Skip to main content

Genetic Modification of Human Primary Keratinocytes by Lentiviral Vectors

  • Protocol
  • First Online:
Epidermal Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2109))

Abstract

Keratinocytes are hard to transfect. Viral vectors are a good alternative to genetically modify primary keratinocytes. A classical method is the use of retroviral vectors by co-culture of keratinocytes with virus-producer cells. This method is efficient in high-calcium conditions with feeder cells. However, sometimes co-culture is not possible and is more laborious as producer cells need to be replaced by feeder cells. Our solution is the use of lentiviral vectors, far more efficient as supernatant on keratinocytes. In this chapter we describe improved detailed protocols for stable genetic modification of human primary keratinocytes of the skin or head and neck, in both low- and high-calcium conditions by lentiviral vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgenstern JP, Land H (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 18(12):3587–3596

    Article  CAS  Google Scholar 

  2. Gandarillas A, Davies D, Blanchard JM (2000) Normal and c-Myc-promoted human keratinocyte differentiation both occur via a novel cell cycle involving cellular growth and endoreplication. Oncogene 19(29):3278–3289

    Article  CAS  Google Scholar 

  3. Roe T, Reynolds TC, Yu G, Brown PO (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12(5):2099–2108

    Article  CAS  Google Scholar 

  4. Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10(8):4239–4242

    Article  CAS  Google Scholar 

  5. Higashikawa F, Chang L (2001) Kinetic analyses of stability of simple and complex retroviral vectors. Virology 280(1):124–131. https://doi.org/10.1006/viro.2000.0743

    Article  CAS  PubMed  Google Scholar 

  6. Rheinwald JG (1989) Methods for clonal growth and serial cultivation of normal human epidermal keratinocytes and mesothelial cells. In: Baserga R (ed) Cell growth and division. IRL Press, Oxford, pp 81–94

    Google Scholar 

  7. Watt FM, Broad S, Prowse DM (1994) Cultivation and retroviral infection of human epidermal keratinocytes. In: Celis JE (ed) Cell biology: a laboratory handbook. Cambridge University Press, Cambridge, pp 83–89

    Google Scholar 

  8. Naldini L (1998) Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 9(5):457–463

    Article  CAS  Google Scholar 

  9. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    Article  CAS  Google Scholar 

  10. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12):9873–9880

    Article  CAS  Google Scholar 

  11. Freije A, Ceballos L, Coisy M, Barnes L, Rosa M, De Diego E, Blanchard JM, Gandarillas A (2012) Cyclin E drives human keratinocyte growth into differentiation. Oncogene 31(50):5180–5192

    Article  CAS  Google Scholar 

  12. Freije A, Molinuevo R, Ceballos L, Cagigas M, Alonso-Lecue P, Rodriguez R, Menendez P, Aberdam D, De Diego E, Gandarillas A (2014) Inactivation of p53 in human keratinocytes leads to squamous differentiation and shedding via replication stress and mitotic slippage. Cell Rep 9(4):1349–1360

    Article  CAS  Google Scholar 

  13. Nanba D, Matsushita N, Toki F, Higashiyama S (2013) Efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with lentiviral vector. Stem Cell Res Ther 4(5):127. https://doi.org/10.1186/scrt338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen M, Li W, Fan J, Kasahara N, Woodley D (2003) An efficient gene transduction system for studying gene function in primary human dermal fibroblasts and epidermal keratinocytes. Clin Exp Dermatol 28(2):193–199

    Article  CAS  Google Scholar 

  15. Laktionov PP, Dazard JE, Vives E, Rykova EY, Piette J, Vlassov VV, Lebleu B (1999) Characterisation of membrane oligonucleotide-binding proteins and oligonucleotide uptake in keratinocytes. Nucleic Acids Res 27(11):2315–2324

    Article  CAS  Google Scholar 

  16. Levy L, Broad S, Zhu AJ, Carroll JM, Khazaal I, Peault B, Watt FM (1998) Optimised retroviral infection of human epidermal keratinocytes: long-term expression of transduced integrin gene following grafting on to SCID mice. Gene Ther 5(7):913–922. https://doi.org/10.1038/sj.gt.3300689

    Article  CAS  PubMed  Google Scholar 

  17. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36(1):59–74. https://doi.org/10.1099/0022-1317-36-1-59

    Article  CAS  PubMed  Google Scholar 

  18. DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 7(1):379–387

    Article  CAS  Google Scholar 

  19. Wiznerowicz M, Trono D (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77(16):8957–8961

    Article  CAS  Google Scholar 

  20. Szulc J, Wiznerowicz M, Sauvain MO, Trono D, Aebischer P (2006) A versatile tool for conditional gene expression and knockdown. Nat Methods 3(2):109–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Instituto de Salud Carlos III/FEDER (AG; Spain), grants PI14/00900 and PI17/01307. NSG is recipient of a predoctoral scholarship from Universidad de Cantabria/IDIVAL (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gandarillas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Freije, A., Sanz-Gómez, N., Gandarillas, A. (2019). Genetic Modification of Human Primary Keratinocytes by Lentiviral Vectors. In: Turksen, K. (eds) Epidermal Cells. Methods in Molecular Biology, vol 2109. Humana, New York, NY. https://doi.org/10.1007/7651_2019_238

Download citation

  • DOI: https://doi.org/10.1007/7651_2019_238

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0250-8

  • Online ISBN: 978-1-0716-0251-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics