Skip to main content

Feeder-Dependent/Independent Mouse Embryonic Stem Cell Culture Protocol

  • Protocol
  • First Online:
Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2520))

Abstract

Mouse embryonic stem cells (mESCs) were first derived and cultured nearly 30 years ago and have been beneficial tools to create transgenic mice and to study early mammalian development so far. Fibroblast feeder cell layers are often used at some stage in the culture protocol of mESCs. The feeder layer—often mouse embryonic fibroblasts (MEFs)—contribute to the mESC culture as a substrate to increase culture efficiency, maintain pluripotency, and facilitate survival and growth of the stem cells. Various feeder-dependent and feeder-independent culture and differentiation protocols have been established for mESCs. Here we describe the isolation, culture, and preparation feeder cell layers and establishment of feeder-dependent/independent protocol for mESC culture. In addition, basic mESC protocols for culture, storage, and differentiation were described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638. https://doi.org/10.1073/pnas.78.12.7634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156. https://doi.org/10.1038/292154a0

    Article  CAS  PubMed  Google Scholar 

  3. Robertson EJ (1997) Derivation and maintenance of embryonic stem cell cultures. Methods Mol Biol 75:173–184

    CAS  PubMed  Google Scholar 

  4. Graf U, Casanova EA, Cinelli P (2011) The role of the leukemia inhibitory factor (LIF) — pathway in derivation and maintenance of murine pluripotent stem cells. Genes (Basel) 2:280–297. https://doi.org/10.3390/genes2010280

    Article  CAS  PubMed  Google Scholar 

  5. Ying QL, Wray J, Nichols J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523. https://doi.org/10.1038/nature06968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tai CI, Ying QL (2013) Gbx2, a LIF/Stat3 target, promotes reprogramming to and retention of the pluripotent ground state. J Cell Sci 126:1093–1098. https://doi.org/10.1242/jcs.118273

    Article  CAS  PubMed  Google Scholar 

  7. Wray J, Kalkan T, Gomez-Lopez S et al (2011) Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol 13:838–845. https://doi.org/10.1038/ncb2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kunath T, Saba-El-Leil MK, Almousailleakh M et al (2007) FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134:2895–2902. https://doi.org/10.1242/dev.02880

    Article  CAS  PubMed  Google Scholar 

  9. Nagy A, Gertsenstein M, Vintersten K, Behringer R (2006) Preparing mouse embryo fibroblasts. Cold Spring Harb Protoc 2006:pdb.prot4398. https://doi.org/10.1101/pdb.prot4398

    Article  Google Scholar 

  10. Durkin M, Qian X, Popescu N, Lowy D (2013) Isolation of mouse embryo fibroblasts. Bio-Protocol 3. https://doi.org/10.21769/bioprotoc.908

  11. Nagy A, Gertsenstein M, Vintersten K, Behringer R (2006) Preparing feeder cell layers from STO or mouse embryo fibroblast (MEF) cells: treatment with mitomycin C. Cold Spring Harb Protoc 2006:pdb.prot4399. https://doi.org/10.1101/pdb.prot4399

    Article  Google Scholar 

  12. Nagy A, Gertsenstein M, Vintersten K, Behringer R (2006) Preparing feeder cell layers from STO or mouse embryo fibroblast (MEF) cells: treatment with γ-irradiation. Cold Spring Harb Protoc 2006:pdb.prot4400. https://doi.org/10.1101/pdb.prot4400

    Article  Google Scholar 

  13. Itskovitz-Eldor J, Schuldiner M, Karsenti D et al (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95. https://doi.org/10.1007/bf03401776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gouon-Evans V, Boussemart L, Gadue P et al (2006) BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol. https://doi.org/10.1038/nbt1258

  15. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. https://doi.org/10.1016/S0092-8674(03)00847-X

  16. Smith CL (2006) Mammalian cell culture. Curr Protoc Mol Biol 73:28.0.1–28.0.2. https://doi.org/10.1002/0471142727.mb2800s73

    Article  Google Scholar 

  17. Di Stefano B, Ueda M, Sabri S et al (2018) Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. Nat Methods. https://doi.org/10.1038/s41592-018-0104-1

  18. Ozdil B, Güler G, Acikgoz E et al (2020) The effect of extracellular matrix on the differentiation of mouse embryonic stem cells. J Cell Biochem 121:269–283. https://doi.org/10.1002/jcb.29159

    Article  CAS  PubMed  Google Scholar 

  19. Chang SY, Carpena NT, Mun S et al (2020) Enhanced inner-ear organoid formation from mouse embryonic stem cells by photobiomodulation. Mol Ther Methods Clin Dev 17:556–567. https://doi.org/10.1016/j.omtm.2020.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tamm C, Galitó SP, Annerén C (2013) A comparative study of protocols for mouse embryonic stem cell culturing. PLoS One 8:81156. https://doi.org/10.1371/journal.pone.0081156

    Article  CAS  Google Scholar 

  21. Bae YU, Sung HK, Kim JR (2017) Collection of serum- and feeder-free mouse embryonic stem cell-conditioned medium for a cell-free approach. J Vis Exp 2017:55035. https://doi.org/10.3791/55035

    Article  CAS  Google Scholar 

  22. Millipore M (2004) Murine embryonic stem cell culture manual 2004. Leukemia

    Google Scholar 

  23. Ma Y, Yu T, Cai Y, Wang H (2018) Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condition and independent of LIF and b-FGF cytokines. Cell Death Discov 4:21. https://doi.org/10.1038/s41420-017-0015-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park TS, Zimmerlin L, Evans-Moses R, Zambidis ET (2018) Chemical reversion of conventional human pluripotent stem cells to a naïve-like state with improved multilineage differentiation potency. J Vis Exp 2018:57921. https://doi.org/10.3791/57921

    Article  CAS  Google Scholar 

  25. Nishihara K, Shiga T, Nakamura E et al (2019) Induced pluripotent stem cells reprogrammed with three inhibitors show accelerated differentiation potentials with high levels of 2-cell stage marker expression. Stem Cell Rep 12:305–318. https://doi.org/10.1016/j.stemcr.2018.12.018

    Article  CAS  Google Scholar 

  26. Morgani S, Nichols J, Hadjantonakis AK (2017) The many faces of pluripotency: in vitro adaptations of a continuum of in vivo states. BMC Dev Biol 17:1–20

    Article  Google Scholar 

  27. Bernemann C, Greber B, Ko K et al (2011) Distinct developmental ground states of epiblast stem cell lines determine different pluripotency features. Stem Cells 29:1496–1503. https://doi.org/10.1002/stem.709

    Article  CAS  PubMed  Google Scholar 

  28. Greber B, Wu G, Bernemann C et al (2010) Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell 6:215–226. https://doi.org/10.1016/j.stem.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  29. Koike M, Kurosawa H, Amano Y (2005) A round-bottom 96-well polystyrene plate coated with 2-methacryloyloxyethyl phosphorylcholine as an effective tool for embryoid body formation. Cytotechnology 47:3–10

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stover AE, Schwartz PH (2011) The generation of embryoid bodies from feeder-based or feeder-free human pluripotent stem cell cultures. Methods Mol Biol 767:391–398. https://doi.org/10.1007/978-1-61779-201-4_28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang X, Yang P (2008) In vitro differentiation of mouse embryonic stem (mES) cells using the hanging drop method. J Vis Exp 825. https://doi.org/10.3791/825

Download references

Acknowledgments

This study was supported by TÜBİTAK 2232 International Fellowship for Outstanding Researchers Program (Project no: 118C186). The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşegül Doğan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Şişli, H.B., Şenkal, S., Sağraç, D., Hayal, T.B., Doğan, A. (2021). Feeder-Dependent/Independent Mouse Embryonic Stem Cell Culture Protocol. In: Turksen, K. (eds) Embryonic Stem Cell Protocols . Methods in Molecular Biology, vol 2520. Humana, New York, NY. https://doi.org/10.1007/7651_2021_402

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_402

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2436-4

  • Online ISBN: 978-1-0716-2437-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics