Skip to main content

Composite Electrospun Nanofibers for Influencing Stem Cell Fate

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1058))

Abstract

The design of new bioactive materials, provided with “instructive properties” and able to regulate stem cell behavior, is the goal for several research groups involved in tissue engineering. This new function, commonly reserved for growth factors, can lead to the development of a new class of implantable scaffolds, useful for accelerating tissue regeneration in a controlled manner. In this scenario, the likely most versatile and effective tools for the realization of such scaffolds are based on nano- and microtechnology. Here, we show how exploiting the electrostatic spinning (ES) technique for producing a nanofibrillar composite structure, by mimicking topographically the extracellular matrix environment, can influence the fate of human bone marrow mesenchymal stem cells, inducing osteogenic differentiation in the absence of chemical treatments or cellular reprogramming. Basic cues on the choice of the materials and useful experimental instructions for realizing composite nanofibrous scaffolds will be given as well as fundamental tips.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bianco P, Riminucci M, Gronthos S et al (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  PubMed  CAS  Google Scholar 

  2. Bianco P, Robey PG (2001) Stem cells in tissue engineering. Nature 414:118–121

    Article  PubMed  CAS  Google Scholar 

  3. Kon E, Muraglia A, Corsi A et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337

    Article  PubMed  CAS  Google Scholar 

  4. Quarto R, Mastrogiacomo M, Cancedda R et al (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386

    Article  PubMed  CAS  Google Scholar 

  5. Lee CH, Cook JL, Mendelson A et al (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376:440–448

    Article  PubMed  CAS  Google Scholar 

  6. Giam LR, Massich MD, Hao L et al (2012) Scanning probe-enabled nanocombinatorics define the relationship between fibronectin feature size and stem cell fate. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1201086109

  7. McBeath R, Pirone DM, Nelson CM et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  PubMed  CAS  Google Scholar 

  8. Kilian KA, Bugarija B, Lahn BT et al (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A 107:4872–4877

    Article  PubMed  CAS  Google Scholar 

  9. Curran JM, Chen R, Hunt JA (2006) The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 27:4783–4793

    Article  PubMed  CAS  Google Scholar 

  10. Benoit DSW, Schwartz MP, Durney AR et al (2008) Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 7:816–823

    Article  PubMed  CAS  Google Scholar 

  11. Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity direct stem cell lineage specification. Cell 126:677–689

    Article  PubMed  CAS  Google Scholar 

  12. Dalby MJ, Gadegaard N, Tare E et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003

    Article  PubMed  CAS  Google Scholar 

  13. Oh S et al (2009) Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A 106:2130–2135

    Article  PubMed  CAS  Google Scholar 

  14. Polini A, Pisignano D, Parodi M et al (2011) Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS One 6:e26211

    Article  PubMed  CAS  Google Scholar 

  15. Reneker DH, Yarin AL, Fong H et al (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87:4531–4547

    Article  CAS  Google Scholar 

  16. Huang ZM, Zhang YZ, Kotaki M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  17. Pagliara S, Vitiello MS, Camposeo A et al (2011) Optical anisotropy in single light-emitting polymer nanofibers. J Phys Chem C 115:20399–20405

    Article  CAS  Google Scholar 

  18. Pagliara S, Camposeo A, Polini A et al (2009) Electrospun light-emitting nanofibers as excitation source in microfluidic devices. Lab Chip 9:2851–2856

    Article  PubMed  CAS  Google Scholar 

  19. Di Benedetto F, Camposeo A, Pagliara S et al (2008) Patterning of light-emitting conjugated polymer nanofibres. Nat Nanotechnol 3:614–619

    Article  PubMed  Google Scholar 

  20. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel. Adv Mater 16:1151–1170

    Article  CAS  Google Scholar 

  21. Dvir T, Timko PT, Kohane DS et al (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22

    Article  PubMed  CAS  Google Scholar 

  22. Ricotti L, Polini A, Genchi GG et al (2011) Nanostructured, highly aligned poly(hydroxy butyrate) electrospun fibers for differentiation of skeletal and cardiac muscle cells. Conf Proc IEEE Eng Med Biol Soc 2011:3597–3600

    PubMed  Google Scholar 

  23. Polini A, Pagliara S, Stabile R et al (2010) Collagen-functionalised electrospun polymer nanofibers for bioengineering applications. Soft Matter 6:1668–1674

    Article  CAS  Google Scholar 

  24. Ricotti L, Polini A, Genchi GG et al (2012) Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomed Mater 7:035010

    Article  PubMed  Google Scholar 

  25. Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5:13403

    Article  PubMed  Google Scholar 

  26. Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90:4836–4846

    Article  CAS  Google Scholar 

  27. Feng JJ (2002) The stretching of an electrified non-Newtonian jet: a model for electrospinning. Phys Fluids 14:3912–3926

    Article  CAS  Google Scholar 

  28. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  PubMed  CAS  Google Scholar 

  29. Haghi AK, Akbari M (2007) Trends in electrospinning of natural nanofibers. Physica Status Solidi 204:1830–1834

    Article  CAS  Google Scholar 

  30. Gupta P, Elkins C, Long TE et al (2005) Electrospinning of linear homopolymers of poly (methylmethacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46:4799–4810

    Article  CAS  Google Scholar 

  31. Teplyuk NM, Galindo M, Teplyuk VI et al (2008) Runx2 regulates G protein-coupled signaling pathways to control growth of osteoblast progenitors. J Biol Chem 283:27585–27597

    Article  PubMed  CAS  Google Scholar 

  32. Franceschi RT (1999) The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Crit Rev Oral Biol Med 10:40–57

    Article  PubMed  CAS  Google Scholar 

  33. Satomura K, Krebsbach P, Bianco P et al (2000) Osteogenic imprinting upstream of marrow stromal cell differentiation. J Cell Biochem 78:391–403

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Italian Minister of University and Research for financial support through the FIRB Contracts RBIP068JL9 and RBNE08BNL7 (MERIT Program).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Polini, A., Scaglione, S., Quarto, R., Pisignano, D. (2013). Composite Electrospun Nanofibers for Influencing Stem Cell Fate. In: Turksen, K. (eds) Stem Cell Nanotechnology. Methods in Molecular Biology, vol 1058. Humana Press, Totowa, NJ. https://doi.org/10.1007/7651_2012_4

Download citation

  • DOI: https://doi.org/10.1007/7651_2012_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-570-5

  • Online ISBN: 978-1-62703-571-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics