Skip to main content

Topographic Mapping of Parietal Cortex

  • Protocol
  • First Online:
Spatial Learning and Attention Guidance

Part of the book series: Neuromethods ((NM,volume 151))

  • 829 Accesses

Abstract

The parietal cortex supports a vast number of cognitive functions including visual attention, short-term memory, and decision-making. In particular, the intraparietal sulcus (IPS) is central to many of these tasks. Functional magnetic resonance imaging (fMRI) can identify at least six areas in IPS within individuals based upon topographic representations of the visual field. Recent studies have utilized novel mapping techniques to increase the feasibility of defining these topographic areas in individual participants with a high degree of reliability. This chapter introduces a method for demonstrating topographic maps that has been used across several different magnets and head coils to quickly and efficiently demonstrate occipital and parietal topographic maps. By increasing the efficiency with which laboratories can functionally map the parietal cortex, a greater number of studies can utilize objective identification of within-individual regions of interest. Increasing the accessibility of defining these topographic maps will further the goal of understanding the cognitive processes subserved by the parietal cortex.

The original version of this chapter was revised. The correction to this chapter is available at https://doi.org/10.1007/7657_2019_29

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 23 July 2019

    This chapter was inadvertently published with incorrect Tables 1 and 2. The correct presentation is given here.

References

  1. Inouye T (1909) Die Sehstörungen bei Schußverletzungen der kortikalen Sehsphäre: Nach Beobachtungen an Verwundeten der letzten japanischen Kriege. W. Engelmann Verlag, Leipzig

    Google Scholar 

  2. Sereno MI, McDonald CT, Allman JM (1994) Analysis of retinotopic maps in extrastriate cortex. Cereb Cortex 4:601–620

    Article  CAS  Google Scholar 

  3. Tootell RB, Silverman MS, Valois DR (1981) Spatial frequency columns in primary visual cortex. Science 214:813–815

    Article  CAS  Google Scholar 

  4. Sereno MI, Dale A, Reppas JB et al (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893

    Article  CAS  Google Scholar 

  5. DeYoe EA, Carman GJ, Bandettini P et al (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci U S A 93:2382–2386

    Article  CAS  Google Scholar 

  6. Engel SA, Rumelhart DE, Wandell BA et al (1994) fMRI of human visual cortex. Nature 369:525

    Article  CAS  Google Scholar 

  7. Tootell BR, Reppas JB, Kwong KK et al (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230

    Article  CAS  Google Scholar 

  8. Kastner S, De Weerd P, Desimone R et al (1998) Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282:108–111

    Article  CAS  Google Scholar 

  9. Somers DC, Dale AM, Seiffert AE et al (1999) Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proc Natl Acad Sci U S A 96:1663–1668

    Article  CAS  Google Scholar 

  10. Wandell BA, Winawer J (2011) Imaging retinotopic maps in the human brain. Vision Res 51:718–737

    Article  Google Scholar 

  11. Benson NC, Jamison KW, Arcaro MJ et al (2018) The HCP 7T retinotopy dataset: description and pRF analysis. Biorxiv. https://doi.org/10.1101/308247

  12. Sheremata SL, Bettencourt KC, Somers DC (2010) Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load. J Neurosci 30:12581–12588

    Article  CAS  Google Scholar 

  13. Harvey BM, Klein BP, Petridou N et al (2013) Topographic representation of numerosity in the human parietal cortex. Science 341:1123–1126

    Article  CAS  Google Scholar 

  14. Hutchinson BJ, Uncapher MR, Weiner KS et al (2012) Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cereb Cortex 24:bhs278

    Google Scholar 

  15. Liu T, Pleskac TJ (2011) Neural correlates of evidence accumulation in a perceptual decision task. J Neurophysiol 106:2383–2398

    Article  Google Scholar 

  16. Todd JJ, Marois R (2004) Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428:751–754

    Article  CAS  Google Scholar 

  17. Xu Y, Chun MM (2006) Dissociable neural mechanisms supporting visual short-term memory for objects. Nature 440:91–95

    Article  CAS  Google Scholar 

  18. Sheremata SL, Somers DC, Shomstein S (2018) Visual short-term memory activity in parietal lobe reflects cognitive processes beyond attentional selection. J Neurosci 38:1511–1519

    Article  CAS  Google Scholar 

  19. Serences JT, Ester EF, Vogel EK et al (2009) Stimulus-specific delay activity in human primary visual cortex. Psychol Sci 20:207–214

    Article  Google Scholar 

  20. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  CAS  Google Scholar 

  21. Dumoulin SO, Wandell BA (2008) Population receptive field estimates in human visual cortex. Neuroimage 39:647–660

    Article  Google Scholar 

  22. Silson EH, Chan AWY, Reynolds RC et al (2015) A retinotopic basis for the division of high-level scene processing between lateral and ventral human occipitotemporal cortex. J Neurosci 35:11921–11935

    Article  CAS  Google Scholar 

  23. Sheremata SL, Silver MA (2015) Hemisphere-dependent attentional modulation of human parietal visual field representations. J Neurosci 35:508–517

    Article  CAS  Google Scholar 

  24. Bressler DW, Fortenbaugh FC, Robertson LC et al (2013) Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner. Vision Res 85:104–112

    Article  Google Scholar 

  25. Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354

    Article  CAS  Google Scholar 

  26. Hagler DJ, Sereno MI (2006) Spatial maps in frontal and prefrontal cortex. Neuroimage 29:567–577

    Article  Google Scholar 

  27. Kastner S, DeSimone K, Konen CS et al (2007) Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks. J Neurophysiol 97:3494–3507

    Article  Google Scholar 

  28. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I. Segmentation and surface reconstruction. Neuroimage 9:179–194

    Article  CAS  Google Scholar 

  29. Swisher JD, Halko MA, Merabet LB et al (2007) Visual topography of human intraparietal sulcus. J Neurosci 27:5326–5337

    Article  CAS  Google Scholar 

  30. Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 94:1358–1371

    Article  Google Scholar 

  31. Tootell RBH, Hadjikhani N, Hall EK et al (1998) The retinotopy of visual spatial attention. Neuron 21:1409–1422

    Article  CAS  Google Scholar 

  32. Mackey WE, Winawer J, Curtis CE (2017) Visual field map clusters in human frontoparietal cortex. Elife 6:e22974

    Article  Google Scholar 

  33. Wandell BA, Winawer J (2015) Computational neuroimaging and population receptive fields. Trends Cogn Sci 19:349–357

    Article  Google Scholar 

  34. Amano K, Wandell BA, Dumoulin SO (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J Neurophysiol 102:2704–2718

    Article  Google Scholar 

  35. Silson EH, Reynolds RC, Kravitz DJ et al (2018) Differential sampling of visual space in ventral and dorsal early visual cortex. J Neurosci 38:2294–2303

    Article  CAS  Google Scholar 

  36. Womelsdorf T, Anton-Erxleben K, Pieper F et al (2006) Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nat Neurosci 9:1156–1160

    Article  CAS  Google Scholar 

  37. de HB, Schwarzkopf DS, Anderson EJ et al (2014) Perceptual load affects spatial tuning of neuronal populations in human early visual cortex. Curr Biol 24:R66–R67

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Summer Sheremata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sheremata, S. (2019). Topographic Mapping of Parietal Cortex. In: Pollmann, S. (eds) Spatial Learning and Attention Guidance. Neuromethods, vol 151. Humana, New York, NY. https://doi.org/10.1007/7657_2019_23

Download citation

  • DOI: https://doi.org/10.1007/7657_2019_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9947-7

  • Online ISBN: 978-1-4939-9948-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics