Skip to main content

Historeceptomics: Integrating a Drug’s Multiple Targets (Polypharmacology) with Their Expression Pattern in Human Tissues

  • Protocol
  • First Online:
Multi-Target Drug Design Using Chem-Bioinformatic Approaches

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Historeceptomics is a new, integrative informatics approach to describing the mechanism of action of drugs in a holistic, in vivo context. The approach is based on leveraging emerging big data sources in genomics and chemistry to incorporate tissue specificity into mechanism of action descriptions. New insights into drug mechanism of action, drug repurposing, and prediction of adverse effects may be possible, including the design and development of multi-target drugs or drug combinations. The critical elements still under development include: (1) defining the tissue ensemble associated with specific human diseases, (2) appreciating the pattern or partitioning of the expression of drug targets (receptors) across and outside of these ensembles, and (3) informatics methods to integrate direct drug-receptor data with receptor expression data in tissues. Maturation of this field may enable the complementary field of tissue-targeted drug delivery, enabling novel concepts in drug design and development for unmet medical needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cardozo T, Gupta P, Ni E, Young LM, Tivon D, Felsovalyi K (2016) Data sources for in vivo molecular profiling of human phenotypes. Wiley Interdiscip Rev Syst Biol Med 8:472–484. https://doi.org/10.1002/wsbm.1354

    Article  CAS  PubMed  Google Scholar 

  2. Uhlen M et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  Google Scholar 

  3. Ross JS, Gray GS (2003) Targeted therapy for cancer: the HER-2/neu and Herceptin story. Clin Leadersh Manag Rev 17:333–340

    PubMed  Google Scholar 

  4. Bhatia P, Friedlander P, Zakaria EA, Kandil E (2015) Impact of BRAF mutation status in the prognosis of cutaneous melanoma: an area of ongoing research. Ann Transl Med 3:24. https://doi.org/10.3978/j.issn.2305-5839.2014.12.05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cortes J (2004) Natural history and staging of chronic myelogenous leukemia. Hematol Oncol Clin North Am 18:569–584., viii. https://doi.org/10.1016/j.hoc.2004.03.011

    Article  PubMed  Google Scholar 

  6. Yao F et al (2018) Tissue specificity of in vitro drug sensitivity. J Am Med Inform Assoc 25:158–166. https://doi.org/10.1093/jamia/ocx062

    Article  PubMed  Google Scholar 

  7. Chabner BA (2016) NCI-60 cell line screening: a radical departure in its time. J Natl Cancer Inst 108. https://doi.org/10.1093/jnci/djv388

    Article  Google Scholar 

  8. Malanchi I (2013) Tumour cells coerce host tissue to cancer spread. Bonekey Rep 2:371. https://doi.org/10.1038/bonekey.2013.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yadav L, Puri N, Rastogi V, Satpute P, Sharma V (2015) Tumour angiogenesis and angiogenic inhibitors: a review. J Clin Diagn Res 9:XE01–XE05. https://doi.org/10.7860/JCDR/2015/12016.6135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Callahan MK, Postow MA, Wolchok JD (2016) Targeting T cell co-receptors for cancer therapy. Immunity 44:1069–1078. https://doi.org/10.1016/j.immuni.2016.04.023

    Article  CAS  Google Scholar 

  11. Spahn V et al (2017) A nontoxic pain killer designed by modeling of pathological receptor conformations. Science 355:966–969. https://doi.org/10.1126/science.aai8636

    Article  CAS  PubMed  Google Scholar 

  12. Waldmann H, Adams E, Cobbold S (2008) Reprogramming the immune system: co-receptor blockade as a paradigm for harnessing tolerance mechanisms. Immunol Rev 223:361–370. https://doi.org/10.1111/j.1600-065X.2008.00632.x

    Article  CAS  PubMed  Google Scholar 

  13. Lage K et al (2008) A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes. Proc Natl Acad Sci U S A 105:20870–20875. https://doi.org/10.1073/pnas.0810772105

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kotlyar M, Pastrello C, Sheahan N, Jurisica I (2016) Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res 44:D536–D541. https://doi.org/10.1093/nar/gkv1115

    Article  CAS  PubMed  Google Scholar 

  15. Kitsak M, Sharma A, Menche J, Guney E, Ghiassian SD, Loscalzo J, Barabasi AL (2016) Tissue specificity of human disease module. Sci Rep 6:35241. https://doi.org/10.1038/srep35241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barshir R, Shwartz O, Smoly IY, Yeger-Lotem E (2014) Comparative analysis of human tissue interactomes reveals factors leading to tissue-specific manifestation of hereditary diseases. PLoS Comput Biol 10:e1003632. https://doi.org/10.1371/journal.pcbi.1003632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mohammadi S, Grama A (2016) A convex optimization approach for identification of human tissue-specific interactomes. Bioinformatics 32:i243–i252. https://doi.org/10.1093/bioinformatics/btw245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar V, Sanseau P, Simola DF, Hurle MR, Agarwal P (2016) Systematic analysis of drug targets confirms expression in disease-relevant tissues. Sci Rep 6:36205. https://doi.org/10.1038/srep36205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Costello JC et al (2014) A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol 32:1202–1212. https://doi.org/10.1038/nbt.2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shmelkov E, Grigoryan A, Swetnam J, Xin J, Tivon D, Shmelkov SV, Cardozo T (2015) Historeceptomic fingerprints for drug-like compounds. Front Physiol 6:371. https://doi.org/10.3389/fphys.2015.00371

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ruddigkeit L, Blum LC, Reymond JL (2013) Visualization and virtual screening of the chemical universe database GDB-17. J Chem Inf Model 53:56–65. https://doi.org/10.1021/ci300535x

    Article  CAS  PubMed  Google Scholar 

  22. Shmelkov E, Grigoryan AV, Swetnam J, Xin J, Shmelkov S, Cardozo T (2015) Historeceptomics fingerprints for drug-like compounds. Front Physiol 6:371

    Article  Google Scholar 

  23. Morera-Fumero AL, Abreu-Gonzalez P (2013) Role of melatonin in schizophrenia. Int J Mol Sci 14:9037–9050. https://doi.org/10.3390/ijms14059037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scarr E, Dean B (2008) Muscarinic receptors: do they have a role in the pathology and treatment of schizophrenia? J Neurochem 107:1188–1195. https://doi.org/10.1111/j.1471-4159.2008.05711.x

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

The author is a co-founder of GeneCentrix, Inc., a company developing historeceptomics software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Cardozo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cardozo, T. (2018). Historeceptomics: Integrating a Drug’s Multiple Targets (Polypharmacology) with Their Expression Pattern in Human Tissues. In: Roy, K. (eds) Multi-Target Drug Design Using Chem-Bioinformatic Approaches. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2018_15

Download citation

  • DOI: https://doi.org/10.1007/7653_2018_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8732-0

  • Online ISBN: 978-1-4939-8733-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics