Skip to main content

Acute and Chronic Pain in Children

  • Chapter
  • First Online:
Behavioral Neurobiology of Chronic Pain

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 20))

Abstract

Pain in neonates and children differs to that in adults. One of the many challenges associated with the diagnosis and management of pain in early life is that neonates are non-verbal and therefore incapable of communicating their pain effectively to their caregivers. Early life pain is characterised by lowered thermal and mechanical thresholds, and exaggerated and often inappropriate behavioural reactions to pain. These differing behavioural reactions are underpinned by increased excitability/decreased inhibition within the spinal dorsal horn. This itself is the result of immaturity in the anatomical expression of key neurotransmitters and neuromodulators within spinal pain circuits, as well as decreased inhibitory input to these circuits from brainstem centres, and an immature relationship between neuronal and non-neuronal cells which affects pain response. These differences between early and adult pain impact upon not just acute reactions to pain, but also the incidence, severity and duration of chronic pain. In this chapter, chronic pain in childhood is discussed, as are the structural and functional differences that underpin differences in acute pain processing between adults and children. The ability of pain that occurs in early life to alter life-long pain responding is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman J, Bayer SA (1984) The development of the rat spinal cord. Adv Anat Embryol Cell Biol 85:1–164

    CAS  PubMed  Google Scholar 

  • Anand P, Birch R (2002) Restoration of sensory function and lack of long-term chronic pain syndromes after brachial plexus injury in human neonates. Brain 125(Pt 1):113–122

    CAS  PubMed  Google Scholar 

  • Baccei ML, Bardoni R, Fitzgerald M (2003) Development of nociceptive synaptic inputs to the neonatal rat dorsal horn: glutamate release by capsaicin and menthol. J Physiol 549(Pt 1):231–242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baccei ML, Fitzgerald M (2004) Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn 5. J Neurosci 24(20):4749–4757

    CAS  PubMed  Google Scholar 

  • Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41(6):849–857

    CAS  PubMed  Google Scholar 

  • Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    CAS  PubMed  Google Scholar 

  • Bee LA, Dickenson AH (2008) Descending facilitation from the brainstem determines behavioural and neuronal hypersensitivity following nerve injury and efficacy of pregabalin. Pain 140(1):209–223

    CAS  PubMed  Google Scholar 

  • Beggs S, Currie G, Salter MW, Fitzgerald M, Walker SM (2012) Priming of adult pain responses by neonatal pain experience: maintenance by central neuroimmune activity. Brain 135(Pt 2):404–417

    PubMed Central  PubMed  Google Scholar 

  • Beggs S, Salter MW (2010) Microglia-neuronal signalling in neuropathic pain hypersensitivity 2.0. Curr Opin Neurobiol 20 (4):474-480

    Google Scholar 

  • Beggs S, Torsney C, Drew LJ, Fitzgerald M (2002) The postnatal reorganization of primary afferent input and dorsal horn cell receptive fields in the rat spinal cord is an activity-dependent process. Eur J Neurosci 16(7):1249–1258 2185 [pii]

    PubMed  Google Scholar 

  • Bennett DL, Averill S, Clary DO, Priestley JV, McMahon SB (1996) Postnatal changes in the expression of the trkA high-affinity NGF receptor in primary sensory neurons. Eur J Neurosci 8(10):2204–2208

    CAS  PubMed  Google Scholar 

  • Berman JS, Birch R, Anand P (1998) Pain following human brachial plexus injury with spinal cord root avulsion and the effect of surgery. Pain 75(2–3):199–207

    CAS  PubMed  Google Scholar 

  • Bhutta AT, Cleves MA, Casey PH, Cradock MM, Anand KJS (2002) Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. J Am Med Assoc 288(6):728–737

    Google Scholar 

  • Blakemore C, Garey LJ, Vital-Durand F (1978) The physiological effects of monocular deprivation and their reversal in the monkey’s visual cortex. J Physiol 283(1):223–262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bourne JA (2010) Unravelling the development of the visual cortex: implications for plasticity and repair. J Anat 217(4):449–468

    PubMed Central  PubMed  Google Scholar 

  • Braz JM, Nassar MA, Wood JN, Basbaum AI (2005) Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47(6):787–793

    CAS  PubMed  Google Scholar 

  • Brennan TJ (2005) Incisional sensitivity and pain measurements: dissecting mechanisms for postoperative pain. Anesthesiology 103(1):3–4

    PubMed  Google Scholar 

  • Brennan TJ, Vandermeulen EP, Gebhart GF (1996) Characterization of a rat model of incisional pain. Pain 64(3):493–501

    CAS  PubMed  Google Scholar 

  • Brennan TJ, Zahn PK, Pogatzki-Zahn EM (2005) Mechanisms of incisional pain. Anesthesiol Clin North America 23(1):1–20

    CAS  PubMed  Google Scholar 

  • Cabana T, Martin GF (1984) Developmental sequence in the origin of descending spinal pathways. Studies using retrograde transport techniques in the North American opossum (Didelphis virginiana). Brain Res 317(2):247–263

    CAS  PubMed  Google Scholar 

  • Chalkiadis GA (2001) Management of chronic pain in children. Med J Aust 175(9):476–479

    CAS  PubMed  Google Scholar 

  • Coggeshall RE, Jennings EA, Fitzgerald M (1996) Evidence that large myelinated primary afferent fibers make synaptic contacts in lamina II of neonatal rats. Brain Res Dev Brain Res 92(1):81–90

    CAS  PubMed  Google Scholar 

  • Colburn RW, DeLeo JA, Rickman AJ, Yeager MP, Kwon P, Hickey WF (1997) Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J Neuroimmunol 79:163–175

    CAS  PubMed  Google Scholar 

  • Costigan M, Moss A, Latremoliere A, Johnston C, Verma-Gandhu M, Herbert TA, Barrett L, Brenner GJ, Vardeh D, Woolf CJ, Fitzgerald M (2009) T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J Neurosci 29(46):14415–14422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021

    CAS  PubMed  Google Scholar 

  • Dani C, Poggi C, Romagnoli C, Bertini G (2009) Survival and major disability rate in infant born at 22–25 weeks of gestation. J Perinat Med 37(6):599–608

    PubMed  Google Scholar 

  • Daniele CA, MacDermott AB (2009) Low-threshold primary afferent drive onto GABAergic interneurons in the superficial dorsal horn of the mouse. J Neurosci 29(3):686–695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies AM (2000) Neurotrophins: more to NGF than just survival. CurrBiol 10(10):R374–R376

    CAS  Google Scholar 

  • Davis BM, Fundin BT, Albers KM, Goodness TP, Cronk KM, Rice FL (1997) Overexpression of nerve growth factor in skin causes preferential increases among innervation to specific sensory targets. J Comp Neurol 387(4):489–506

    CAS  PubMed  Google Scholar 

  • Dougherty KJ, Sawchuk MA, Hochman S (2009) Phenotypic diversity and expression of GABAergic inhibitory interneurons during postnatal development in lumbar spinal cord of glutamic acid decarboxylase 67-green fluorescent protein mice. Neuroscience 163(3):909–919. doi:10.1016/j.neuroscience.2009.06.055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dworkin RH (2002) An overview of neuropathic pain: syndromes, symptoms, signs, and several mechanisms. Clin J Pain 18(6):343–349

    PubMed  Google Scholar 

  • Ekholm J (1967) Postnatal changes in cutaneous reflexes and in the discharge pattern of cutaneous and articular sense organs. A morphological and physiological study in the cat. Acta Physiol Scand Suppl 297:1–130

    Google Scholar 

  • Fields HL, Basbaum AI (1978) Brainstem control of spinal pain-transmission neurons. Annu Rev Physiol 40:217–248

    CAS  PubMed  Google Scholar 

  • Fields HL, Heinricher MM (1989) Brainstem modulation of nociceptor-driven withdrawal reflexes. Ann NY Acad Sci 563:34–44

    CAS  PubMed  Google Scholar 

  • Fitzgerald M (1987) Prenatal growth of fine-diameter primary afferents into the rat spinal cord: a transganglionic tracer study. J Comp Neurol 261(1):98–104

    CAS  PubMed  Google Scholar 

  • Fitzgerald M (2005) The development of nociceptive circuits. Nat Rev Neurosci 6(7):507–520

    CAS  PubMed  Google Scholar 

  • Fitzgerald M, Butcher T, Shortland P (1994) Developmental changes in the laminar termination of A fibre cutaneous sensory afferents in the rat spinal cord dorsal horn. J Comp Neurol 348(2):225–233

    CAS  PubMed  Google Scholar 

  • Fitzgerald M, Jennings E (1999) The postnatal development of spinal sensory processing. Proc Natl Acad Sci USA 96(14):7719–7722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fitzgerald M, Koltzenburg M (1986) The functional development of descending inhibitory pathways in the dorsolateral funiculus of the newborn rat spinal cord. Brain Res 389(1–2):261–270

    CAS  PubMed  Google Scholar 

  • Fitzgerald M, Shaw A, MacIntosh N (1988) Postnatal development of the cutaneous flexor reflex: comparative study of preterm infants and newborn rat pups. Dev Med Child Neurol 30(4):520–526

    CAS  PubMed  Google Scholar 

  • Fitzgerald M, Walker SM (2009) Infant pain management: a developmental neurobiological approach. Nat Clin Pract Neurol 5(1):35–50

    PubMed  Google Scholar 

  • Gebhart GF (2004) Descending modulation of pain. Neurosci Biobehav Rev 27(8):729–737

    CAS  PubMed  Google Scholar 

  • Grunau RV, Whitfield MF, Petrie JH (1994a) Pain sensitivity and temperament in extremely low-birth-weight premature toddlers and preterm and full-term controls. Pain 58(3):341–346

    CAS  PubMed  Google Scholar 

  • Grunau RV, Whitfield MF, Petrie JH, Fryer EL (1994b) Early pain experience, child and family factors, as precursors of somatization: a prospective study of extremely premature and fullterm children. Pain 56(3):353–359

    CAS  PubMed  Google Scholar 

  • Guy ER, Abbott FV (1992) The behavioral response to formalin in preweanling rats. Pain 51(1):81–90

    CAS  PubMed  Google Scholar 

  • Hall AK, Ai X, Hickman GE, MacPhedran SE, Nduaguba CO, Robertson CP (1997) The generation of neuronal heterogeneity in a rat sensory ganglion 179. J Neuro Sci 17(8):2775–2784

    CAS  Google Scholar 

  • Hall AK, Dinsio KJ, Cappuzzello J (2001) Skin cell induction of calcitonin gene-related peptide in embryonic sensory neurons in vitro involves activin 518. Dev Biol 229(2):263–270

    CAS  PubMed  Google Scholar 

  • Harden N, Cohen M (2003) Unmet needs in the management of neuropathic pain. J Pain Symptom Manage 25(5 Suppl):S12–S17

    PubMed  Google Scholar 

  • Hathway GJ, Koch S, Low L, Fitzgerald M (2009a) The changing balance of brainstem-spinal cord modulation of pain processing over the first weeks of rat postnatal life. J Physiol 587(Pt 12):2927–2935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hathway GJ, Vega-Avelaira D, Fitzgerald M (2012) A critical period in the supraspinal control of pain: opioid-dependent changes in brainstem rostroventral medulla function in preadolescence. Pain 153(4):775–783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hathway GJ, Vega-Avelaira D, Moss A, Ingram R, Fitzgerald M (2009b) Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates. Pain 144(1–2):110–118

    PubMed Central  PubMed  Google Scholar 

  • Hellman KM, Mason P (2012) Opioids disrupt pro-nociceptive modulation mediated by raphe magnus. J Neurosci 32(40):13668–13678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hensch TK (2004) Critical period regulation. Annu Rev Neurosci 27:549–579. doi:10.1146/annurev.neuro.27.070203.144327

    CAS  PubMed  Google Scholar 

  • Hermann C, Hohmeister J, Demirakca S, Zohsel K, Flor H (2006) Long-term alteration of pain sensitivity in school-aged children with early pain experiences. Pain 125(3):278–285

    PubMed  Google Scholar 

  • Hohmann AG, Neely MH, Pina J, Nackley AG (2005) Neonatal chronic hind paw inflammation alters sensitization to intradermal capsaicin in adult rats: a behavioral and immunocytochemical study. J Pain 6(12):798–808

    CAS  PubMed  Google Scholar 

  • Holmberg H, Schouenborg J (1996a) Developmental adaptation of withdrawal reflexes to early alteration of peripheral innervation in the rat. J Physiol 495(Pt 2):399–409

    PubMed Central  PubMed  Google Scholar 

  • Holmberg H, Schouenborg J (1996b) Postnatal development of the nociceptive withdrawal reflexes in the rat: a behavioural and electromyographic study. J Physiol 493(Pt 1):239–252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howard RF, Walker SM, Mota M, Fitzgerald M (2005) The ontogeny of neuropathic pain:postnatal onset of mechanical allodynia in rat spared nerve injury (SNI) and chronic constriction injury (CCI) models. Pain 115(3):382–389

    PubMed  Google Scholar 

  • Jackman A, Fitzgerald M (2000) Development of peripheral hindlimb and central spinal cord innervation by subpopulations of dorsal root ganglion cells in the embryonic rat. J Comp Neurol 418(3):281–298

    CAS  PubMed  Google Scholar 

  • Jennings E, Fitzgerald M (1996) C-fos can be induced in the neonatal rat spinal cord by both noxious and innocuous peripheral stimulation. Pain 68(2–3):301–306

    CAS  PubMed  Google Scholar 

  • Jennings E, Fitzgerald M (1998) Postnatal changes in responses of rat dorsal horn cells to afferent stimulation: a fibre-induced sensitization. J Physiol 509(Pt 3):859–868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:57–68

    CAS  PubMed  Google Scholar 

  • Ji RR, Suter M (2007) p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 3(1):33

    PubMed Central  PubMed  Google Scholar 

  • Jiang MC, Gebhart GF (1998) Development of mustard oil-induced hyperalgesia in rats. Pain 77(3):305–313

    CAS  PubMed  Google Scholar 

  • Johnson S, Hennessy E, Smith R, Trikic R, Wolke D, Marlow N (2009) Academic attainment and special educational needs in extremely preterm children at 11 years of age: The EPICure study. Arch Dis Child: Fetal and Neonatal Ed 94(4):F283–F289

    CAS  Google Scholar 

  • Jonas P, Bischofberger J, Sandkuhler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science 281(5375):419–424

    CAS  PubMed  Google Scholar 

  • Kato G, Yasaka T, Katafuchi T, Furue H, Mizuno M, Iwamoto Y, Yoshimura M (2006) Direct GABAergic and Glycinergic Inhibition of the substantia gelatinosa from the rostral ventromedial medulla revealed by in vivo patch-clamp analysis in rats. J Neurosci 26(6):1787–1794. doi:10.1523/jneurosci.4856-05.2006

    CAS  PubMed  Google Scholar 

  • Leong SK (1983) Localizing the corticospinal neurons in neonatal, developing and mature albino rat. Brain Res 265(1):1–9

    CAS  PubMed  Google Scholar 

  • Lewin GR, Mendell LM (1994) Regulation of cutaneous C-fiber heat nociceptors by nerve growth factor in the developing rat. J Neurophysiol 71(3):941–949

    CAS  PubMed  Google Scholar 

  • Ma W, Behar T, Barker JL (1992) Transient expression of GABA immunoreactivity in the developing rat spinal cord. J Comp Neurol 325(2):271–290

    CAS  PubMed  Google Scholar 

  • Markus A, Zhong J, Snider WD (2002) Raf and akt mediate distinct aspects of sensory axon growth. Neuron 35(1):65–76

    CAS  PubMed  Google Scholar 

  • Marlow N, Wolke D, Bracewell MA, Samara M (2005) Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 352(1):9–19

    CAS  PubMed  Google Scholar 

  • Meyer RA, Ringkamp M, Campbell JN, Raja SN (2006) Peripheral mechanisms of cutaneous nociception. In: McMahon SB, Koltzenburg M (eds) The textbook of pain. Churchill Livingstone, London, pp 3–34

    Google Scholar 

  • Mirnics K, Koerber HR (1995a) Prenatal development of rat primary afferent fibers: I. peripheral projections. J Comp Neurol 355(4):589–600

    CAS  PubMed  Google Scholar 

  • Mirnics K, Koerber HR (1995b) Prenatal development of rat primary afferent fibers: II central projections. J Comp Neurol 355(4):601–614

    CAS  PubMed  Google Scholar 

  • Molliver DC, Wright DE, Leitner ML, Parsadanian AS, Doster K, Wen D, Yan Q, Snider WD (1997) IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life 507. Neuron 19(4):849–861

    CAS  PubMed  Google Scholar 

  • Moss A, Alvares D, Meredith-Middleton J, Robinson M, Slater R, Hunt SP, Fitzgerald M (2005) Ephrin-A4 inhibits sensory neurite outgrowth and is regulated by neonatal skin wounding. Eur J Neurosci 22(10):2413–2421

    PubMed  Google Scholar 

  • Moss A, Beggs S, Vega-Avelaira D, Costigan M, Hathway GJ, Salter MW, Fitzgerald M (2007) Spinal microglia and neuropathic pain in young rats. Pain 128(3):215–224

    CAS  PubMed  Google Scholar 

  • Parry CB (1984) Pain in avulsion of the brachial plexus. Neurosurgery 15(6):960–965

    CAS  PubMed  Google Scholar 

  • Pitkanen A, Savander V, Ledoux JE (1998) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20(11):517–523

    Google Scholar 

  • Ren K, Anseloni V, Zou SP, Wade EB, Novikova SI, Ennis M, Traub RJ, Gold MS, Dubner R, Lidow MS (2004) Characterization of basal and re-inflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflammatory insult. Pain 110(3):588–596

    CAS  PubMed  Google Scholar 

  • Ren K, Dubner R (2002) Descending modulation in persistent pain: an update. Pain 100(1–2):1–6

    PubMed  Google Scholar 

  • Ririe DG, Liu B, Clayton B, Tong C, Eisenach JC (2008) Electrophysiologic characteristics of large neurons in dorsal root ganglia during development and after hind paw incision in the rat. Anesthesiology 109(1):111–117

    PubMed Central  PubMed  Google Scholar 

  • Ririe DG, Vernon TL, Tobin JR, Eisenach JC (2003) Age-dependent responses to thermal hyperalgesia and mechanical allodynia in a rat model of acute postoperative pain. Anesthesiology 99(2):443–448

    PubMed  Google Scholar 

  • Ritter AM, Lewin GR, Kremer NE, Mendell LM (1991) Requirement for nerve growth factor in the development of myelinated nociceptors in vivo. Nature 350(6318):500–502

    CAS  PubMed  Google Scholar 

  • Ruda MA, Ling QD, Hohmann AG, Peng YB, Tachibana T (2000) Altered nociceptive neuronal circuits after neonatal peripheral inflammation. Science 289(5479):628–631

    CAS  PubMed  Google Scholar 

  • Schaffner AE, Behar T, Nadi S, Smallwood V, Barker JL (1993) Quantitative analysis of transient GABA expression in embryonic and early postnatal rat spinal cord neurons. Brain Res Dev Brain Res 72(2):265–276

    CAS  PubMed  Google Scholar 

  • Sternberg WF, Scorr L, Smith LD, Ridgway CG, Stout M (2005) Long-term effects of neonatal surgery on adulthood pain behavior. Pain 113(3):347–353

    PubMed  Google Scholar 

  • Stuesse SL, Cruce WL, Lovell JA, McBurney DL, Crisp T (2000) Microglial proliferation in the spinal cord of aged rats with a sciatic nerve injury. Neurosci Lett 287(2):121–124 S0304-3940(00)01142-3

    CAS  PubMed  Google Scholar 

  • Teng CJ, Abbott FV (1998) The formalin test: a dose-response analysis at three developmental stages. Pain 76(3):337–347

    CAS  PubMed  Google Scholar 

  • Tillu DV, Gebhart GF, Sluka KA (2007) Descending facilitatory pathways from the RVM initiate and maintain bilateral hyperalgesia after muscle insult. Pain E-pub ahead of print

    Google Scholar 

  • Todd AJ, Sullivan AC (1990) Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol 296(3):496–505. doi:10.1002/cne.902960312

    CAS  PubMed  Google Scholar 

  • Tsuda M, Inoue K, Salter MW (2005) Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci 28:101–107

    CAS  PubMed  Google Scholar 

  • van Praag H, Frenk H (1991) The development of stimulation-produced analgesia (SPA) in the rat. Brain Res Dev Brain Res 64(1–2):71–76

    PubMed  Google Scholar 

  • Vega-Avelaira D, Geranton SM, Fitzgerald M (2009) Differential regulation of immune responses and macrophage/neuron interactions in the dorsal root ganglion in young and adult rats following nerve injury. Mol Pain 5:70

    PubMed Central  PubMed  Google Scholar 

  • Vega-Avelaira D, McKelvey R, Hathway G, Fitzgerald M (2012) The emergence of adolescent onset pain hypersensitivity following neonatal nerve injury. Mol Pain 8:30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waldenstrom A, Thelin J, Thimansson E, Levinsson A, Schouenborg J (2003) Developmental learning in a pain-related system: evidence for a cross-modality mechanism. J Neurosci 23(20):7719–7725

    PubMed  Google Scholar 

  • Walker S, Franck L, Fitzgerald M, Myles J, Stocks J, Marlow N (2009a) Long-term impact of neonatal intensive care and surgery on somatosensory perception in children born extremely preterm. Pain 141(1–2):79–87

    PubMed  Google Scholar 

  • Walker S, Tochiki K, Fitzgerald M (2009b) Hindpaw incision in early life increases the hyperalgesic response to repeat surgical injury: critical period and dependence on initial afferent activity. Pain 15(147):99–106

    Google Scholar 

  • Walker SM, Meredith-Middleton J, Lickiss T, Moss A, Fitzgerald M (2007) Primary and secondary hyperalgesia can be differentiated by postnatal age and ERK activation in the spinal dorsal horn of the rat pup. Pain 128(1–2):157–168

    CAS  PubMed  Google Scholar 

  • Wang G, Ji Y, Lidow MS, Traub RJ (2004) Neonatal hind paw injury alters processing of visceral and somatic nociceptive stimuli in the adult rat. J Pain 5(8):440–449

    PubMed  Google Scholar 

  • Woodbury CJ, Koerber HR (2003) Widespread projections from myelinated nociceptors throughout the substantia gelatinosa provide novel insights into neonatal hypersensitivity. J Neurosci 23(2):601–610

    CAS  PubMed  Google Scholar 

  • Woolf CJ, Ma Q (2007) Nociceptors–noxious stimulus detectors. Neuron 55(3):353–364. doi:10.1016/j.neuron.2007.07.016

    CAS  PubMed  Google Scholar 

  • Zhang W, Gardell S, Zhang D, Xie JY, Agnes RS, Badghisi H, Hruby VJ, Rance N, Ossipov MH, Vanderah TW, Porreca F, Lai J (2009) Neuropathic pain is maintained by brainstem neurons co-expressing opioid and cholecystokinin receptors. Brain 132(3):778–787. doi:10.1093/brain/awn330

    PubMed Central  PubMed  Google Scholar 

  • Zhuang ZY, Gerner P, Woolf CJ, Ji RR (2005) ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 114:149–159

    PubMed  Google Scholar 

  • Zhuo M, Gebhart GF (1997) Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat. J Neurophysiol 78(2):746–758

    CAS  PubMed  Google Scholar 

  • Zhuo M, Gebhart GF (2002) Facilitation and attenuation of a visceral nociceptive reflex from the rostroventral medulla in the rat. Gastroenterology 122(4):1007–1019

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth J. Hathway .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hathway, G.J. (2014). Acute and Chronic Pain in Children. In: Taylor, B., Finn, D. (eds) Behavioral Neurobiology of Chronic Pain. Current Topics in Behavioral Neurosciences, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_327

Download citation

Publish with us

Policies and ethics