Skip to main content

GMP Tiered Cell Banking of Non-enzymatically Isolated Dermal Progenitor Fibroblasts for Allogenic Regenerative Medicine

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2286))

Abstract

Non-enzymatically isolated primary dermal progenitor fibroblasts derived from fetal organ donations are ideal cell types for allogenic musculoskeletal regenerative therapeutic applications. These cell types are differentiated, highly proliferative in standard in vitro culture conditions and extremely stable throughout their defined lifespans. Technical simplicity, robustness of bioprocessing and relatively small therapeutic dose requirements enable pragmatic and efficient production of clinical progenitor fibroblast lots under cGMP standards. Herein we describe optimized and standardized monolayer culture expansion protocols using dermal progenitor fibroblasts isolated under a Fetal Transplantation Program for the establishment of GMP tiered Master, Working and End of Production cryopreserved Cell Banks. Safety, stability and quality parameters are assessed through stringent testing of progeny biological materials, in view of clinical application to human patients suffering from diverse cutaneous chronic and acute affections. These methods and approaches, coupled to adequate cell source optimization, enable the obtention of a virtually limitless source of highly consistent and safe biological therapeutic material to be used for innovative regenerative medicine applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

ATMP:

Advanced therapy medicinal product

BPyV:

Bovine polyomavirus

CD:

Cluster of differentiation

cGMP:

Current good manufacturing practices

CMV:

Cytomegalovirus

CPMP:

European Union Committee for Proprietary Medicinal Products

DMEM:

Dulbecco’s modified Eagle medium

DMSO:

Dimethylsulfoxide

DNA:

Deoxyribonucleic acid

D-PBS:

Dulbecco’s phosphate-buffered saline

EBV:

Epstein-Barr virus

EOP:

End of production

EOPCB:

End of Production Cell Bank

FACS:

Fluorescence-activated cell sorting

FBS:

Fetal bovine serum

FDA:

US Food and Drug Administration

GLP:

Good laboratory practices

GMP:

Good manufacturing practices

HAV:

Hepatitis A virus

HBoV:

Human bocavirus

HBV:

Hepatitis B virus

hCMV:

Human cytomegalovirus

HCV:

Hepatitis C virus

HHV-6/7/8:

Human herpes viruses types 6, 7 and 8

HIV-1/2:

Human immunodeficiency viruses types 1 and 2

HLA:

Human leukocyte antigen

HPL:

Human platelet lysate

HPV:

Human papilloma virus

HSA:

Human serum albumin

HTLV-1/2:

Human T-cell leukemia-lymphoma viruses types 1 and 2

HuPyV:

Human polyomavirus

IPC:

In-process control

KIPyV:

KI polyomavirus

MCB:

Master Cell Bank

PCB:

Parental Cell Bank

PCR:

Polymerase chain reaction

PDT:

Population doubling time

PDV:

Population doubling value

PWCB:

Pilot Working Cell Bank

QFPERT:

Quantitative fluorescent product enhanced reverse transcriptase

QRM:

Quality risk management

SOP:

Standard operating procedure

TEM:

Transmission electron microscopy

WCB:

Working Cell Bank

WUPyV:

WU polyomavirus

References

  1. Doyle A, Griffiths JB (1998) Cell and tissue culture: laboratory procedures in biotechnology. Wiley, New York

    Google Scholar 

  2. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354(Suppl 1):SI32–SI34

    Article  Google Scholar 

  3. Monti M, Perotti C, Del Fante C et al (2012) Stem cells: sources and therapies. Biol Res 45:207–214

    Article  Google Scholar 

  4. Li Z, Maitz P (2018) Cell therapy for severe burn wound healing. Burns Trauma 6:13

    PubMed  PubMed Central  Google Scholar 

  5. Loebel C, Burdick JA (2018) Engineering stem and stromal cell therapies for musculoskeletal tissue repair. Cell Stem Cell 22:325–339

    Article  CAS  Google Scholar 

  6. Marks P, Gottlieb S (2018) Balancing safety and innovation for cell-based regenerative medicine. N Engl J Med 378:954–959

    Article  Google Scholar 

  7. Abbasalizadeh S, Baharvand H (2013) Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv 31:1600–1623

    Article  CAS  Google Scholar 

  8. Heathman TR, Nienow AW, McCall MJ et al (2015) The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med 10:49–64

    Article  CAS  Google Scholar 

  9. Hunsberger J, Harrysson O, Shirwaiker R et al (2015) Manufacturing road map for tissue engineering and regenerative medicine technologies. Stem Cells Transl Med 4:130–135

    Article  Google Scholar 

  10. Abbasalizadeh S, Pakzad M, Cabral JMS et al (2017) Allogeneic cell therapy manufacturing: process development technologies and facility design options. Expert Opin Biol Ther 17:1201–1219

    Article  Google Scholar 

  11. Pigeau GM, Csaszar E, Dulgar-Tulloch A (2018) Commercial scale manufacturing of allogeneic cell therapy. Front Med 5:233

    Article  Google Scholar 

  12. Cass DL, Meuli M, Adzick NS (1997) Scar wars: implications of fetal wound healing for the pediatric burn patient. Pediatr Surg Int 12:484–489

    Article  CAS  Google Scholar 

  13. De Buys Roessingh AS, Hohlfeld J, Scaletta C et al (2006) Development, characterization, and use of a fetal skin cell bank for tissue engineering in wound healing. Cell Transplant 15:823–834

    Article  Google Scholar 

  14. Werner S, Krieg T, Smola H (2007) Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 127:998–1008

    Article  CAS  Google Scholar 

  15. Zuliani T, Saiagh S, Knol AC et al (2013) Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy. PLoS One 8:e70408

    Article  CAS  Google Scholar 

  16. Larijani B, Ghahari A, Warnock GL et al (2015) Human fetal skin fibroblasts: extremely potent and allogenic candidates for treatment of diabetic wounds. Med Hypotheses 84:577–579

    Article  CAS  Google Scholar 

  17. Varkey M, Ding J, Tredget EE (2015) Advances in skin substitutes-potential of tissue engineered skin for facilitating anti-fibrotic healing. J Funct Biomater 6:547–563

    Article  CAS  Google Scholar 

  18. Akita S, Akino K, Imaizumi T et al (2008) Basic fibroblast growth factor accelerates and improves second-degree burn wound healing. Wound Repair Regen 16:635–641

    Article  Google Scholar 

  19. De Buys Roessingh AS, Hirt-Burri N, Raffoul W et al (2015) A decade after foetal skin progenitor cell therapy in pediatric burn treatment. J Regen Med 4:1

    Article  Google Scholar 

  20. Hayflick L, Plotkin SA, Norton TW et al (1962) Preparation of poliovirus vaccines in a human fetal diploid cell strain. Am J Hyg 75:240–258

    CAS  PubMed  Google Scholar 

  21. Hebda PA, Dohar JE (1999) Transplanted fetal fibroblasts: survival and distribution over time in normal adult dermis compared with autogenic, allogenic, and xenogenic adult fibroblasts. Otolaryngol Head Neck Surg 121:245–251

    Article  CAS  Google Scholar 

  22. Abdel-Sayed P, Hirt-Burri N, De Buys Roessingh AS et al (2019) Evolution of biological bandages as first cover for burn patients. Adv Wound Care (New Rochelle) 8:555–564

    Article  Google Scholar 

  23. Hohlfeld J, De Buys Roessingh AS, Hirt-Burri N et al (2005) Tissue engineered fetal skin constructs for paediatric burns. Lancet 366:840–842

    Article  Google Scholar 

  24. Quintin A, Hirt-Burri N, Scaletta C et al (2007) Consistency and safety of cell banks for research and clinical use: preliminary analysis of fetal skin banks. Cell Transplant 16:675–684

    Article  Google Scholar 

  25. Applegate LA, Scaletta C, Hirt-Burri N et al (2009) Whole-cell bioprocessing of human fetal cells for tissue engineering of skin. Skin Pharmacol Physiol 22:63–73

    Article  CAS  Google Scholar 

  26. Applegate LA, Weber D, Simon JP et al (2013) Organ donation and whole-cell bioprocessing in the Swiss fetal progenitor cell transplantation platform. In: Saidi RF (ed) Organ donation and organ donors. Nova Science Publishers, New York

    Google Scholar 

  27. Metcalfe AD, Ferguson MW (2008) Skin stem and progenitor cells: using regeneration as a tissue-engineering strategy. Cell Mol Life Sci 65:24–32

    Article  CAS  Google Scholar 

  28. Ramelet AA, Hirt-Burri N, Raffoul W et al (2009) Chronic wound healing by fetal cell therapy may be explained by differential gene profiling observed in fetal versus old skin cells. Exp Gerontol 44:208–218

    Article  CAS  Google Scholar 

  29. Rayment EA, Williams DJ (2010) Concise review: mind the gap: challenges in characterizing and quantifying cell- and tissue-based therapies for clinical translation. Stem Cells 28:996–1004

    PubMed  PubMed Central  Google Scholar 

  30. Haack-Sørensen M, Kastrup J (2011) Cryopreservation and revival of mesenchymal stromal cells. Methods Mol Biol 698:161–174

    Article  Google Scholar 

  31. Ratcliffe E, Thomas RJ, Williams DJ (2011) Current understanding and challenges in bioprocessing of stem cell-based therapies for regenerative medicine. Br Med Bull 100:137–155

    Article  Google Scholar 

  32. Mount NM, Ward SJ, Kefalas P et al (2015) Cell-based therapy technology classifications and translational challenges. Philos Trans R Soc Lond B Biol Sci 370:20150017

    Article  Google Scholar 

  33. Hunt CJ (2019) Technical considerations in the freezing, low-temperature storage and thawing of stem cells for cellular therapies. Transfus Med Hemother 46:134–150

    Article  Google Scholar 

  34. Laurent-Applegate LA (2012) Preparation of parental cell bank from foetal tissue. European Patent No 2 732 030 B1, 10 July 2012

    Google Scholar 

  35. Abdel-Sayed P, Kaeppeli A, Siriwardena T et al (2016) Anti-microbial dendrimers against multidrug-resistant P. aeruginosa enhance the angiogenic effect of biological burn-wound bandages. Sci Rep 6:22020

    Google Scholar 

Download references

Acknowledgments

We would like to thank the S.A.N.T.E and Sandoz Foundations for their commitments to the Fetal Biobanking Program through the years. We would like to thank Mrs. Judith Applegate for her reviewing of spelling and grammar of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Ann Applegate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Laurent, A. et al. (2020). GMP Tiered Cell Banking of Non-enzymatically Isolated Dermal Progenitor Fibroblasts for Allogenic Regenerative Medicine. In: Turksen, K. (eds) Stem Cells and Good Manufacturing Practices. Methods in Molecular Biology, vol 2286. Humana, New York, NY. https://doi.org/10.1007/7651_2020_295

Download citation

  • DOI: https://doi.org/10.1007/7651_2020_295

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1326-9

  • Online ISBN: 978-1-0716-1327-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics