Skip to main content

Quantification of Neuroreceptors and Neurotransporters

  • Protocol
  • First Online:
Molecular Imaging in the Clinical Neurosciences

Part of the book series: Neuromethods ((NM,volume 71))

Abstract

The binding potential relative to the concentration of nondisplaceable radiotracer in brain (BPND), corresponding to the ratio of the density of neuroreceptors or neurotransporters available to bind radiotracer in vivo (B avail) to the dissociation constant of the radiotracer (K D), can be measured by positron emission tomography (PET) with various radiotracers. PET measures the total radioactivity in brain regions, and therefore the differentiation of specific binding from the background of nondisplaceable binding is a fundamental problem in quantitative analyses of PET data. A true equilibrium condition can be obtained only by continuous intravenous infusion of radiotracer. Equilibrium condition after bolus injection of radiotracer can practically be defined as peak equilibrium at the transient moment when the specific binding is maximal. For equilibrium condition, BPND is expressed as the ratio of radiotracer concentration of specific binding to nondisplaceable binding estimated using a reference region. Kinetic analysis, which is based on the assumption that radiotracer binding can be described by the standard two-tissue compartment model, allows the differentiation of the specific binding from the background of nondisplaceable binding, therefore revealing BPND. For radiotracers with no ideal reference region, BPND can be calculated only by kinetic analysis. Distribution volumes can also be estimated by several graphic plot analyses, as well as by kinetic analysis. Graphic plot analyses can be used to distinguish graphically whether radiotracers show reversible or irreversible binding. A graphic plot analysis recently developed can also be used to distinguish graphically whether the radiotracer binding includes specific binding or not. To avoid the measurement of arterial input function, several quantitative approaches based on the use of a reference region have been developed. Both the simplified reference tissue model and multilinear reference tissue model methods were widely used to calculate BPND without the arterial input function. For each radiotracer and each purpose of PET study, an adequate quantification method should be employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ito H et al (2008) Normal database of dopaminergic neurotransmission system in human brain measured by positron emission tomography. Neuroimage 39:555–565

    Article  PubMed  Google Scholar 

  2. Innis RB et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  PubMed  CAS  Google Scholar 

  3. Mintun MA et al (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15:217–227

    Article  PubMed  CAS  Google Scholar 

  4. Huang SC et al (1986) Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. J Cereb Blood Flow Metab 6:515–521

    Article  PubMed  CAS  Google Scholar 

  5. Farde L et al (1989) Kinetic analysis of central [11 C]raclopride binding to D2-dopamine receptors studied by PET-a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:696–708

    Article  PubMed  CAS  Google Scholar 

  6. Ito H et al (1998) Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11 C]raclopride binding. J Cereb Blood Flow Metab 18:941–950

    Article  PubMed  CAS  Google Scholar 

  7. Lassen NA (1992) Neuroreceptor quantitation in vivo by the steady-state principle using constant infusion or bolus injection of radioactive tracers. J Cereb Blood Flow Metab 12:709–716

    Article  PubMed  CAS  Google Scholar 

  8. Carson RE et al (1993) Comparison of bolus and infusion methods for receptor quantitation: application to [18 F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab 13:24–42

    Article  PubMed  CAS  Google Scholar 

  9. Laruelle M et al (1994) SPECT quantification of [123I]iomazenil binding to benzodiazepine receptors in nonhuman primates: I. Kinetic modeling of single bolus experiments. J Cereb Blood Flow Metab 14:439–452

    Article  PubMed  CAS  Google Scholar 

  10. Ikoma Y et al (2007) Quantitative analysis for estimating binding potential of the peripheral benzodiazepine receptor with [11 C]DAA1106. J Cereb Blood Flow Metab 27:173–184

    Article  PubMed  CAS  Google Scholar 

  11. Logan J et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11 C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747

    Article  PubMed  CAS  Google Scholar 

  12. Logan J et al (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840

    Article  PubMed  CAS  Google Scholar 

  13. Koeppe RA et al (1991) Compartmental analysis of [11 C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 11:735–744

    Article  PubMed  CAS  Google Scholar 

  14. Ito H et al (1996) A simple method for the quantification of benzodiazepine receptors using iodine-123 iomazenil and single-photon emission tomography. Eur J Nucl Med 23:782–791

    Article  PubMed  CAS  Google Scholar 

  15. Ito H et al (2010) A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies. Neuroimage 49:578–586

    Article  PubMed  Google Scholar 

  16. Yokoi T et al (1993) A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET. J Nucl Med 34:498–505

    PubMed  CAS  Google Scholar 

  17. Lammertsma AA et al (1996) Comparison of methods for analysis of clinical [11 C]raclopride studies. J Cereb Blood Flow Metab 16:42–52

    Article  PubMed  CAS  Google Scholar 

  18. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158

    Article  PubMed  CAS  Google Scholar 

  19. Gunn RN et al (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6:279–287

    Article  PubMed  CAS  Google Scholar 

  20. Cselenyi Z et al (2006) A comparison of recent parametric neuroreceptor mapping approaches based on measurements with the high affinity PET radioligands [11 C]FLB 457 and [11 C]WAY 100635. Neuroimage 32:1690–1708

    Article  PubMed  Google Scholar 

  21. Ichise M et al (1996) Noninvasive quantification of dopamine D2 receptors with iodine-123-IBF SPECT. J Nucl Med 37:513–520

    PubMed  CAS  Google Scholar 

  22. Ichise M et al (2003) Linearized reference tissue parametric imaging methods: application to [11 C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab 23:1096–1112

    Article  PubMed  Google Scholar 

  23. Farde L et al (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatr 45:71–76

    Article  PubMed  CAS  Google Scholar 

  24. Suhara T et al (2003) High levels of serotonin transporter occupancy with low-dose clomipramine in comparative occupancy study with fluvoxamine using positron emission tomography. Arch Gen Psychiatr 60:386–391

    Article  PubMed  CAS  Google Scholar 

  25. Ito H et al (2009) No regional difference in dopamine D2 receptor occupancy by the second-generation antipsychotic drug risperidone in humans: a positron emission tomography study. Int J Neuropsychopharmacol 12:667–675

    Article  PubMed  CAS  Google Scholar 

  26. Endres CJ et al (1997) Kinetic modeling of [11 C]raclopride: combined PET-microdialysis studies. J Cereb Blood Flow Metab 17:932–942

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The assistance of members of the National Institute of Radiological Sciences staff in performing the PET experiments is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ito, H., Naganawa, M., Seki, C., Takano, H., Kanno, I., Suhara, T. (2012). Quantification of Neuroreceptors and Neurotransporters. In: Gründer, G. (eds) Molecular Imaging in the Clinical Neurosciences. Neuromethods, vol 71. Humana Press, Totowa, NJ. https://doi.org/10.1007/7657_2012_44

Download citation

  • DOI: https://doi.org/10.1007/7657_2012_44

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-988-4

  • Online ISBN: 978-1-61779-989-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics