

    Article  Google Scholar 

  • Roesch MR, Olson CR (2004) Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304:307–310

    Article  CAS  PubMed  Google Scholar 

  • Roesch MR, Olson CR (2005a) Neuronal activity in primate orbitofrontal cortex reflects the value of time. J Neurophysiol 94:2457–2471

    Article  PubMed  Google Scholar 

  • Roesch MR, Olson CR (2005b) Neuronal activity dependent on anticipated and elapsed delay in macaque prefrontal cortex, frontal and supplementary eye fields, and premotor cortex. J Neurophysiol 94:1469–1497

    Article  PubMed  Google Scholar 

  • Roesch MR, Calu DJ, Burke KA, Schoenbaum G (2007a) Should I stay or should I go? Transformation of time-discounted rewards in orbitofrontal cortex and associated brain circuits. Ann N Y Acad Sci 1104:21–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Roesch MR, Takahashi Y, Gugsa N, Bissonette GB, Schoenbaum G (2007b) Previous cocaine exposure makes rats hypersensitive to both delay and reward magnitude. J Neurosci 27:245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roesch MR, Singh T, Brown PL, Mullins SE, Schoenbaum G (2009) Ventral striatal neurons encode the value of the chosen action in rats deciding between differently delayed or sized rewards. J Neurosci 29:13365–13376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roesch MR, Calu DJ, Esber GR, Schoenbaum G (2010a) Neural correlates of variations in event processing during learning in basolateral amygdala. J Neurosci: Official J Soc Neurosci 30:2464–2471

    Article  CAS  Google Scholar 

  • Roesch MR, Calu DJ, Esber GR, Schoenbaum G (2010b) All that glitters … dissociating attention and outcome expectancy from prediction errors signals. J Neurophysiol 104:587–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Roesch MR et al (2012a) Normal aging alters learning and attention-related teaching signals in basolateral amygdala. J Neurosci 32:13137–13144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roesch MR, Bryden DW, Cerri DH, Haney ZR, Schoenbaum G (2012b) Willingness to wait and altered encoding of time-discounted reward in the orbitofrontal cortex with normal aging. J Neurosci 32:5525–5533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolls ET, Sienkiewicz ZJ, Yaxley S (1989) Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. EurJ Neurosci 1:53–60

    Article  Google Scholar 

  • Rothe M, Quilodran R, Sallet J, Procyk E (2011) Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation. J Neurosci: Official J Soc Neurosci 31:11110–11117

    Article  CAS  Google Scholar 

  • Rudebeck PH, Murray EA (2008) Amygdala and orbitofrontal cortex lesions differentially influence choices during object reversal learning. J Neurosci: Official J Soc Neurosci 28:8338–8343

    Article  CAS  Google Scholar 

  • Rudebeck PH, Murray EA (2011) Balkanizing the primate orbitofrontal cortex: distinct subregions for comparing and contrasting values. Ann N Y Acad Sci 1239:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudebeck PH, Murray EA (2014) The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron 84:1143–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudebeck PH, Bannerman DM, Rushworth MF (2008) The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making. Cogn Affect Behav Neurosci 8:485–497

    Article  CAS  PubMed  Google Scholar 

  • Rudebeck PH, Saunders RC, Prescott AT, Chau LS, Murray EA (2013a) Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat Neurosci 16:1140–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudebeck PH, Mitz AR, Chacko RV, Murray EA (2013b) Effects of amygdala lesions on reward-value coding in orbital and medial prefrontal cortex. Neuron 80:1519–1531

    Article  CAS  PubMed  Google Scholar 

  • Rushworth MF, Behrens TE (2008) Choice, uncertainty and value in prefrontal and cingulate cortex. Nat Neurosci 11:389–397

    Article  CAS  PubMed  Google Scholar 

  • Rushworth MF, Walton ME, Kennerley SW, Bannerman DM (2004) Action sets and decisions in the medial frontal cortex. Trends Cogn Sci 8:410–417

    Article  CAS  PubMed  Google Scholar 

  • Rushworth MF, Behrens TE, Rudebeck PH, Walton ME (2007) Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn Sci 11:168–176

    Article  CAS  PubMed  Google Scholar 

  • Saddoris MP, Gallagher M, Schoenbaum G (2005) Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron 46:321–331

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD (1986) Different effects of haloperidol and extinction on instrumental behaviours. Psychopharmacology 88:18–23

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD (1994) The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav Brain Res 61:117–133

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salamone JD et al (1991) Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology 104:515–521

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M, Nunes EJ, Randall PA, Pardo M (2012) The behavioral pharmacology of effort-related choice behavior: dopamine, adenosine and beyond. J Exp Anal Behav 97:125–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Sallet J et al (2007) Expectations, gains, and losses in the anterior cingulate cortex. Cogn Affect Behav Neurosci 7:327–336

    Article  PubMed  PubMed Central  Google Scholar 

  • Samejima K, Ueda Y, Doya K, Kimura M (2005) Representation of action-specific reward values in the striatum. Science 310:1337–1340

    Article  CAS  PubMed  Google Scholar 

  • Scheffers MK, Coles MG (2000) Performance monitoring in a confusing world: error-related brain activity, judgments of response accuracy, and types of errors. J Exp Psychol Hum Percept Perform 26:141–151

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G (2004) Affect, action, and ambiguity and the amygdala-orbitofrontal circuit. Focus on “combined unilateral lesions of the amygdala and orbital prefrontal cortex impair affective processing in rhesus monkeys”. J Neurophysiol 91:1938–1939

    Article  PubMed  Google Scholar 

  • Schoenbaum G, Eichenbaum H (1995) Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. J Neurophysiol 74:733–750

    CAS  PubMed  Google Scholar 

  • Schoenbaum G, Esber GR (2010) How do you (estimate you will) like them apples? Integration as a defining trait of orbitofrontal function. Curr Opin Neurobiol 20:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Roesch M (2005) Orbitofrontal cortex, associative learning, and expectancies. Neuron 47:633–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Chiba AA, Gallagher M (1998) Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat Neurosci 1:155–159

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G, Chiba AA, Gallagher M (1999) Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J Neurosci 19:1876–1884

    CAS  PubMed  Google Scholar 

  • Schoenbaum G, Chiba AA, Gallagher M (2000) Changes in functional connectivity in orbitofrontal cortex and basolateral amygdala during learning and reversal training. J Neurosci 20:5179–5189

    CAS  PubMed  Google Scholar 

  • Schoenbaum G, Setlow B, Nugent SL, Saddoris MP, Gallagher M (2003a) Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn Mem 10:129–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Setlow B, Saddoris MP, Gallagher M (2003b) Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 39:855–867

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G, Roesch MR, Stalnaker TA (2006) Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci 29:116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Gottfried JA, Murray EA, Ramus SJ (2007) Linking affect to action: critical contributions of the orbitofrontal cortex. Preface. Ann N Y Acad Sci 1121:xi–xiii

    Google Scholar 

  • Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev Neurosci 10:885–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Takahashi Y, Liu TL, McDannald MA (2011a) Does the orbitofrontal cortex signal value? Ann N Y Acad Sci 1239:87–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2011b) Orbitofrontal cortex and outcome expectancies: optimizing behavior and sensory perception. In: Gottfried JA (ed) Neurobiology of sensation and reward. Boca Raton, Florida

    Google Scholar 

  • Schultz W (1997) Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 7:191–197

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    CAS  PubMed  Google Scholar 

  • Schultz W (1999) The reward signal of midbrain dopamine neurons. News Physiol Sci: Int J Physiol Produced Jointly Int Union Physiol Sci Am Physiol Soc 14:249–255

    CAS  Google Scholar 

  • Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610

    CAS  PubMed  Google Scholar 

  • Setlow B, Schoenbaum G, Gallagher M (2003) Neural encoding in ventral striatum during olfactory discrimination learning. Neuron 38:625–636

    Article  CAS  PubMed  Google Scholar 

  • Shabel SJ, Janak PH (2009) Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal. Proc Natl Acad Sci USA 106:15031–15036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shidara M, Richmond BJ (2004) Differential encoding of information about progress through multi-trial reward schedules by three groups of ventral striatal neurons. Neurosci Res 49:307–314

    Article  PubMed  Google Scholar 

  • Singh T, McDannald MA, Haney RZ, Cerri DH, Schoenbaum G (2010) Nucleus accumbens core and shell are necessary for reinforcer devaluation effects on pavlovian conditioned responding. Front Integr Neurosci 4:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Solomon RL, Corbit JD (1974) An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol Rev 81:119–145

    Article  CAS  PubMed  Google Scholar 

  • Sripanidkulchai K, Sripanidkulchai B, Wyss JM (1984) The cortical projection of the basolateral amygdaloid nucleus in the rat: a retrograde fluorescent dye study. J Comp Neurol 229:419–431

    Article  CAS  PubMed  Google Scholar 

  • Stalnaker TA, Franz TM, Singh T, Schoenbaum G (2007) Basolateral amygdala lesions abolish orbitofrontal-dependent reversal impairments. Neuron 54:51–58

    Article  CAS  PubMed  Google Scholar 

  • Stalnaker TA, Takahashi Y, Roesch MR, Schoenbaum G (2009) Neural substrates of cognitive inflexibility after chronic cocaine exposure. Neuropharmacology 56(Suppl 1):63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stalnaker TA, Calhoon GG, Ogawa M, Roesch MR, Schoenbaum G (2010) Neural correlates of stimulus-response and response-outcome associations in dorsolateral versus dorsomedial striatum. Frontiers Integr Neurosci 4:12

    Article  Google Scholar 

  • Steinberg EE et al (2013) A causal link between prediction errors, dopamine neurons and learning. Nat Neurosci 16:966–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stopper CM, Floresco SB (2011) Contributions of the nucleus accumbens and its subregions to different aspects of risk-based decision making. Cogn Affect Behav Neurosci 11:97–112

    Article  PubMed  Google Scholar 

  • Sugrue LP, Corrado GS, Newsome WT (2004) Matching behavior and the representation of value in the parietal cortex. Science 304:1782–1787

    Article  CAS  PubMed  Google Scholar 

  • Sugrue LP, Corrado GS, Newsome WT (2005) Choosing the greater of two goods: neural currencies for valuation and decision making. Nat Rev Neurosci 6:363–375

    Article  CAS  PubMed  Google Scholar 

  • Sutton RA, Barto AG (ed) (1998) Reinforcement learning: an introduction

    Google Scholar 

  • Takahashi Y, Roesch MR, Stalnaker TA, Schoenbaum G (2007) Cocaine exposure shifts the balance of associative encoding from ventral to dorsolateral striatum. Frontiers Integr Neurosci 1:11

    Article  Google Scholar 

  • Takahashi Y, Schoenbaum G, Niv Y (2008) Silencing the critics: understanding the effects of cocaine sensitization on dorsolateral and ventral striatum in the context of an actor/critic model. Front Neurosci 2:86–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi YK et al (2009) The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62:269–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi YK et al (2011) Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex. Nat Neurosci 14:1590–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Totah NK, Kim YB, Homayoun H, Moghaddam B (2009) Anterior cingulate neurons represent errors and preparatory attention within the same behavioral sequence. J Neurosci 29:6418–6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujimoto S, Genovesio A, Wise SP (2011) Comparison of strategy signals in the dorsolateral and orbital prefrontal cortex. J Neurosci 31:4583–4592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujimoto S, Genovesio A, Wise SP (2012) Neuronal activity during a cued strategy task: comparison of dorsolateral, orbital, and polar prefrontal cortex. J Neurosci 32:11017–11031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tye KM, Janak PH (2007) Amygdala neurons differentially encode motivation and reinforcement. J Neurosci: Official J Soc Neurosci 27:3937–3945

    Article  CAS  Google Scholar 

  • Tye KM, Cone JJ, Schairer WW, Janak PH (2010) Amygdala neural encoding of the absence of reward during extinction. J Neurosci: Official J Soc Neurosci 30:116–125

    Article  CAS  Google Scholar 

  • van der Meer MA, Redish AD (2009) Covert expectation-of-reward in rat ventral striatum at decision points. Front Integr Neurosci 3:1

    PubMed  PubMed Central  Google Scholar 

  • van der Meer MA, Redish AD (2011) Ventral striatum: a critical look at models of learning and evaluation. Curr Opin Neurobiol 21:387–392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Meer MA, Johnson A, Schmitzer-Torbert NC, Redish AD (2010) Triple dissociation of information processing in dorsal striatum, ventral striatum, and hippocampus on a learned spatial decision task. Neuron 67:25–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wadenberg ML, Ericson E, Magnusson O, Ahlenius S (1990) Suppression of conditioned avoidance behavior by the local application of (-)sulpiride into the ventral, but not the dorsal, striatum of the rat. Biol Psychiatry 28:297–307

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi KT, Fields HL, Nicola SM (2004) Dissociation of the role of nucleus accumbens dopamine in responding to reward-predictive cues and waiting for reward. Behav Brain Res 154:19–30

    Article  CAS  PubMed  Google Scholar 

  • Wallis JD (2007) Orbitofrontal cortex and its contribution to decision-making. Annu Rev Neurosci 30:31–56

    Article  CAS  PubMed  Google Scholar 

  • Wallis JD, Kennerley SW (2010) Heterogeneous reward signals in prefrontal cortex. Curr Opin Neurobiol 20:191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallis JD, Kennerley SW (2011) Contrasting reward signals in the orbitofrontal cortex and anterior cingulate cortex. Ann N Y Acad Sci 1239:33–42

    Article  PubMed  Google Scholar 

  • Wallis JD, Miller EK (2003) Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur J Neurosci 18:2069–2081

    Article  PubMed  Google Scholar 

  • Wallis JD, Anderson KC, Miller EK (2001) Single neurons in prefrontal cortex encode abstract rules. Nature 411:953–956

    Article  CAS  PubMed  Google Scholar 

  • Walton ME, Devlin JT, Rushworth MF (2004) Interactions between decision making and performance monitoring within prefrontal cortex. Nat Neurosci 7:1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Wang AY, Miura K, Uchida N (2013) The dorsomedial striatum encodes net expected return, critical for energizing performance vigor. Nat Neurosci 16:639–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RC, Takahashi YK, Schoenbaum G, Niv Y (2014) Orbitofrontal cortex as a cognitive map of task space. Neuron 81:267–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winstanley CA, Theobald DEH, Cardinal RN, Robbins TW (2004) Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 24:4718–4722

    Article  CAS  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    Article  CAS  PubMed  Google Scholar 

  • Yun IA, Wakabayashi KT, Fields HL, Nicola SM (2004) The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. J Neurosci 24:2923–2933

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIDA (R01DA031695, MR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Bissonette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bissonette, G.B., Roesch, M.R. (2015). Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action. In: Simpson, E., Balsam, P. (eds) Behavioral Neuroscience of Motivation. Current Topics in Behavioral Neurosciences, vol 27. Springer, Cham. https://doi.org/10.1007/7854_2015_382

Download citation

Publish with us

Policies and ethics