Skip to main content

A Boronic Acid-Based Enrichment for Site-Specific Identification of the N-glycoproteome Using MS-Based Proteomics

  • Protocol
  • First Online:
Analysis of Post-Translational Modifications and Proteolysis in Neuroscience

Part of the book series: Neuromethods ((NM,volume 114))

Abstract

Modification of proteins by N-linked glycans plays a critically important role in biological systems, including determining protein folding and trafficking as well as regulating many biological processes. Aberrant glycosylation is well known to be related to disease, including cancer and neurodegenerative diseases. Current mass spectrometry (MS)-based proteomics provides the possibility for site-specific identification of the N-glycoproteome; however, this is extraordinarily challenging because of the low abundance of many N-glycoproteins and the heterogeneity of glycans. Effective enrichment is essential to comprehensively analyze N-glycoproteins in complex biological samples. The covalent interaction between boronic acid and cis-diols allows us to selectively capture glycopeptides and glycoproteins, whereas the reversible nature of the bond enables them to be released after non-glycopeptides are removed. By virtue of the universal boronic acid-diol recognition, large-scale mapping of N-glycoproteins can be achieved by combining boronic acid-based enrichment, PNGase F treatment in the presence of heavy oxygen (18O) water, and MS analysis. This method can be extensively applied for the comprehensive analysis of N-glycoproteins in a wide variety of complex biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4(10):798–806

    Article  CAS  PubMed  Google Scholar 

  2. Huang H, Lin S, Garcia BA, Zhao YM (2015) Quantitative proteomic analysis of histone modifications. Chem Rev 115(6):2376–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xiao HP, Chen WX, Tang GX, Smeekens JM, Wu RH (2015) Systematic investigation of cellular response and pleiotropic effects in atorvastatin-treated liver cells by MS-based proteomics. J Proteome Res 14(3):1600–1611

    Article  CAS  PubMed  Google Scholar 

  4. Alvarez-Errico D, Vento-Tormo R, Sieweke M, Ballestar E (2015) Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol 15(1):7–17

    Article  CAS  PubMed  Google Scholar 

  5. Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96(2):683–720

    Article  CAS  PubMed  Google Scholar 

  6. Varki A (1993) Biological roles of oligosaccharides - all of the theories are correct. Glycobiology 3(2):97–130

    Article  CAS  PubMed  Google Scholar 

  7. Spiciarich DR, Maund SL, Peehl DM, Bertozzi CR (2014) Identifying prostate cancer biomarkers by profiling glycoproteins in human prostate tissue. Abstr Pap Am Chem S, 248

    Google Scholar 

  8. Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues LC, Gourdine JP, Noll AJ, von Gunten S, Smith DF, Knirel YA, Paulson JC, Cummings RD (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10(6):470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang XC, Chen J, Li QK, Peskoe SB, Zhang B, Choi C, Platz EA, Zhang H (2014) Overexpression of alpha (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology 24(10):935–944

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gilgunn S, Conroy PJ, Saldova R, Rudd PM, O’Kennedy RJ (2013) Aberrant PSA glycosylation-a sweet predictor of prostate cancer. Nat Rev Urol 10(2):99–107

    Article  CAS  PubMed  Google Scholar 

  11. Remmers N, Anderson JM, Linde EM, DiMaio DJ, Lazenby AJ, Wandall HH, Mandel U, Clausen H, Yu F, Hollingsworth MA (2013) Aberrant expression of mucin core proteins and O-linked glycans associated with progression of pancreatic cancer. Clin Cancer Res 19(8):1981–1993

    Article  CAS  PubMed  Google Scholar 

  12. Ma JF, Hart GW (2013) Protein O-glcnacylation in diabetes and diabetic complications. Exp Rev Proteomic 10(4):365–380

    Article  CAS  Google Scholar 

  13. Ju TZ, Otto VI, Cummings RD (2011) The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed 50(8):1770–1791

    Article  CAS  Google Scholar 

  14. Chen WX, Smeekens JM, Wu RH (2014) Comprehensive analysis of protein N-glycosylation sites by combining chemical deglycosylation with LC-MS. J Proteome Res 13(3):1466–1473

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Li XJ, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21(6):660–666

    Article  CAS  PubMed  Google Scholar 

  16. Roy B, Chattopadhyay G, Mishra D, Das T, Chakraborty S, Maiti TK (2014) On-chip lectin microarray for glycoprofiling of different gastritis types and gastric cancer. Biomicrofluidics 8(3):034107

    Article  PubMed  PubMed Central  Google Scholar 

  17. Maenuma K, Yim M, Komatsu K, Hoshino M, Takahashi Y, Bovin N, Irimura T (2008) Use of a library of mutated Maackia amurensis hemagglutinin for profiling the cell lineage and differentiation. Proteomics 8(16):3274–3283

    Article  CAS  PubMed  Google Scholar 

  18. Xu GB, Zhang W, Wei LM, Lu HJ, Yang PY (2013) Boronic acid-functionalized detonation nanodiamond for specific enrichment of glycopeptides in glycoproteome analysis. Analyst 138(6):1876–1885

    Article  CAS  PubMed  Google Scholar 

  19. Zeng ZF, Wang YD, Guo XH, Wang L, Lu N (2013) On-plate glycoproteins/glycopeptides selective enrichment and purification based on surface pattern for direct MALDI MS analysis. Analyst 138(10):3032–3037

    Article  CAS  PubMed  Google Scholar 

  20. Chen WX, Smeekens JM, Wu RH (2014) A universal chemical enrichment method for mapping the yeast N-glycoproteome by mass spectrometry (MS). Mol Cell Proteomics 13(6):1563–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143(7):1174–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214

    Article  CAS  PubMed  Google Scholar 

  23. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24(10):1285–1292

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation (CAREER Award, CMI-1454501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronghu Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xiao, H., Tang, G.X., Chen, W., Wu, R. (2015). A Boronic Acid-Based Enrichment for Site-Specific Identification of the N-glycoproteome Using MS-Based Proteomics. In: Grant, J., Li, H. (eds) Analysis of Post-Translational Modifications and Proteolysis in Neuroscience. Neuromethods, vol 114. Humana Press, New York, NY. https://doi.org/10.1007/7657_2015_94

Download citation

  • DOI: https://doi.org/10.1007/7657_2015_94

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3470-6

  • Online ISBN: 978-1-4939-3472-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics