Skip to main content

Human Pluripotent Stem Cell Differentiation to Microglia

  • Protocol
  • First Online:
Induced Pluripotent Stem (iPS) Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2454))

Abstract

Microglia, the immune cells of the central nervous system (CNS), play critical roles in CNS homeostasis and disease. Mounting evidence has linked aberrant microglial functions to neurodevelopment, neuroinflammatory and neurodegenerative diseases, underlining the need for novel models to investigate human microglia biology. Here we describe a protocol for generating in vitro patient-specific microglia progenitors and microglia-like cells from induced pluripotent stem cells (iPSCs). Our protocol generates microglia progenitor cells in approximately 35 days, which then can further mature into microglia-like cells within two additional weeks. Microglia differentiation is driven by specific growth factors and cytokines in serum-free conditions, resulting in mesodermal progenitors that grow in a monolayer which releases free-floating microglia progenitors. Isolated progenitors can be used in co-culture systems with other neuronal cells, xenotransplanted to generate chimeric mouse models, or further differentiated into adherent microglia-like cells for functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gomez Perdiguero E, Klapproth K, Schulz C et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551. https://doi.org/10.1038/nature13989

    Article  CAS  PubMed  Google Scholar 

  3. Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027. https://doi.org/10.1038/nm.4397

    Article  CAS  PubMed  Google Scholar 

  4. Barger N, Keiter J, Kreutz A et al (2019) Microglia: an intrinsic component of the proliferative zones in the fetal rhesus monkey (Macaca mulatta) cerebral cortex. Cereb Cortex 29:2782–2796. https://doi.org/10.1093/cercor/bhy145

    Article  PubMed  Google Scholar 

  5. Noctor SC, Penna E, Shepherd H et al (2019) Periventricular microglial cells interact with dividing precursor cells in the nonhuman primate and rodent prenatal cerebral cortex. J Comp Neurol 527:1598–1609. https://doi.org/10.1002/cne.24604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cunningham CL, Martínez-Cerdeño V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33:4216–4233. https://doi.org/10.1523/JNEUROSCI.3441-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paolicelli RC, Bolasco G, Pagani F et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458. https://doi.org/10.1126/science.1202529

    Article  CAS  PubMed  Google Scholar 

  8. Sekar A, Bialas AR, de Rivera H et al (2016) Schizophrenia risk from complex variation of complement component 4. Nature 530:177–183. https://doi.org/10.1038/nature16549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neniskyte U, Gross CT (2017) Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nat Rev Neurosci 18:658–670. https://doi.org/10.1038/nrn.2017.110

    Article  CAS  PubMed  Google Scholar 

  10. Liddelow SA, Guttenplan KA, Clarke LE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang B, Gaiteri C, Bodea L-G et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153:707–720. https://doi.org/10.1016/j.cell.2013.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. European Alzheimer’s Disease Initiative (EADI), Genetic and Environmental Risk in Alzheimer’s Disease (GERAD), Alzheimer’s Disease Genetic Consortium (ADGC) et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458. https://doi.org/10.1038/ng.2802

    Article  CAS  Google Scholar 

  13. Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16:115–130. https://doi.org/10.1038/nrd.2016.245

    Article  CAS  PubMed  Google Scholar 

  14. Lee G, Studer L (2010) Induced pluripotent stem cell technology for the study of human disease. Nat Methods 7:25–27. https://doi.org/10.1038/nmeth.f.283

    Article  CAS  PubMed  Google Scholar 

  15. Fernando MB, Ahfeldt T, Brennand KJ (2020) Modeling the complex genetic architectures of brain disease. Nat Genet 52:363–369. https://doi.org/10.1038/s41588-020-0596-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muffat J, Li Y, Yuan B et al (2016) Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med 22:1358–1367. https://doi.org/10.1038/nm.4189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Douvaras P, Sun B, Wang M et al (2017) Directed differentiation of human pluripotent stem cells to microglia. Stem Cell Rep 8:1516–1524. https://doi.org/10.1016/j.stemcr.2017.04.023

    Article  CAS  Google Scholar 

  18. Abud EM, Ramirez RN, Martinez ES et al (2017) iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94:278–293.e9. https://doi.org/10.1016/j.neuron.2017.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haenseler W, Sansom SN, Buchrieser J et al (2017) A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Rep 8:1727–1742. https://doi.org/10.1016/j.stemcr.2017.05.017

    Article  CAS  Google Scholar 

  20. Pandya H, Shen MJ, Ichikawa DM et al (2017) Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci 20:753–759. https://doi.org/10.1038/nn.4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Timmerman R, Burm SM, Bajramovic JJ (2018) An overview of in vitro methods to study microglia. Front Cell Neurosci 12:242. https://doi.org/10.3389/fncel.2018.00242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mancuso R, Van Den Daele J, Fattorelli N et al (2019) Stem-cell-derived human microglia transplanted in mouse brain to study human disease. Nat Neurosci 22:2111–2116. https://doi.org/10.1038/s41593-019-0525-x

    Article  CAS  PubMed  Google Scholar 

  23. Svoboda DS, Barrasa MI, Shu J et al (2019) Human iPSC-derived microglia assume a primary microglia-like state after transplantation into the neonatal mouse brain. Proc Natl Acad Sci U S A 116:25293–25303. https://doi.org/10.1073/pnas.1913541116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hasselmann J, Coburn MA, England W et al (2019) Development of a chimeric model to study and manipulate human microglia in vivo. Neuron 103:1016–1033.e10. https://doi.org/10.1016/j.neuron.2019.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu R, Li X, Boreland AJ et al (2020) Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nat Commun 11:1577. https://doi.org/10.1038/s41467-020-15411-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park J, Wetzel I, Marriott I et al (2018) A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci 21:941–951. https://doi.org/10.1038/s41593-018-0175-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brownjohn PW, Smith J, Solanki R et al (2018) Functional studies of missense TREM2 mutations in human stem cell-derived microglia. Stem Cell Rep 10:1294–1307. https://doi.org/10.1016/j.stemcr.2018.03.003

    Article  CAS  Google Scholar 

  28. Niwa A, Heike T, Umeda K et al (2011) A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS One 6:e22261. https://doi.org/10.1371/journal.pone.0022261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pick M, Azzola L, Mossman A et al (2007) Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells 25:2206–2214. https://doi.org/10.1634/stemcells.2006-0713

    Article  CAS  PubMed  Google Scholar 

  30. Robin C, Ottersbach K, Durand C et al (2006) An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev Cell 11:171–180. https://doi.org/10.1016/j.devcel.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  31. Kuter DJ (2013) The biology of thrombopoietin and thrombopoietin receptor agonists. Int J Hematol 98:10–23. https://doi.org/10.1007/s12185-013-1382-0

    Article  CAS  PubMed  Google Scholar 

  32. Mossadegh-Keller N, Sarrazin S, Kandalla PK et al (2013) M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497:239–243. https://doi.org/10.1038/nature12026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kikushige Y, Yoshimoto G, Miyamoto T et al (2008) Human Flt3 is expressed at the hematopoietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J Immunol 180:7358–7367. https://doi.org/10.4049/jimmunol.180.11.7358

    Article  CAS  PubMed  Google Scholar 

  34. Aloisi F, De Simone R, Columba-Cabezas S et al (2000) Functional maturation of adult mouse resting microglia into an APC is promoted by granulocyte-macrophage colony-stimulating factor and interaction with Th1 cells. J Immunol 164:1705–1712. https://doi.org/10.4049/jimmunol.164.4.1705

    Article  CAS  PubMed  Google Scholar 

  35. Boulakirba S, Pfeifer A, Mhaidly R et al (2018) IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential. Sci Rep 8:256. https://doi.org/10.1038/s41598-017-18433-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90. https://doi.org/10.1002/glia.22350

    Article  PubMed  Google Scholar 

  37. Rock RB, Hu S, Deshpande A et al (2005) Transcriptional response of human microglial cells to interferon-γ. Genes Immun 6:712–719. https://doi.org/10.1038/sj.gene.6364246

    Article  CAS  PubMed  Google Scholar 

  38. Mori S, Maher P, Conti B (2016) Neuroimmunology of the interleukins 13 and 4. Brain Sci 6:18. https://doi.org/10.3390/brainsci6020018

    Article  CAS  PubMed Central  Google Scholar 

  39. Gosselin D, Skola D, Coufal NG et al (2017) An environment-dependent transcriptional network specifies human microglia identity. Science 356:eaal3222. https://doi.org/10.1126/science.aal3222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Butovsky O, Jedrychowski MP, Moore CS et al (2014) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143. https://doi.org/10.1038/nn.3599

    Article  CAS  PubMed  Google Scholar 

  41. Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. https://doi.org/10.1038/nn1997

    Article  CAS  PubMed  Google Scholar 

  42. Lehnardt S, Massillon L, Follett P et al (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100:8514–8519. https://doi.org/10.1073/pnas.1432609100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chao CC, Hu S, Molitor TW et al (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736–2741

    CAS  PubMed  Google Scholar 

  44. Papageorgiou IE, Lewen A, Galow LV et al (2016) TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ. Proc Natl Acad Sci U S A 113:212–217. https://doi.org/10.1073/pnas.1513853113

    Article  CAS  PubMed  Google Scholar 

  45. Rossi C, Cusimano M, Zambito M et al (2018) Interleukin 4 modulates microglia homeostasis and attenuates the early slowly progressive phase of amyotrophic lateral sclerosis. Cell Death Dis 9:250. https://doi.org/10.1038/s41419-018-0288-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the New York Stem Cell Foundation Research Institute and by the National Institute on Aging (NIA) grant RF1AG057440.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Fossati .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Time-lapse video of mature microglia in phase contrast (20×) over a span of 4 h and 30 min capturing microglia motile processes, scanning behavior, and interaction with nearby microglia (MP4 11661 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ijaz, L., Nijsure, M., Fossati, V. (2021). Human Pluripotent Stem Cell Differentiation to Microglia. In: Nagy, A., Turksen, K. (eds) Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology, vol 2454. Humana, New York, NY. https://doi.org/10.1007/7651_2021_359

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_359

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2118-9

  • Online ISBN: 978-1-0716-2119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics