Skip to main content

Primary Human Leukemia Stem Cell (LSC) Isolation and Characterization

  • Protocol
  • First Online:
Stem Cells and Lineage Commitment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2736))

  • 389 Accesses

Abstract

Leukemia stem cells (LSC) are thought to be the basis of leukemia progression since they are highly resistant to conventional chemotherapy. LSC isolation is critical in experimental studies, drug development, and application. Due to their likely hematopoietic stem cell (HSC) origin, LSCs have surface antigens that are similar to HSC. Surface markers such as CD34, CD123, CD133, and CD33 have been used extensively to assess LSCs. LSCs could be separated from other cells using magnetic selection (MS) or flow cytometry selection (FCS) methods using these markers. Understanding the role of LSCs in cancer progression and how to therapeutically target them in vitro and in vivo is critical for the development of LSC-targeting drug candidates. In this chapter, we set out to describe the primary human LSC purification and characterization processes used on patient samples with leukemia and lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juliusson G, Hough R (2016) Leukemia. pp 87–100

    Google Scholar 

  2. Polak A, Bialopiotrowicz E, Krzymieniewska B et al (2020) SYK inhibition targets acute myeloid leukemia stem cells by blocking their oxidative metabolism. Cell Death Dis 11:956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanekamp D, Cloos J, Schuurhuis GJ (2017) Leukemic stem cells: identification and clinical application. Int J Hematol 105(5):549–557

    Article  CAS  PubMed  Google Scholar 

  4. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: Mirage or reality? Nat Med 15(9):1010–1012

    Article  CAS  PubMed  Google Scholar 

  5. Vormoor J, Lapidot T, Pflumio F et al (1994) Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood 83(9):2489–2497

    Article  CAS  PubMed  Google Scholar 

  6. Weissman I (2005) Stem cell research: Paths to cancer therapies and regenerative medicine. J Am Med Assoc 294(11):1359–1366

    Article  CAS  Google Scholar 

  7. Passegué E, Wagers AJ, Giuriato S et al (2005) Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 202(11):1599–1611

    Article  PubMed  PubMed Central  Google Scholar 

  8. Okada Y, Feng Q, Lin Y et al (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121(2):167–178

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Iwasaki H, Krivtsov A et al (2005) Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J 24(2):368–381

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jordan CT, Upchurch D, Szilvassy SJ et al (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stems cells. Leukemia 14:1777–1784

    Article  CAS  PubMed  Google Scholar 

  11. Bernt KM, Armstrong SA (2009) Leukemia stem cells and human acute lymphoblastic leukemia. Semin Hematol 46(1):33–38

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130

    Article  CAS  PubMed  Google Scholar 

  13. Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645

    Article  CAS  PubMed  Google Scholar 

  14. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  CAS  PubMed  Google Scholar 

  15. Chung SS, Park CY (2014) Acute myeloid leukemia stem cells-updates and controversies. Cancer Stem Cells:143–160

    Google Scholar 

  16. Ng SWK, Mitchell A, Kennedy JA et al (2016) A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 540:433–437

    Article  CAS  PubMed  Google Scholar 

  17. Buss EC, Ho AD (2011) Leukemia stem cells. Int J Cancer 129(10):2328–2336

    Article  CAS  PubMed  Google Scholar 

  18. Terwijn M, Zeijlemaker W, Kelder A et al (2014) Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute myeloid leukemia. PLoS One 9(9):e107587

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gentles AJ, Plevritis SK, Page P et al (2010) Association of a leukemic stem cell gene in acute myeloid leukemia. JAMA 304(24):2706–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin L, Lee EM, Ramshaw HS et al (2009) Monoclonal antibody-mediated targeting of CD123, IL-3 receptor α chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 5(1):31–42

    Article  CAS  PubMed  Google Scholar 

  21. Lechman ER, Gentner B, Ng SWK et al (2016) MiR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell 29(2):214–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taussig DC, Vargaftig J, Miraki-Moud F et al (2010) Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34- fraction. Blood 115(10):1976–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by funds provided by Gilead Sciences International Hematology and Oncology program. NM and FK were supported by “Gilead ile Hayat Bulan Fikirler.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neslihan Meriç or Fatih Kocabaş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meriç, N., Kocabaş, F. (2023). Primary Human Leukemia Stem Cell (LSC) Isolation and Characterization. In: Turksen, K. (eds) Stem Cells and Lineage Commitment. Methods in Molecular Biology, vol 2736. Humana, New York, NY. https://doi.org/10.1007/7651_2023_497

Download citation

  • DOI: https://doi.org/10.1007/7651_2023_497

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3536-0

  • Online ISBN: 978-1-0716-3537-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics