Skip to main content

On the Effect of Volume Conduction on Graph Theoretic Measures of Brain Networks in Epilepsy

  • Protocol
  • First Online:
Modern Electroencephalographic Assessment Techniques

Abstract

It is well established that both volume conduction and the choice of recording reference (montage) affect the connectivity measures obtained from scalp EEG, in the time and frequency domains. A number of measures have been proposed aiming to reduce this influence. Our purpose in this work is to establish the extent to which volume conduction and montage influence the graph theoretic measures of brain networks in epilepsy obtained from scalp EEG. We evaluate and compare two standard and most commonly used linear connectivity measures—cross-correlation in the time domain and coherence in the frequency domain—with measures that account for volume conduction, namely, corrected cross-correlation, imaginary coherence, phase lag index, and weighted phase lag index. We show that the graphs constructed with cross-correlation and coherence are affected by volume conduction and montage more markedly; however, they demonstrate the same trend—decreasing connectivity at seizure onset, which continues decreasing in the ictal and early postictal period, increasing again several minutes after the seizure has ended—with all other measures except imaginary coherence. In particular, networks constructed using cross-correlation yield better discrimination between the pre-ictal and ictal periods than the measures less sensitive to volume conduction such as the phase lag index and imaginary coherence. Thus, somewhat paradoxically, although removing the effects of volume conduction allows for a more accurate reconstruction of the true underlying networks this may come at the cost of discrimination ability with respect to brain state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure prediction: the long and winding road. Brain 130(Pt 2):314–333

    Article  PubMed  Google Scholar 

  2. Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1(1):3

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bullmore ET, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  CAS  PubMed  Google Scholar 

  4. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  5. Achard S, Bullmore ET (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kramer MA, Kolaczyk ED, Kirsch HE (2008) Emergent network topology at seizure onset in humans. Epilepsy Res 79(2–3):173–186

    Article  PubMed  Google Scholar 

  7. Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118(4):918–927

    Article  CAS  PubMed  Google Scholar 

  8. Christodoulakis M, Anastasiadou M, Papacostas SS, Papathanasiou ES, Mitsis GD (2012) Investigation of network brain dynamics from EEG measurements in patients with epilepsy using graph-theoretic approaches. In: 2012 IEEE 12th international conference on bioinformatics & bioengineering (BIBE), 11--13 November 2012, pp 303–308. doi: 10.1109/BIBE.2012.6399693

  9. Nunez PL, Srinivasan R, Westdorp F, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103(5):499–515

    Article  CAS  PubMed  Google Scholar 

  10. Nunez PL, Silberstein RB, Shi Z, Carpenter MR, Srinivasan R, Tucker DM, Doran SM, Cadusch PJ, Wijesinghe RS (1999) EEG coherency II: experimental comparisons of multiple measures. Clin Neurophysiol 110(3):469–486

    Article  CAS  PubMed  Google Scholar 

  11. Guevara R, Luis J, Velazquez P, Nenadovic V, Wennberg R, Senjanovi G, Velazquez JLP, Senjanovic G, Dominguez LG (2005) Phase synchronization measurements using electroencephalographic recordings: what can we really say about neuronal synchrony? Neuroinformatics 3(4):301–314

    Article  PubMed  Google Scholar 

  12. Peraza LR, Asghar AUR, Green G, Halliday DM (2012) Volume conduction effects in brain network inference from electroencephalographic recordings using phase lag index. J Neurosci Methods 207(2):189–199

    Article  PubMed  Google Scholar 

  13. Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CM (2011) An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55(4):1548–1565

    Article  PubMed  Google Scholar 

  14. Thatcher RW (2012) Coherence, phase differences, phase shift, and phase lock in EEG/ERP analyses. Dev Neuropsychol 37(6):476–496

    Article  PubMed  Google Scholar 

  15. Haufe S, Tomioka R, Nolte G, Müller K-R, Kawanabe M (2010) Modeling sparse connectivity between underlying brain sources for EEG/MEG. IEEE Trans Biomed Eng 57(8):1954–1963

    Article  PubMed  Google Scholar 

  16. Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11):1178–1193

    Article  PubMed  Google Scholar 

  17. Nevado A, Hadjipapas A, Kinsey K, Moratti S, Barnes GR, Holliday IE, Green GG (2012) Estimation of functional connectivity from electromagnetic signals and the amount of empirical data required. Neurosci Lett 513(1):57–61

    Article  CAS  PubMed  Google Scholar 

  18. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115(10):2292–2307

    Article  PubMed  Google Scholar 

  19. David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. Neuroimage 20(3):1743–1755

    Article  PubMed  Google Scholar 

  20. Gross J, Kujala J, Hämäläinen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci 98(2):694–699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lehmann D, Faber PL, Gianotti LRR, Kochi K, Pascual-Marqui RD (2006) Coherence and phase locking in the scalp EEG and between LORETA model sources, and microstates as putative mechanisms of brain temporo-spatial functional organization. J Physiol Paris 99(1):29–36

    Article  PubMed  Google Scholar 

  22. Christodoulakis M, Hadjipapas A, Papathanasiou ES, Anastasiadou M, Papacostas SS, Mitsis GD (2013) Graph theoretic analysis of scalp EEG brain networks in epilepsy – the influence of montage and volume conduction. In: 2013 IEEE 13th international conference on bioinformatics & bioengineering (BIBE), 10–13 November 2013

    Google Scholar 

  23. Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, New York

    Book  Google Scholar 

  24. Pereda E, Quiroga RQ, Bhattacharya J (2005) Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol 77(1–2):1–37

    Article  PubMed  Google Scholar 

  25. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701

    Article  CAS  PubMed  Google Scholar 

  26. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  CAS  PubMed  Google Scholar 

  27. Müller MF, Baier G, Jiménez YL, Marín García AO, Rummel C, Schindler KA (2011) Evolution of genuine cross-correlation strength of focal onset seizures. J Clin Neurophysiol 28(5):450–462

    PubMed  Google Scholar 

  28. Kramer MA, Eden UT, Kolaczyk ED, Zepeda R, Eskandar EN, Cash SS (2010) Coalescence and fragmentation of cortical networks during focal seizures. J Neurosci 30(30):10076–10085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Schindler KA, Bialonski S, Horstmann M-T, Elger CE, Lehnertz K (2008) Evolving functional network properties and synchronizability during human epileptic seizures. Chaos 18(3):033119

    Article  PubMed  Google Scholar 

  30. Pacia SV, Ebersole JS (1997) Intracranial EEG substrates of scalp ictal patterns from temporal lobe foci. Epilepsia 38(6):642–654

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios D. Mitsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Christodoulakis, M., Hadjipapas, A., Papathanasiou, E.S., Anastasiadou, M., Papacostas, S.S., Mitsis, G.D. (2013). On the Effect of Volume Conduction on Graph Theoretic Measures of Brain Networks in Epilepsy. In: Sakkalis, V. (eds) Modern Electroencephalographic Assessment Techniques. Neuromethods, vol 91. Humana Press, New York, NY. https://doi.org/10.1007/7657_2013_65

Download citation

  • DOI: https://doi.org/10.1007/7657_2013_65

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1297-1

  • Online ISBN: 978-1-4939-1298-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics