Skip to main content

The Role of Sleep in Human Declarative Memory Consolidation

  • Chapter
  • First Online:
Sleep, Neuronal Plasticity and Brain Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 25))

Abstract

Through a variety of methods, researchers have begun unraveling the mystery of why humans spend one-third of their lives asleep. Though sleep likely serves multiple functions, it has become clear that the sleeping brain offers an ideal environment for solidifying newly learned information in the brain. Sleep , which comprises a complex collection of brain states, supports the consolidation of many different types of information. It not only promotes learning and memory stabilization, but also memory reorganization that can lead to various forms of insightful behavior. As this chapter will describe, research provides ample support for these crucial cognitive functions of sleep . Focusing on the declarative memory system in humans, we review the literature regarding the benefits of sleep for both neutral and emotionally salient declarative memory . Finally, we discuss the literature regarding the impact of sleep on emotion regulation .

Sara E. Alger and Alexis M. Chambers have contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alger SE, Lau H, Fishbein W (2010) Delayed onset of a daytime nap facilitates retention of declarative memory. PLoS ONE 5(8):e12131. doi:10.1371/journal.pone.0012131

    PubMed Central  PubMed  Google Scholar 

  • Alger SE, Lau H, Fishbein W (2012) Slow wave sleep during a daytime nap is necessary for protection from subsequent interference and long-term retention. Neurobiol Learn Mem 98:188-196. http://dx.doi.org/10.1016/j.nlm.2012.06.003

  • Aston-Jones G (2004) The locus coeruleus, A5 and A7 noradrenergic cell groups. In: Paxinos G (ed) The rat nervous system. Elsevier Academic Press, San Diego, pp 259–294

    Google Scholar 

  • Backhaus J, Hoeckesfeld R, Born J, Hohagen F, Junghanns K (2007) Immediate as well as delayed post learning sleep but not wake enhances declarative memory consolidation in children. Neurobiol Learn Mem 89:76–80

    PubMed  Google Scholar 

  • Baran B, Pace-Schott EF, Ericson C, Spencer RM (2012) Processing of emotional reactivity and emotional memory over sleep. J Neurosci 32(3):1035–1042

    PubMed Central  CAS  PubMed  Google Scholar 

  • Battaglia FP, Sutherland GR, McNaughton BL (2004) Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn Mem 11(6):697–704

    PubMed Central  PubMed  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed Central  CAS  PubMed  Google Scholar 

  • Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P et al (1997) Regional cerebral blood flow throughout the sleep-wake cycle. An H2 (15) O PET study. Brain 120(7):1173–1197

    PubMed  Google Scholar 

  • Brehens CJ, van den Boom LP, de Hoz L, Friedman A, Heinemann U (2005) Induction of sharp-wave ripple complexes in vitro and reorganization of hippocampal networks. Nat Neurosci 8(11):1560–1567

    Google Scholar 

  • Buchanan TW, Lovallo WR (2001) Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology 26(3):307–317

    CAS  PubMed  Google Scholar 

  • Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–570

    CAS  PubMed  Google Scholar 

  • Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287(2):139–171

    CAS  PubMed  Google Scholar 

  • Buzsaki G, Csicsvari J, Dragoi G, Harris K, Henze D, Hirase H (2002) Homeostatic maintenance of neuronal excitability by burst discharges in vivo. Cereb Cortex 12:893–899

    PubMed  Google Scholar 

  • Carskadon MA, Dement WC (1989) Normal human sleep: an overview. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. W.B. Saunders, Philadelphia, pp 3–13

    Google Scholar 

  • Chen C, Hardy M, Zhang J, LaHoste GJ, Bazan NG (2006) Altered NMDA receptor trafficking contributes to sleep deprivation-induced hippocampal synaptic and cognitive impairments. Biochem Biophys Res Commun 340:435–440

    CAS  PubMed  Google Scholar 

  • Chrobak JJ, Buzsaki G (1994) Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat. J Neurosci 14:6160–6170

    CAS  PubMed  Google Scholar 

  • Clemens Z, Fabo D, Halasz P (2005) Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience 132:529–535

    CAS  PubMed  Google Scholar 

  • Cordero MI, Sandi C (1998) A role for brain glucocorticoid receptors in contextual fear conditioning: dependence upon training intensity. Brain Res 786:11–17

    CAS  PubMed  Google Scholar 

  • Cunningham TJ, Crowell CR, Alger SE, Kensinger EA, Villano M, Mattingly SM, Payne JD (In Press) Psychophysiological arousal at encoding leads to reduced reactivity but enhanced emotional memory after sleep. Neurobiology of Learning and Memory

    Google Scholar 

  • Davis CJ, Meighan PC, Taishi P, Krueger JM, Harding JW, Wright JW (2006) REM sleep deprivation attenuates actin-binding protein cortactin: a link between sleep and hippocampal plasticity. Neurosci Lett 400:191–196

    CAS  PubMed  Google Scholar 

  • De Gennaro L, Ferrara M (2003) Sleep spindles: an overview. Sleep Med Rev 7(5):423–440

    PubMed  Google Scholar 

  • Deboer, T (2013) Behavioral and electrophysiological correlates of sleep and sleep homeostasis. Springer, Heidelberg

    Google Scholar 

  • de Kloet ER, Oitzl MS, Joëls M (1999) Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci 22(10):422–426

    PubMed  Google Scholar 

  • Diba K, Buzsaki G (2007) Forward and reverse hippocampal place-cell sequences during ripples. Nat Neurosci 10(10):1241–1242

    PubMed Central  CAS  PubMed  Google Scholar 

  • Diedrich O, Naumann E, Maier S, Becker G (1997) A frontal positive slow wave in the ERP associated with emotional slides. J Psychophysiol

    Google Scholar 

  • Diekelmann S, Landolt HP, Lahl O, Born J, Wagner U (2008) Sleep loss produces false memories. PLoS ONE 3(10):e3512

    PubMed Central  PubMed  Google Scholar 

  • Durrant SJ, Taylor C, Cairney S, Lewis PA (2011) Sleep-dependent consolidation of statistical learning. Neuropsychologia 49(5):1322–1331

    PubMed  Google Scholar 

  • Ego-Stengel V, Wilson MA (2010) Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20:1–10

    PubMed Central  PubMed  Google Scholar 

  • Ellenbogen JM, Payne JD, Stickgold R (2006) The role of sleep in declarative memory consolidation: passive, permissive, active or none? Curr Opin Neurobiol 16:716–722

    CAS  PubMed  Google Scholar 

  • Ellenbogen JM, Hu PT, Payne JD, Titone D, Walker MP (2007) Human relational memory requires time and sleep. Proc Natl Acad Sci USA 104(18):7723–7728

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eschenko O, Mölle M, Born J, Sara SJ (2006) Elevated sleep spindle density after learning or after retrieval in rats. J Neurosci 26(50):12914–12920

    CAS  PubMed  Google Scholar 

  • Eschenko O, Sara SJ (2008) Learning-dependent, transient increase of activity in noradrenergic neurons of locus coeruleus during slow wave sleep in the rat: brain stem-cortex interplay for memory consolidation? Cereb Cortex 18(11):2596–2603

    PubMed  Google Scholar 

  • Eschenko O, Ramadan W, Mölle M, Born J, Sara SJ (2008) Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learn Mem 15(4):222–228

    PubMed Central  PubMed  Google Scholar 

  • Fenn KM, Nusbaum HC, Margoliash D (2003) Consolidation during sleep of perceptual learning of spoken language. Nature 425(9):614–616

    CAS  PubMed  Google Scholar 

  • Ferrara M, Iaria G, De Gennaro L, Guariglia C, Curcio G, Tempesta D, Bertini M (2006) The role of sleep in the consolidation of route learning in humans: a behavioural study. Brain Res Bull 71:4–9

    PubMed  Google Scholar 

  • Fischer S, Drosopoulos S, Tsen J, Born J (2006) Implicit learning–explicit knowing: a role for sleep in memory system interaction. J Cogn Neurosci 18(3):311–319

    PubMed  Google Scholar 

  • Fishbein W, McGaugh JL, Swarz JR (1971) Retrograde amnesia: electroconvulsive shock effects after termination of rapid eye movement sleep deprivation. Science 172:80–82

    CAS  PubMed  Google Scholar 

  • Gais S, Mölle M, Helms K, Born J (2002) Learning-dependent increases in sleep spindle density. J Neurosci 22(15):6830–6834

    CAS  PubMed  Google Scholar 

  • Gais S, Born J (2004) Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proc Natl Acad Sci USA 101(7):2140–2144

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gais S, Lucas B, Born J (2006) Sleep after learning aids memory recall. Learn Mem 13:259–262

    PubMed  Google Scholar 

  • Gais S, Rasch B, Dahmen JC, Sara S, Born J (2011) The memory function of noradrenergic activity in non-REM sleep. J Cogn Neurosci 23(9):2582–2592

    PubMed  Google Scholar 

  • Garavan H, Pendergrass JC, Ross TJ, Stein EA, Risinger RC (2001) Amygdala response to both positively and negatively valenced stimuli. NeuroReport 12(12):2779–2783

    CAS  PubMed  Google Scholar 

  • Graves LA, Heller EA, Pack AI, Abel T (2003) Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn Mem 10:168–176

    PubMed Central  PubMed  Google Scholar 

  • Girardeau G, Benchenane K, Wiener SI, Buzsaki G, Zugaro MB (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12:1222–1223

    Google Scholar 

  • Greenberg R, Pillard R, Pearlman C (1972) The effect of dream (stage REM) deprivation on adaptation to stress. Psychosom Med 34(3):257–262

    CAS  PubMed  Google Scholar 

  • Groch S, Wilhelm I, Diekelmann S, Sayk F, Gais S, Born J (2011) Contribution of norepinephrine to emotional memory consolidation during sleep. Psychoneuroendocrinology 36(9):1342–1350

    CAS  PubMed  Google Scholar 

  • Groch S, Wilhelm I, Diekelmann S, Born J (2012) The role of REM sleep in the processing of emotional memories: Evidence from behavior and event-related potentials. Neurobiol Learn Mem

    Google Scholar 

  • Gujar N, McDonald SA, Nishida M, Walker MP (2011) A role for REM sleep in recalibrating the sensitivity of the human brain to specific emotions. Cereb Cortex 21(1):115–123

    PubMed Central  PubMed  Google Scholar 

  • Hamann S (2001) Cognitive and neural mechanisms of emotional memory. Trends Cogn Sci 5(9):394–400

    PubMed  Google Scholar 

  • Hamann SB, Ely TD, Grafton ST, Kilts CD (1999) Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nat Neurosci 2(3):289–293

    CAS  PubMed  Google Scholar 

  • Hamann SB, Ely TD, Hoffman JM, Kilts CD (2002) Ecstasy and agony: activation of human amygdala in positive and negative emotion. Psychol Sci 13(2):135–141

    PubMed  Google Scholar 

  • Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci 3(9):351–359

    PubMed  Google Scholar 

  • Hasselmo ME, Bower JM (1992) Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J Neurophysiol 67:1222–1229

    CAS  PubMed  Google Scholar 

  • Hasselmo ME, McGaughy J (2004) High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog Brain Res 145:207–231

    CAS  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Heine R (1914) Über Wiedererkennen und Rückwirkende Hemmung. Zeitschrift für Psychologie mit Zeitschrift für angewandte Psychologie 68:161–236

    Google Scholar 

  • Hennevin E, Huetz C, Edeline JM (2007) Neural representations during sleep: from sensory processing to memory traces. Neurobiol Learn Mem 87(3):416–440

    PubMed  Google Scholar 

  • Herreras O, Solis JM, Munoz MD, Martin del Rio R, Lerma J (1988) Sensory modulation of hippocampal transmission: I. Opposite effects on CA1 and dentate gyrus synapsis. Brain Res 461:290–302

    Google Scholar 

  • Hoffman KL, McNaughton BL (2002) Coordinated reactivation of distributed memory traces in primate neocortex. Science 297(5589):2070–2073

    CAS  PubMed  Google Scholar 

  • Hounsgaard J (1978) Presynaptic inhibitory action of acetylcholine in area CA1 of the hippocampus. Exp Neurol 62:787–797

    CAS  PubMed  Google Scholar 

  • Hu P, Stylos-Allan M, Walker MP (2006) Sleep facilitates consolidation of emotional declarative memory. Psychol Sci 17(10):891–898

    PubMed  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430:78–81

    CAS  PubMed  Google Scholar 

  • Iber C, Ancoli-Israel S, Chesson AL, Quan SF (eds) (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specifications, 1st edn. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  • Jenkins JG, Dallenbach KM (1924) Obliviscence during sleep and waking. Am J Psychol 35:605–612

    Google Scholar 

  • Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10(1):100–107

    CAS  PubMed  Google Scholar 

  • Karacan I, Williams RL, Finley WW, Hursch CJ (1970) The effects of naps on nocturnal sleep: influence on the need for Stage-1 REM and Stage 4 sleep. Biol Psychiatry

    Google Scholar 

  • Kensinger EA (2009) What factors need to be considered to understand emotional memories? Emot Rev 1(2):120–121

    PubMed Central  PubMed  Google Scholar 

  • Kensinger EA, Corkin S (2003) Memory enhancement for emotional words: are emotional words more vividly remembered than neutral words? Mem Cogn 31(8):1169–1180

    Google Scholar 

  • Kensinger EA, Schacter DL (2006) Amygdala activity is associated with the successful encoding of item, but not source, information for positive and negative stimuli. J Neurosci 26(9):2564–2570

    CAS  PubMed  Google Scholar 

  • Kudrimoti HS, Barnes CA, McNaughton BL (1999) Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci 19:4090–4101

    CAS  PubMed  Google Scholar 

  • Lahl O, Wispel C, Willigens B, Pietrowsky R (2008) An ultra short episode of sleep is sufficient to promote declarative memory performance. J Sleep Res 17:3–10

    PubMed  Google Scholar 

  • Lang A, Dhillon K, Dong Q (1995) The effects of emotional arousal and valence on television viewers’ cognitive capacity and memory. J Broadcast Electron Media 39(3):313–327

    Google Scholar 

  • Lang P, Greenwald MK, Bradley M, Hamm A (1993) Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30(3):261–273

    CAS  PubMed  Google Scholar 

  • Lang PJ, Bradley MM, Cuthbert BN (2008) International affective picture system (IAPS): affective ratings of pictures and instruction manual, technical report A-8. University of Florida, Gainesville

    Google Scholar 

  • Lau H, Tucker MA, Fishbein W (2010) Daytime napping: effects on human direct associative and relational memory. Neurobiol Learn Mem 93(4):554–560

    CAS  PubMed  Google Scholar 

  • Lau H, Alger SE, Fishbein W (2011) Relational memory: a daytime nap facilitates the abstraction of general concepts. PLoS ONE 6(11):e27139. doi:10.1371/journal.pone.0027139

    PubMed Central  CAS  PubMed  Google Scholar 

  • LeDoux J (2002) Synaptic self: how our brains become who we are. Penguin Putnam Inc, New York

    Google Scholar 

  • Louie K, Wilson MA (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29(1):145–156

    CAS  PubMed  Google Scholar 

  • Maquet P, Péters JM, Aerts J, Delfiore G, Degueldre C, Luxen A, Franck G (1996) Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383(6596):163–166

    CAS  PubMed  Google Scholar 

  • Maquet P, Laureys S, Peigneux P, Fuchs S, Petiau C, Phillips C et al (2000) Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci 3:831–836

    CAS  PubMed  Google Scholar 

  • Marshall L, Molle M, Hallschmid M, Born J (2004) Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci 24(44):9985–9992

    CAS  PubMed  Google Scholar 

  • Marshall L, Helgadottir H, Molle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444:610–613

    CAS  PubMed  Google Scholar 

  • McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102(3):419–457

    CAS  PubMed  Google Scholar 

  • McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC (2003) Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 22(29):9687–9695

    Google Scholar 

  • McDermott CM, Hardy MN, Bazan NG, Magee JC (2006) Sleep deprivation- induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus. J Physiol 570(3):553–565

    PubMed Central  CAS  PubMed  Google Scholar 

  • McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–251

    CAS  PubMed  Google Scholar 

  • McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Ann Rev Neurosci 27:1–28

    CAS  PubMed  Google Scholar 

  • Meerlo P, Sgoifo A, Suchecki D (2008) Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev 12(3):197–210

    PubMed  Google Scholar 

  • Mirescu C, Peters JD, Noiman L, Gould E (2006) Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticoids. PNAS 103(50):19170–19175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mölle M, Yeshenko O, Marshall L, Sara SJ, Born J (2006) Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep. J Neurophysiol 96(1):62–70

    PubMed  Google Scholar 

  • Mölle M, Eschenko O, Gais S, Sara SJ, Born J (2009) The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats. Eur J Neurosci 29(5):1071–1081

    PubMed  Google Scholar 

  • Moscovitch M, Rosenbaum RS, Gilboa A, Addis DR, Westmacott R, Grady C et al (2005) Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J Anat 207(1):35–66

    PubMed Central  PubMed  Google Scholar 

  • Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsaki G (1999) Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19:9497–9507

    CAS  PubMed  Google Scholar 

  • Nishida M, Pearsall J, Buckner RL, Walker MP (2009) REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex 19:1158–1166

    PubMed Central  PubMed  Google Scholar 

  • Ochsner KN (2000) Are affective events richly recollected or simply familiar? The experience and process of recognizing feelings past. J Exp Psychol Gen 129(2):242–261

    CAS  PubMed  Google Scholar 

  • O’Neill J, Pleydell-Bouverie B, Dupret D, Csicsvari J (2010) Play it again: reactivation of waking experience and memory. Trends Neurosci 33(5):220–229

    PubMed  Google Scholar 

  • Orban P, Rauchs G, Balteau E, Degueldre C, Luxen A, Maquet P, Peigneux P (2006) Sleep after spatial learning promotes covert reorganization of brain activity. PNAS 103(18):7124–7129

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pace-Schott EF, Shepherd E, Spencer R, Marcello M, Tucker M, Propper RE, Stickgold R (2011) Napping promotes inter-session habituation to emotional stimuli. Neurobiol Learn Mem 95(1):24–36

    PubMed Central  PubMed  Google Scholar 

  • Pavlides C, Winson J (1989) Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J Neurosci 9:2907–2918

    CAS  PubMed  Google Scholar 

  • Payne JD (2011) Learning, memory, and sleep in humans. Sleep Med Clin 6(1):15–30

    Google Scholar 

  • Payne JD, Kensinger EA (2010) Sleep’s role in the consolidation of emotional episodic memories. Curr Dir Psychol Sci 19(5):290–295

    Google Scholar 

  • Payne JD, Kensinger EA (2011) Sleep leads to changes in the emotional memory trace: evidence from fMRI. J Cogn Neurosci 23(6):1285–1297

    PubMed  Google Scholar 

  • Payne JD, Nadel L, Britton WB, Jacobs WJ (2004) The biopsychology of trauma and memory. In: Reisberg D, Hertel P (eds) Memory and emotion. Oxford University Press, New York, pp 76–128

    Google Scholar 

  • Payne JD, Jackson ED, Ryan L, Hoscheidt S, Jacobs WJ, Nadel L (2006) The impact of stress on memory for neutral vs. emotional aspects of episodic memory. Mem 14:1–16

    Google Scholar 

  • Payne JD, Jackson ED, Hoscheidt S, Ryan L, Jacobs WJ, Nadel L (2007) Stress administered prior to encoding impairs neutral but enhances emotional long-term episodic memories. Learn Mem 14:861–868

    Google Scholar 

  • Payne JD, Stickgold R, Swanberg K, Kensinger EA (2008) Sleep preferentially enhances memory for emotional components of scenes. Psychol Sci 19:781–788

    PubMed  Google Scholar 

  • Payne JD, Schacter DL, Propper RE, Huang LW, Wamsley EJ, Tucker MA, Stickgold R (2009) The role of sleep in false memory formation. Neurobiol Learn Mem 92(3):327–334

    PubMed Central  PubMed  Google Scholar 

  • Payne JD, Tucker MA, Ellenbogen JM, Wamsley EJ, Walker MP, Schacter DL, Stickgold R (2012a) Memory for semantically related and unrelated declarative information: the benefit of sleep, the cost of wake. PLoS ONE 7(3):e33079

    PubMed Central  CAS  PubMed  Google Scholar 

  • Payne JD, Chambers AM, Kensinger EA (2012b) Sleep promotes lasting changes in selective memory for emotional scenes. Front Integr Neurosci 6

    Google Scholar 

  • Peigneux P, Laureys S, Delbeuck X, Maquet P (2001) Sleeping brain, learning brain. the role of sleep for memory systems. NeuroReport 12:111–124

    Google Scholar 

  • Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J, Phillips C, Degueldre C, Del Foire G, Aerts J, Luxen A, Maquet P (2004) Are spatial memories strengthened in the human hippocampus during slow-wave sleep? Neuron 44:535–545

    CAS  PubMed  Google Scholar 

  • Plihal W, Born J (1997) Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci 9:534–547

    CAS  PubMed  Google Scholar 

  • Plihal W, Born J (1999a) Memory consolidation in human sleep depends on inhibition of glucocorticoid release. NeuroReport 10:2741–2747

    CAS  PubMed  Google Scholar 

  • Plihal W, Born J (1999b) Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology 36(5):571–582

    CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276(5316):1265–1268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ramadan W, Eschenko O, Sara SJ (2009) Hippocampal sharp wave/ripples during sleep for consolidation of associative memory. PLoS ONE 4(8):e6697

    PubMed Central  PubMed  Google Scholar 

  • Rasch B, Büchel C, Gais S, Born J (2007) Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315(5817):1426–1429

    CAS  PubMed  Google Scholar 

  • Rechtschaffen A, Kales A (eds) (1968) A manual of standardized terminology, techniques and scoring system for sleep stages in human subjects. Brain Information Service/Brain Research Institute, University of California, Los Angeles

    Google Scholar 

  • Retey JV, Adam M, Honegger E, Khatami R, Luhmann UFO et al (2005) A functional genetic variation of adenosine affects the duration and intensity of deep sleep in humans. PNAS 102(43):15676–15681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ritchey M, Dolcos F, Cabeza R (2008) Role of amygdala connectivity in the persistence of emotional memories over time: an event related fMRI investigation. Cereb Cortex 18(11):2494–2504

    PubMed Central  PubMed  Google Scholar 

  • Roediger HL, McDermott KB (1995) Creating false memories: remembering words not presented in lists. J Exp Psychol Learn Mem Cogn 21(4):803

    Google Scholar 

  • Roozendaal B (2000) Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology 25:213–238

    CAS  PubMed  Google Scholar 

  • Rosanova M, Ulrich D (2005) Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci 25(41):9398–9405

    CAS  PubMed  Google Scholar 

  • Rosales-Lagarde A, Armony JL, del Río-Portilla Y, Trejo-Martínez D, Conde R, Corsi-Cabrera M (2012) Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study. Front Behav Neurosci 6(25):1–13

    Google Scholar 

  • Rovira C, Ben-Ari Y, Cherubini E, Krnjevic K, Ropert N (1983) Pharmacology of the dendritic action of acetylcholine and further observations on the somatic disinhibition in the rat hippocampus in situ. Neuroscience 8:97–106

    CAS  PubMed  Google Scholar 

  • Saletin JM, Goldstein AN, Walker MP (2011) The role of sleep in directed forgetting and remembering of human memories. Cereb Cortex 21(11):2534–2541

    PubMed Central  PubMed  Google Scholar 

  • Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10(3):211–223

    CAS  PubMed  Google Scholar 

  • Schabus M, Gruber G, Parapatics S, Sauter C, Klösch G, Anderer P, Klimesch W, Saletu B, Zeitlhofer J (2004) Sleep spindles and their significance for declarative memory consolidation. Sleep 27(8):1479–1485

    PubMed  Google Scholar 

  • Schabus M, Hodlmoser K, Pecherstorfer T, Klosch G (2005) Influence of midday naps on declarative memory performance and motivation. Somnologie 9(3):148–153

    Google Scholar 

  • Schmidt C, Peigneux P, Muto V, Schenkel M, Knoblauch V, Münch M et al (2006) Encoding difficulty promotes post learning changes in sleep spindle activity during napping. J Neurosci 26(35):8976–8982

    CAS  PubMed  Google Scholar 

  • Schoen LS, Badia P (1984) Facilitated recall following REM and NREM naps. Psychophysiology 21(3):299–306

    CAS  PubMed  Google Scholar 

  • Schupp HT, Flaisch T, Stockburger J, Junghofer M (2006) Emotion and attention: event-related brain potential studies. Prog Brain Res 156:31

    PubMed  Google Scholar 

  • Schwabe L, Joels M, Roozendaal B, Wolf OT, Oitzl MS (2012) Stress effects on memory: an update and integration. Neurosci Biobehav Rev 36:1740–1749

    PubMed  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharot T, Yonelinas AP (2008) Differential time-dependent effects of emotion on recollective experience and memory for contextual information. Cognition 106(1):538–547

    PubMed  Google Scholar 

  • Siapas AG, Wilson MA (1998) Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21:1123–1128

    CAS  PubMed  Google Scholar 

  • Sirota A, Csicsvari J, Buhl D, Buzsáki G (2003) Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci USA 100(4):2065–2069

    PubMed Central  CAS  PubMed  Google Scholar 

  • Skaggs WE, McNaughton BL (1996) Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271:1870–1873

    CAS  PubMed  Google Scholar 

  • Smith CT (1985) Sleep states and learning: a review of the animal literature. Neurosci Biobehav Rev 9(2):157–168

    CAS  PubMed  Google Scholar 

  • Smith CT (1995) Sleep states and memory processes. Behav Brain Res 69(1–2):137–145

    CAS  PubMed  Google Scholar 

  • Smith CT, Aubrey JB, Peters KR (2004) Different roles for REM and stage 2 sleep in motor learning: a proposed model. Psychologica Belgica 44(1–2):81–104

    Google Scholar 

  • Sotres-Bayon F, Bush DE, LeDoux JE (2004) Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction. Learn Mem 11(5):525–535

    PubMed  Google Scholar 

  • Steriade M, Timofeev I (2003) Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 37(4):563–576

    CAS  PubMed  Google Scholar 

  • Steriade M, Nuñez A, Amzica F (1993) Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13(8):3266–3283

    CAS  PubMed  Google Scholar 

  • Sterman MB, Goodman SJ, Kovalesky RA (1978) Effects of sensorimotor EEG feedback training on seizure susceptibility in the rhesus monkey. Exp Neurol 62(3):735–747

    CAS  PubMed  Google Scholar 

  • Sterpenich V, Albouy G, Boly M, Vandewalle G, Darsaud A et al (2007) Sleep- related hippocampal-cortical interplay during emotional memory recollection. PLoS ONE 5(11):e282

    Google Scholar 

  • Sterpenich V, Albouy G, Darsaud A, Schmidt C, Vandewalle G et al (2009) Sleep promotes the neural reorganization of remote emotional memories. J Neurosci 29(16):5143–5152

    CAS  PubMed  Google Scholar 

  • Stickgold R, Ellenbogen JM (2008) Quiet! Sleeping brain at work. Sci Am Mind 19(4):22–29

    Google Scholar 

  • Stickgold R, Hobson JA, Fosse R, Fosse M (2001) Sleep, learning, and dreams: off-line memory reprocessing. Science 294:1052–1057

    CAS  PubMed  Google Scholar 

  • Stickgold R, Walker M (2004) To sleep, perchance to gain creative insight? Trends Cogn Sci 8(5):191–192

    PubMed  Google Scholar 

  • Stickgold R, Walker MP (2013) Sleep-dependent memory triage: evolving generalization through selective processing. Nat Neurosci 16(2):139–145

    CAS  PubMed  Google Scholar 

  • Sweatt JD (1999) Toward a molecular explanation for long-term potentiation. Learn Mem 6:399–416

    CAS  PubMed  Google Scholar 

  • Takashima A, Petersson KM, Rutters F, Tendolkar I, Jensen O, Zwarts MJ, McNaughton BL, Fernández G (2006) Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study. Proc Natl Acad Sci USA 103(3):756–761

    PubMed Central  CAS  PubMed  Google Scholar 

  • Talamini LM, Nieuwenhuis IL, Takashima A, Jensen O (2008) Sleep directly following learning benefits consolidation of spatial associative memory. Learn Mem 15(4):233–237

    PubMed  Google Scholar 

  • Tamminen J, Payne JD, Stickgold R, Wamsley EJ, Gaskell MG (2010) Sleep spindle activity is associated with the integration of new memories and existing knowledge. J Neurosci 30(43):14356–14360

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tanguay PE, Ornitz EM, Kaplan A, Bozzo ES (1975) Evolution of sleep spindles in childhood. Electroencephalogr Clin Neurophysiol 38(2):175–181

    CAS  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62:143–150

    PubMed  Google Scholar 

  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62

    PubMed  Google Scholar 

  • Tucker MA, Fishbein W (2008) Enhancement of declarative memory performance following a daytime nap is contingent on strength of initial task acquisition. Sleep 31(2):197–203

    PubMed Central  PubMed  Google Scholar 

  • Tucker MA, Hirota Y, Wamsley EJ, Lau H, Chaklader A, Fishbein W (2006) A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiol Learn Mem 86(2):241–247

    PubMed  Google Scholar 

  • Tulving E (1985) Memory and consciousness. Can Psychol 26:1–12

    Google Scholar 

  • Valentino RJ, Dingledine R (1981) Presynaptic inhibitory effect of acetylcholine in the hippocampus. J Neurosci 1:784–792

    CAS  PubMed  Google Scholar 

  • van Der Helm E, Walker MP (2009) Overnight therapy? The role of sleep in emotional brain processing. Psychol Bull 135(5):731

    PubMed Central  PubMed  Google Scholar 

  • van der Helm E, Yao J, Dutt S, Rao V, Saletin JM, Walker MP (2011) REM sleep depotentiates amygdala activity to previous emotional experiences. Curr Biol

    Google Scholar 

  • Van Der Werf YD, Altena E, Schoonheim MM, Sanz-Arigita EJ, Vis JC, De Rijke W, Van Someren EJ (2009) Sleep benefits subsequent hippocampal functioning. Nat Neurosci 12:122–123

    Google Scholar 

  • Vazquez J, Baghdoyan HA (2001) Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. Am J Physiol Regul Integr Comp Physiol 280(2):R598–R601

    CAS  PubMed  Google Scholar 

  • Vecsey CG, Baillie GS, Jaganath D, Havekes R, Daniels A, Wimmer M, … Abel T (2009) Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 461(7267):1122–1125

    Google Scholar 

  • Vertes RP, Siegel JM (2005) Time for the sleep community to take a critical look at the purported role of sleep in memory processing. Sleep 28(10):1228–1229 (discussion 1230–1233)

    Google Scholar 

  • Wagner U, Gais S, Born J (2001) Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learn Mem 8:112–119

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wagner U, Fischer S, Born J (2002) Changes in emotional responses to aversive pictures across periods rich in slow-wave sleep versus rapid eye movement sleep. Psychosom Med 64(4):627–634

    PubMed  Google Scholar 

  • Wagner U, Gais S, Haider H, Verleger R, Born J (2004) Sleep inspires insight. Nature 427(6972):352–355

    CAS  PubMed  Google Scholar 

  • Walker MP (2009) The role of sleep in cognition and emotion. Ann New York Acad Sci 1156(1):168–197

    Google Scholar 

  • Walker MP, Stickgold R (2006) Sleep, memory, and plasticity. Annu Rev Psychol 57:139–166

    PubMed  Google Scholar 

  • Wamsley EJ, Tucker MA, Payne JD, Stickgold R (2010) A brief nap is beneficial for human route-learning: the role of navigation experience and EEG spectral power. Learn Mem 17(7):332–336

    PubMed Central  PubMed  Google Scholar 

  • Webb WB, Agnew HW, Sternthall H (1966) Sleep during the early morning. Psychonom Sci 6:277–278

    Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long- term potentiation in the hippocampus. Science 313:1093–1097

    CAS  PubMed  Google Scholar 

  • Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265(5172):676–679

    CAS  PubMed  Google Scholar 

  • Wixted JT (2004) The psychology and neuroscience of forgetting. Ann Rev Psychol 55:235–269

    Google Scholar 

  • Woroch B, Gonsalves BD (2010) Event-related potential correlates of item and source memory strength. Brain Res 1317:180–191

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang RH, Hu SJ, Wang Y, Zhang WB, Luo WJ, Chen JY (2008) Paradoxical sleep deprivation impairs spatial learning and affects membrane excitability and mitochondrial protein in the hippocampus. Brain Res 1230:224–232

    CAS  PubMed  Google Scholar 

  • Yoo S, Hu PT, Gujar N, Jolesz FA, Walker M (2007) A deficit in the ability to form new human memories without sleep. Nat Neurosci 10:385–392

    CAS  PubMed  Google Scholar 

  • Zeitlhofer J, Gruber G, Anderer P, Asenbaum S, Schimicek P, Saletu B (2003) Topographic distribution of sleep spindles in young healthy subjects. J Sleep Res 6(3):149–155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica D. Payne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alger, S.E., Chambers, A.M., Cunningham, T., Payne, J.D. (2014). The Role of Sleep in Human Declarative Memory Consolidation. In: Meerlo, P., Benca, R., Abel, T. (eds) Sleep, Neuronal Plasticity and Brain Function. Current Topics in Behavioral Neurosciences, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_341

Download citation

Publish with us

Policies and ethics