Skip to main content

CRISPR/Cas9 Ribonucleoprotein Complex-Mediated Efficient B2M Knockout in Human Induced Pluripotent Stem Cells (iPSCs)

  • Protocol
  • First Online:
Induced Pluripotent Stem (iPS) Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2454))

Abstract

Advances in induced pluripotent stem cell (iPSC) technology provide a renewable source of cells for tissue regeneration and therefore hold great promise for cell replacement therapy. However, immune rejection of allograft due to human leukocyte antigen (HLA) mismatching remains a major challenge. Considerable efforts have been devoted to overcoming the immunogenicity of allograft transplantation. One of the approaches is an elimination of HLA molecules on the surface of allogeneic cells using genome editing technology to generate universal stem cells. Here, we present a simple and effective genome editing approach to knockout the β-2-immunoglobulin (B2M) gene, which encodes B2M protein that forms a heterodimer with HLA class I proteins, in induced pluripotent stem cells (iPSCs) leading to HLA class I (HLA-I) depletion. We also describe detailed procedures for validation of the B2M-knockout iPSCs using flow cytometry, and genotypic analysis for potential off-target regions. Our protocol is also applicable for knocking out other genes in iPSCs and other cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci U S A 112(47):14452–14459. https://doi.org/10.1073/pnas.1508520112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mahdi BM (2013) A glow of HLA typing in organ transplantation. Clin Transl Med 2(1):6–6. https://doi.org/10.1186/2001-1326-2-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang Y, Singh NK, Spear TT, Hellman LM, Piepenbrink KH, McMahan RH, Rosen HR, Vander Kooi CW, Nishimura MI, Baker BM (2017) How an alloreactive T-cell receptor achieves peptide and MHC specificity. Proc Natl Acad Sci 114(24):E4792. https://doi.org/10.1073/pnas.1700459114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh VK, Kalsan M, Kumar N, Saini A, Chandra R (2015) Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 3:2–2. https://doi.org/10.3389/fcell.2015.00002

    Article  PubMed  PubMed Central  Google Scholar 

  5. Diecke S, Jung SM, Lee J, Ju JH (2014) Recent technological updates and clinical applications of induced pluripotent stem cells. Korean J Intern Med 29(5):547–557. https://doi.org/10.3904/kjim.2014.29.5.547

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ferreira LMR, Mostajo-Radji MA (2013) How induced pluripotent stem cells are redefining personalized medicine. Gene 520(1):1–6. https://doi.org/10.1016/j.gene.2013.02.037

    Article  CAS  PubMed  Google Scholar 

  7. Doss MX, Sachinidis A (2019) Current challenges of iPSC-based disease modeling and therapeutic implications. Cells 8(5):403. https://doi.org/10.3390/cells8050403

    Article  CAS  PubMed Central  Google Scholar 

  8. Taylor Craig J, Peacock S, Chaudhry Afzal N, Bradley JA, Bolton Eleanor M (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11(2):147–152. https://doi.org/10.1016/j.stem.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  9. Gourraud PA, Gilson L, Girard M, Peschanski M (2012) The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells (Dayton, Ohio) 30(2):180–186. https://doi.org/10.1002/stem.772

    Article  CAS  Google Scholar 

  10. Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9(1):1911. https://doi.org/10.1038/s41467-018-04252-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pickar-Oliver A, Gersbach CA (2019) The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol 20(8):490–507. https://doi.org/10.1038/s41580-019-0131-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26(1):52–64. https://doi.org/10.1016/j.tcb.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  13. Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85(1):227–264. https://doi.org/10.1146/annurev-biochem-060815-014607

    Article  CAS  PubMed  Google Scholar 

  14. Torikai H, Mi T, Gragert L, Maiers M, Najjar A, Ang S, Maiti S, Dai J, Switzer KC, Huls H, Dulay GP, Reik A, Rebar EJ, Holmes MC, Gregory PD, Champlin RE, Shpall EJ, Cooper LJN (2016) Genetic editing of HLA expression in hematopoietic stem cells to broaden their human application. Sci Rep 6(1):21757. https://doi.org/10.1038/srep21757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han X, Wang M, Duan S, Franco PJ, Kenty JH, Hedrick P, Xia Y, Allen A, Ferreira LMR, Strominger JL, Melton DA, Meissner TB, Cowan CA (2019) Generation of hypoimmunogenic human pluripotent stem cells. Proc Natl Acad Sci U S A 116(21):10441–10446. https://doi.org/10.1073/pnas.1902566116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu H, Wang B, Ono M, Kagita A, Fujii K, Sasakawa N, Ueda T, Gee P, Nishikawa M, Nomura M, Kitaoka F, Takahashi T, Okita K, Yoshida Y, Kaneko S, Hotta A (2019) Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24(4):566–578.e567. https://doi.org/10.1016/j.stem.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  17. Wang D, Quan Y, Yan Q, Morales JE, Wetsel RA (2015) Targeted disruption of the β2-microglobulin gene minimizes the immunogenicity of human embryonic stem cells. Stem Cells Transl Med 4(10):1234–1245. https://doi.org/10.5966/sctm.2015-0049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS, Manske G, Prunkard D, Colunga AG, Hanafi L-A, Clegg DO, Turtle C, Russell DW (2017) HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat Biotechnol 35(8):765–772. https://doi.org/10.1038/nbt.3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C, Thayer WO, Wahl A, Garcia JV, Reichenspurner H, Davis MM, Lanier LL, Schrepfer S (2019) Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol 37(3):252–258. https://doi.org/10.1038/s41587-019-0016-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wattanapanitch M, Ritthaphai A, Park C, Boonkaew B, Netsrithong R, Pattanapanyasat K, Limsiri P, Vatanashevanopakorn C (2018) Generation of a human induced pluripotent stem cell line (MUSIi001-A) from caesarean section scar fibroblasts using Sendai viral vectors. Stem Cell Res 27:105–108. https://doi.org/10.1016/j.scr.2018.01.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Thailand Research Fund (grant no. RSA6280090), Siriraj Research Fund, Faculty of Medicine Siriraj Hospital, Mahidol University (grant number (IO) R016333015), the National Research Council of Thailand (NRCT): NRCT-RGJ63012-126 and the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (Grant No. B05F630080). NT is supported by Siriraj Graduate Scholarship, Faculty of Medicine Siriraj Hospital, Mahidol University. MW is supported by Chalermphrakiat Grant, Faculty of Medicine Siriraj Hospital, Mahidol University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Methichit Wattanapanitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thongsin, N., Wattanapanitch, M. (2021). CRISPR/Cas9 Ribonucleoprotein Complex-Mediated Efficient B2M Knockout in Human Induced Pluripotent Stem Cells (iPSCs). In: Nagy, A., Turksen, K. (eds) Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology, vol 2454. Humana, New York, NY. https://doi.org/10.1007/7651_2021_352

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_352

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2118-9

  • Online ISBN: 978-1-0716-2119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics