Skip to main content

Accelerated Three-Dimensional Neuroepithelium Formation from Human Embryonic Stem Cells and Its Use for Quantitative Differentiation to Human Retinal Pigment Epithelium

  • Protocol
  • First Online:
Human Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1307))

Abstract

Successful applications of pluripotent stem cells to cell-based therapies will rely on rapid and efficient methods to differentiate cells toward the target cell type. While methods have been developed for the generation of some medically relevant cell types including retinal pigment epithelium (RPE) cells, such protocols are lengthy and result in a heterogeneous cell mixture of RPE and non-RPE cells, requiring manual subselection and expansion. Such considerations have significant limiting impact of therapeutic applicability. Here we describe the accelerated three-dimensional neuroepithelial cyst culture of human embryonic stem cells (hESCs) and its utility to achieve quantitative production of RPE cell sheet with no manual selection in 30 days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang SC, Wernig M, Duncan ID et al (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129–1133

    Article  CAS  PubMed  Google Scholar 

  2. Reubinoff BE, Itsykson P, Turetsky T et al (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134–1140

    Article  CAS  PubMed  Google Scholar 

  3. Carpenter MK, Inokuma MS, Denham J et al (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 172:383–397

    Article  CAS  PubMed  Google Scholar 

  4. Eiges R, Schuldiner M, Drukker M et al (2001) Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr Biol 11:514–518

    Article  CAS  PubMed  Google Scholar 

  5. Pera MF, Andrade J, Houssami S et al (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117:1269–1280

    Article  CAS  PubMed  Google Scholar 

  6. Gerrard L, Rodgers L, Cui W (2005) Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling. Stem Cells 23:1234–1241

    Article  CAS  PubMed  Google Scholar 

  7. Eiraku M, Watanabe K, Matsuo-Takasaki M et al (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–532

    Article  CAS  PubMed  Google Scholar 

  8. Elkabetz Y, Panagiotakos G, Al Shamy G et al (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chambers SM, Fasano CA, Papapetrou EP et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kim DS, Lee JS, Leem JW et al (2010) Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev 6:270–281

    Article  CAS  PubMed  Google Scholar 

  11. Buchholz DE, Hikita ST, Rowland TJ et al (2009) Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27:2427–2434

    Article  CAS  PubMed  Google Scholar 

  12. Klimanskaya I, Hipp J, Rezai KA et al (2004) Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 6:217–245

    Article  CAS  PubMed  Google Scholar 

  13. Vugler A, Carr AJ, Lawrence J et al (2008) Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol 214:347–361

    Article  CAS  PubMed  Google Scholar 

  14. Liao JL, Yu J, Huang K et al (2010) Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPE cells. Hum Mol Genet 19:4229–4238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Idelson M, Alper R, Obolensky A et al (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5:396–408

    Article  CAS  PubMed  Google Scholar 

  16. Meyer JS, Shearer RL, Capowski EE et al (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 106:16698–16703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Osakada F, Ikeda H, Mandai M et al (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26:215–224

    Article  CAS  PubMed  Google Scholar 

  18. Nistor G, Seiler MJ, Yan F et al (2010) Three-dimensional early retinal progenitor 3D tissue constructs derived from human embryonic stem cells. J Neurosci Methods 190:63–70

    Article  PubMed  Google Scholar 

  19. Buchholz DE, Pennington BO, Croze RH et al (2013) Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med 2:384–393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Inman JL, Bissell MJ (2010) Apical polarity in three-dimensional culture systems: where to now? J Biol 9:2

    Article  PubMed Central  PubMed  Google Scholar 

  21. Zegers MM, O'Brien LE, Yu W et al (2003) Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol 13:169–176

    Article  CAS  PubMed  Google Scholar 

  22. Zhu Y, Carido M, Meinhardt A et al (2013) Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium. PLoS One 8:e54552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the FZT 111—Deutsche Forschungsgemeinschaft (DFG) Center of Regenerative Therapies Dresden, the CRTD Seed Grant Program, the International Foundation for Paraplegia, the DIGS-BB Graduate Program Dresden, and the Fundação para a Ciência e Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elly M. Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhu, Y., Schreiter, S., Tanaka, E.M. (2013). Accelerated Three-Dimensional Neuroepithelium Formation from Human Embryonic Stem Cells and Its Use for Quantitative Differentiation to Human Retinal Pigment Epithelium. In: Turksen, K. (eds) Human Embryonic Stem Cell Protocols. Methods in Molecular Biology, vol 1307. Humana Press, New York, NY. https://doi.org/10.1007/7651_2013_56

Download citation

  • DOI: https://doi.org/10.1007/7651_2013_56

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2667-1

  • Online ISBN: 978-1-4939-2668-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics