Skip to main content

Assessment of Blood-Brain Barrier Permeability Using Miniaturized Fluorescence Microscopy in Freely Moving Rats

  • Protocol
  • First Online:
Permeability Barrier

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2367))

Abstract

We report here the method of visualization of brain microcirculation and assessment of blood-brain barrier (BBB) permeability changes using the miniature integrated fluorescence microscope (i.e., miniscope) technology in awake, freely moving rats. The imaging cannula is implanted in the brain area of interest of anesthetized adult rats. After recovery and habituation, sodium fluorescein, a low-molecular-weight tracer, is injected i.v. Fluorescence intensity in the vicinity of microvessels, as an indicator of BBB permeability, is then recorded in vivo via the miniscope for extended periods of time. The method can be used to assess the changes in BBB permeability produced by pharmacologic agents; in this case, the drug of interest is administered after sodium fluorescein. An increase in the sodium fluorescein extravasation in brain microcirculation demonstrates an increase in BBB permeability. The method described here allows a high-resolution visualization of real-time changes in BBB permeability in awake, freely moving rats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  2. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99(1):21–78. https://doi.org/10.1152/physrev.00050.2017

    Article  CAS  PubMed  Google Scholar 

  3. Deli MA, Abraham CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25(1):59–127

    Article  PubMed  Google Scholar 

  4. Nag S (2003) Blood-brain barrier permeability using tracers and immunohistochemistry. Methods Mol Med 89:133–144. https://doi.org/10.1385/1-59259-419-0:133

    Article  CAS  PubMed  Google Scholar 

  5. Wunder A, Schoknecht K, Stanimirovic DB, Prager O, Chassidim Y (2012) Imaging blood-brain barrier dysfunction in animal disease models. Epilepsia 53(Suppl 6):14–21. https://doi.org/10.1111/j.1528-1167.2012.03698.x

    Article  PubMed  Google Scholar 

  6. Yen LF, Wei VC, Kuo EY, Lai TW (2013) Distinct patterns of cerebral extravasation by Evans blue and sodium fluorescein in rats. PLoS One 8(7):e68595. https://doi.org/10.1371/journal.pone.0068595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brailoiu E, Barlow CL, Ramirez SH, Abood ME, Brailoiu GC (2018) Effects of platelet-activating factor on brain microvascular endothelial cells. Neuroscience 377:105–113. https://doi.org/10.1016/j.neuroscience.2018.02.039

    Article  CAS  PubMed  Google Scholar 

  8. Leo LM, Familusi B, Hoang M, Smith R, Lindenau K, Sporici KT, Brailoiu E, Abood ME, Brailoiu GC (2019) GPR55-mediated effects on brain microvascular endothelial cells and the blood-brain barrier. Neuroscience 414:88–98. https://doi.org/10.1016/j.neuroscience.2019.06.039

    Article  CAS  PubMed  Google Scholar 

  9. Nishimura N, Schaffer CB, Friedman B, Tsai PS, Lyden PD, Kleinfeld D (2006) Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat Methods 3(2):99–108. https://doi.org/10.1038/nmeth844

    Article  CAS  PubMed  Google Scholar 

  10. Prager O, Chassidim Y, Klein C, Levi H, Shelef I, Friedman A (2010) Dynamic in vivo imaging of cerebral blood flow and blood-brain barrier permeability. NeuroImage 49(1):337–344. https://doi.org/10.1016/j.neuroimage.2009.08.009

    Article  PubMed  Google Scholar 

  11. Zhang S, Murphy TH (2007) Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol 5(5):e119. https://doi.org/10.1371/journal.pbio.0050119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takano T, Han X, Deane R, Zlokovic B, Nedergaard M (2007) Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer's disease. Ann N Y Acad Sci 1097:40–50. https://doi.org/10.1196/annals.1379.004

    Article  CAS  PubMed  Google Scholar 

  13. Abulrob A, Brunette E, Slinn J, Baumann E, Stanimirovic D (2008) Dynamic analysis of the blood-brain barrier disruption in experimental stroke using time domain in vivo fluorescence imaging. Mol Imaging 7(6):248–262

    Article  PubMed  Google Scholar 

  14. Piper S, Bahmani P, Klohs J, Bourayou R, Brunecker P, Muller J, Harhausen D, Lindauer U, Dirnagl U, Steinbrink J, Wunder A (2010) Non-invasive surface-stripping for epifluorescence small animal imaging. Biomed Opt Express 1(1):97–105. https://doi.org/10.1364/BOE.1.000097

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rowland DJ, Cherry SR (2008) Small-animal preclinical nuclear medicine instrumentation and methodology. Semin Nucl Med 38(3):209–222. https://doi.org/10.1053/j.semnuclmed.2008.01.004

    Article  PubMed  Google Scholar 

  16. Nagaraja TN, Ewing JR, Karki K, Jacobs PE, Divine GW, Fenstermacher JD, Patlak CS, Knight RA (2011) MRI and quantitative autoradiographic studies following bolus injections of unlabeled and (14)C-labeled gadolinium-diethylenetriaminepentaacetic acid in a rat model of stroke yield similar distribution volumes and blood-to-brain influx rate constants. NMR Biomed 24(5):547–558. https://doi.org/10.1002/nbm.1625

    Article  CAS  PubMed  Google Scholar 

  17. Jelescu IO, Leppert IR, Narayanan S, Araujo D, Arnold DL, Pike GB (2011) Dual-temporal resolution dynamic contrast-enhanced MRI protocol for blood-brain barrier permeability measurement in enhancing multiple sclerosis lesions. Journal of magnetic resonance imaging 33(6):1291–1300. https://doi.org/10.1002/jmri.22565

    Article  CAS  PubMed  Google Scholar 

  18. Sharma HS, Muresanu DF, Nozari A, Castellani RJ, Dey PK, Wiklund L, Sharma A (2019) Anesthetics influence concussive head injury induced blood-brain barrier breakdown, brain edema formation, cerebral blood flow, serotonin levels, brain pathology and functional outcome. Int Rev Neurobiol 146:45–81. https://doi.org/10.1016/bs.irn.2019.06.006

    Article  CAS  PubMed  Google Scholar 

  19. Barr JL, Brailoiu GC, Abood ME, Rawls SM, Unterwald EM, Brailoiu E (2020) Acute cocaine administration alters permeability of blood-brain barrier in freely-moving rats-evidence using miniaturized fluorescence microscopy. Drug Alcohol Depend 206:107637. https://doi.org/10.1016/j.drugalcdep.2019.107637

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh KK, Burns LD, Cocker ED, Nimmerjahn A, Ziv Y, Gamal AE, Schnitzer MJ (2011) Miniaturized integration of a fluorescence microscope. Nat Methods 8(10):871–878. https://doi.org/10.1038/nmeth.1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Academic Press

    Google Scholar 

  22. Sharma HS, Muresanu D, Sharma A, Patnaik R (2009) Cocaine-induced breakdown of the blood-brain barrier and neurotoxicity. Int Rev Neurobiol 88:297–334. https://doi.org/10.1016/S0074-7742(09)88011-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant P30DA013429.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ellen M. Unterwald or Eugen Brailoiu .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

(MOV 59117 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barr, J.L., Brailoiu, G.C., Unterwald, E.M., Brailoiu, E. (2021). Assessment of Blood-Brain Barrier Permeability Using Miniaturized Fluorescence Microscopy in Freely Moving Rats. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 2367. Humana, New York, NY. https://doi.org/10.1007/7651_2020_315

Download citation

  • DOI: https://doi.org/10.1007/7651_2020_315

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1672-7

  • Online ISBN: 978-1-0716-1673-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics