Skip to main content

Creating Cell Model 2.0 Using Patient Samples Carrying a Pathogenic Mitochondrial DNA Mutation: iPSC Approach for LHON

  • Protocol
  • First Online:
Induced Pluripotent Stem Cells and Human Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2549))

Abstract

Leber’s Hereditary Optic Neuropathy is the most prevalent mitochondrial neurological disease caused by mutations in mitochondrial DNA encoded respiratory complex I subunits. Although the genetic origin for Leber’s hereditary optic neuropathy was identified about 30 years ago, the underlying pathogenesis is still unclear primarily due to the lack of a relevant system or cell model. Current models are limited to lymphoblasts, fibroblasts, or cybrid cell lines. As the disease phenotype is limited to retinal ganglion cells, induced pluripotent stem cells will serve as an excellent model for studying this tissue-specific disease, elucidating its underlying molecular mechanisms, and identifying novel therapeutic targets. Here, we describe a detailed protocol for the generation of retinal ganglion cells, and also cardiomyocytes for proof of iPSC pluripotency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Enezi M, Al-Saleh H, Nasser M (2008) Mitochondrial disorders with significant ophthalmic manifestations. Middle East Afr J Ophthalmol 15:81–86. https://doi.org/10.4103/0974-9233.51998

    Article  PubMed  Google Scholar 

  2. Han J, Lee Y-M, Kim SM, Han SY, Lee JB, Han S-H (2015) Ophthalmological manifestations in patients with Leigh syndrome. Br J Ophthalmol 99:528–535. https://doi.org/10.1136/bjophthalmol-2014-305704

    Article  PubMed  Google Scholar 

  3. Wallace DC, Lott MT (2017) Leber hereditary optic neuropathy: exemplar of an mtDNA disease. Handb Exp Pharmacol 240:339–376. https://doi.org/10.1007/164_2017_2

    Article  CAS  PubMed  Google Scholar 

  4. Wallace D, Singh G, Lott M, Hodge J, Schurr T, Lezza A, Elsas L, Nikoskelainen E (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242:1427–1430. https://doi.org/10.1126/science.3201231

    Article  CAS  PubMed  Google Scholar 

  5. Yu-Wai-Man P, Turnbull DM, Chinnery PF (2002) Leber hereditary optic neuropathy. J Med Genet 39:162–169. https://doi.org/10.1136/jmg.39.3.162

    Article  CAS  PubMed  Google Scholar 

  6. Bahr T, Welburn K, Donnelly J, Bai Y (1866) Emerging model systems and treatment approaches for Leber’s hereditary optic neuropathy: challenges and opportunities. Biochim Biophys Acta 2020:165743. https://doi.org/10.1016/j.bbadis.2020.165743

    Article  CAS  Google Scholar 

  7. Danielson SR, Wong A, Carelli V, Martinuzzi A, Schapira AHV, Cortopassi GA (2002) Cells bearing mutations causing Leber’s hereditary optic neuropathy are sensitized to Fas-induced apoptosis. J Biol Chem 277:5810–5815. https://doi.org/10.1074/jbc.M110119200

    Article  CAS  PubMed  Google Scholar 

  8. Ghelli A, Zanna C, Porcelli AM, Schapira AHV, Martinuzzi A, Carelli V, Rugolo M (2003) Leber’s hereditary optic neuropathy (LHON) pathogenic mutations induce mitochondrial-dependent apoptotic death in transmitochondrial cells incubated with galactose medium. J Biol Chem 278:4145–4150. https://doi.org/10.1074/jbc.M210285200

    Article  CAS  PubMed  Google Scholar 

  9. Martikainen M (2012) Mitochondrial disease in southwestern Finland. Population-based molecular genetic and clinical studies. In: Undefined. /paper/mitochondrial-disease-in-southwestern-Finland.-and-Martikainen/d8bfb057352eba26ee609e718475bbd3c0fb8055. Accessed 9 Dec 2020

    Google Scholar 

  10. DiMauro S, Davidzon G (2005) Mitochondrial DNA and disease. Ann Med 37:222–232. https://doi.org/10.1080/07853890510007368

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Nguyen HV, Tsang SH (2016) Skin biopsy and patient-specific stem cell lines. Methods Mol Biol 1353:77–88. https://doi.org/10.1007/7651_2015_225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vangipuram M, Ting D, Kim S, Diaz R, Schüle B (2013) Skin punch biopsy explant culture for derivation of primary human fibroblasts. J Vis Exp. https://doi.org/10.3791/3779

  13. Kime C, Rand TA, Ivey KN, Srivastava D, Yamanaka S, Tomoda K (2015) Practical Integration-Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells Current Protocols in Human Genetics. Curr Protoc Hum Genet 87. https://doi.org/10.1002/0471142905.hg2102s87

  14. Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31:458–466. https://doi.org/10.1002/stem.1293

    Article  CAS  PubMed  Google Scholar 

  15. Swaidan NT, Salloum-Asfar S, Palangi F, Errafii K, Soliman NH, Aboughalia AT, Wali AHS, Abdulla SA, Emara MM (2020) Identification of potential transcription factors that enhance human iPSC generation. Sci Rep 10:21950. https://doi.org/10.1038/s41598-020-78932-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohlemacher SK, Sridhar A, Xiao Y, Hochstetler AE, Sarfarazi M, Cummins TR, Meyer JS (2016) Stepwise differentiation of retinal ganglion cells from human pluripotent stem cells enables analysis of glaucomatous neurodegeneration: hPSC-derived RGCs and Glaucoma. Stem Cells 34:1553–1562. https://doi.org/10.1002/stem.2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohlemacher SK, Iglesias CL, Sridhar A, Gamm DM, Meyer JS (2015) Generation of highly enriched populations of optic vesicle−like retinal cells from human pluripotent stem cells. Curr Protoc Stem Cell Biol 32. https://doi.org/10.1002/9780470151808.sc01h08s32

Download references

Acknowledgments

This work is supported by grants from National Institute of Health (R01 GM109434 and GM130129), and YB is also supported by William and Ella Owens Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yidong Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, P. et al. (2021). Creating Cell Model 2.0 Using Patient Samples Carrying a Pathogenic Mitochondrial DNA Mutation: iPSC Approach for LHON. In: Turksen, K. (eds) Induced Pluripotent Stem Cells and Human Disease. Methods in Molecular Biology, vol 2549. Humana, New York, NY. https://doi.org/10.1007/7651_2021_384

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_384

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2584-2

  • Online ISBN: 978-1-0716-2585-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics