Skip to main content

Future Directions and New Targets in Endometrial Cancer

  • Chapter
Uterine Cancer

Part of the book series: Current Clinical Oncology ((CCO))

  • 532 Accesses

Abstract

Recent advances in next generation sequencing (NRG) have provided compelling evidence that endometrial cancers result from heterogeneous somatic mutations. These findings argue that a catalog of molecular aberrations that cause endometrial cancer is critical for the proper classification of these tumors and for developing novel and more effective targeted therapies against this disease. This chapter summarizes the recent advances made toward the elucidation of underlying pathway aberrations and the development of targeted therapies that exploit the unique molecular characteristics of endometrial cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 1983;15:10–7.

    CAS  PubMed  Google Scholar 

  2. Lax SF, Pizer ES, Ronnett BM, Kurman RJ. Comparison of estrogen and progesterone receptor, Ki-67, and p53 immunoreactivity in uterine endometrioid carcinoma and endometrioid carcinoma with squamous, mucinous, secretory, and ciliated cell differentiation. Hum Pathol. 1998;29:924–31.

    CAS  PubMed  Google Scholar 

  3. Voss MA, et al. Should grade 3 endometrioid endometrial carcinoma be considered a type 2 cancer—a clinical and pathological evaluation. Gynecol Oncol. 2012;124:15–20.

    PubMed  Google Scholar 

  4. Goff BA, et al. Uterine papillary serous carcinoma: patterns of metastatic spread. Gynecol Oncol. 1994;54:264–8.

    CAS  PubMed  Google Scholar 

  5. Mutch DG. The more things change the more they stay the same. Gynecol Oncol. 2012;124:3–4.

    PubMed  Google Scholar 

  6. Wilson TO, et al. Evaluation of unfavorable histologic subtypes in endometrial adenocarcinoma. Am J Obstet Gynecol. 1990;162:418–23. discussion 423–6.

    CAS  PubMed  Google Scholar 

  7. Emons G, Fleckenstein G, Hinney B, Huschmand A, Heyl W. Hormonal interactions in endometrial cancer. Endocr Relat Cancer. 2000;7:227–42.

    CAS  PubMed  Google Scholar 

  8. Hameed K, Morgan DA. Papillary adenocarcinoma of endometrium with psammoma bodies. Histology and fine structure. Cancer. 1972;29:1326–35.

    CAS  PubMed  Google Scholar 

  9. Hamilton CA, et al. Uterine papillary serous and clear cell carcinomas predict for poorer survival compared to grade 3 endometrioid corpus cancers. Br J Cancer. 2006;94:642–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cancer Genome Atlas Research Network, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73.

    Google Scholar 

  11. Albertson TM, et al. DNA polymerase epsilon and delta proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci U S A. 2009;106:17101–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Palles C, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet. 2013;45:713.

    CAS  Google Scholar 

  13. Meng B, et al. POLE exonuclease domain mutation predicts long progression-free survival in grade 3 endometrioid carcinoma of the endometrium. Gynecol Oncol. 2014;134:15–9.

    CAS  PubMed  Google Scholar 

  14. Santin AD, et al. Improved survival of patients with hypermutation in uterine serous carcinoma. Gynecol Oncol Report. 2015;12:3–4.

    Google Scholar 

  15. Boussiotis VA. Somatic Mutations and Immunotherapy Outcome with CTLA-4 Blockade in Melanoma. N Engl J Med. 2014. doi:10.1056/NEJMe1413061.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Loeb LA. Human cancers express mutator phenotypes: origin, consequences and targeting. Nat Rev Cancer. 2011;11:450–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Snyder A, et al. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. N Engl J Med. 2014. doi:10.1056/NEJMoa1406498.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Martin SA, et al. DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH2 or MLH1. Cancer Cell. 2010;17:235–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hewish M, et al. Cytosine-based nucleoside analogs are selectively lethal to DNA mismatch repair-deficient tumour cells by enhancing levels of intracellular oxidative stress. Br J Cancer. 2013;108:983–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Risinger JI, Hayes AK, Berchuck A, Barrett JC. PTEN/MMAC1 mutations in endometrial cancers. Cancer Res. 1997;57:4736–8.

    CAS  PubMed  Google Scholar 

  21. Tashiro H, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 1997;57:3935–40.

    CAS  PubMed  Google Scholar 

  22. Samarnthai N, Hall K, Yeh I-T. Molecular profiling of endometrial malignancies. Obstet Gynecol Int. 2010;2010:162363.

    PubMed  PubMed Central  Google Scholar 

  23. Prat J, Gallardo A, Cuatrecasas M, Catasús L. Endometrial carcinoma: pathology and genetics. Pathology. 2007;39:72–87.

    CAS  PubMed  Google Scholar 

  24. Mutter GL, et al. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst. 2000;92:924–30.

    CAS  PubMed  Google Scholar 

  25. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010;11:329–41.

    CAS  PubMed  Google Scholar 

  26. Matias-Guiu X, Prat J. Molecular pathology of endometrial carcinoma. Histopathology. 2013;62:111–23.

    PubMed  Google Scholar 

  27. Oda K, Stokoe D, Taketani Y, McCormick F. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 2005;65:10669–73.

    CAS  PubMed  Google Scholar 

  28. Doll A, et al. Novel molecular profiles of endometrial cancer—new light through old windows. J Steroid Biochem Mol Biol. 2008;108:221–9.

    CAS  PubMed  Google Scholar 

  29. Pavlidou A, Vlahos NF. Molecular alterations of PI3K/Akt/mTOR pathway: a therapeutic target in endometrial cancer. ScientificWorldJournal. 2014;2014:709736.

    PubMed  PubMed Central  Google Scholar 

  30. English DP, et al. Oncogenic PIK3CA gene mutations and HER2/neu gene amplifications determine the sensitivity of uterine serous carcinoma cell lines to GDC-0980, a selective inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2). Am J Obstet Gynecol. 2013;209:465.e1–9.

    CAS  Google Scholar 

  31. English DP, et al. HER2/neu gene amplification determines the sensitivity of uterine serous carcinoma cell lines to AZD8055, a novel dual mTORC1/2 inhibitor. Gynecol Oncol. 2013;131:753–8.

    CAS  PubMed  Google Scholar 

  32. Chresta CM, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010;70:288–98.

    CAS  PubMed  Google Scholar 

  33. Lopez S, et al. Taselisib, a selective inhibitor of PIK3CA, is highly effective on PIK3CA-mutated and HER2/neu amplified uterine serous carcinoma in vitro and in vivo. Gynecol Oncol. 2014. doi:10.1016/j.ygyno.2014.08.024.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dancey JE. Therapeutic targets: MTOR and related pathways. Cancer Biol Ther. 2006;5:1065–73.

    CAS  PubMed  Google Scholar 

  35. Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol. 2013;10:143–53.

    CAS  PubMed  Google Scholar 

  36. Janku F, et al. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J Clin Oncol. 2012;30:777–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Llauradó M, et al. Molecular bases of endometrial cancer: new roles for new actors in the diagnosis and the therapy of the disease. Mol Cell Endocrinol. 2012;358:244–55.

    PubMed  Google Scholar 

  38. Konecny GE, et al. HER2 gene amplification and EGFR expression in a large cohort of surgically staged patients with nonendometrioid (type II) endometrial cancer. Br J Cancer. 2009;100:89–95.

    CAS  PubMed  Google Scholar 

  39. Schwab CL, et al. Afatinib demonstrates remarkable activity against HER2-amplified uterine serous endometrial cancer in vitro and in vivo. Br J Cancer. 2014;111:1750–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwab CL, et al. Neratinib shows efficacy in the treatment of HER2/neu amplified uterine serous carcinoma in vitro and in vivo. Gynecol Oncol. 2014;135:142–8.

    CAS  PubMed  Google Scholar 

  41. Kallioniemi OP, et al. ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci. 1992;89:5321–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16:1647–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Buza N, Roque DM, Santin AD. HER2/ neu in endometrial cancer: a promising therapeutic target with diagnostic challenges. Arch Pathol Lab Med. 2014;138:343–50.

    PubMed  Google Scholar 

  44. Black JD, English DP, Roque DM, Santin AD. Targeted therapy in uterine serous carcinoma: an aggressive variant of endometrial cancer. Womens Health. 2014;10:45–57.

    CAS  Google Scholar 

  45. Piccart-Gebhart MJ, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.

    CAS  PubMed  Google Scholar 

  46. Jewell E, Secord AA, Brotherton T, Berchuck A. Use of trastuzumab in the treatment of metastatic endometrial cancer. Int J Gynecol Cancer. 2006;16:1370–3.

    CAS  PubMed  Google Scholar 

  47. Santin AD, Bellone S, Roman JJ, McKenney JK, Pecorelli S. Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int J Gynaecol Obstet. 2008;102:128–31.

    CAS  PubMed  Google Scholar 

  48. Villella JA, Cohen S, Smith DH, Hibshoosh H, Hershman D. HER-2/neu overexpression in uterine papillary serous cancers and its possible therapeutic implications. Int J Gynecol Cancer. 2006;16:1897–902.

    CAS  PubMed  Google Scholar 

  49. Clinical trials. Evaluation of carboplatin/paclitaxel with and without Trastuzumab (Herceptin) in Uterine serous cancer. http://clinicaltrials.gov/show/NCT01367002

  50. Nagumo Y, et al. Trastuzumab and pertuzumab produce changes in morphology and estrogen receptor signaling in ovarian cancer xenografts revealing new treatment strategies. Clin Cancer Res. 2011;17:4451–61. at <http://clincancerres.aacrjournals.org/content/17/13/4451.short>.

    PubMed  Google Scholar 

  51. Bellone M, et al. In vitro activity of pertuzumab in combination with trastuzumab in uterine serous papillary adenocarcinoma. Br J Cancer. 2010;102:134–43. at <http://www.nature.com/bjc/journal/v102/n1/abs/6605448a.html>.

    PubMed  Google Scholar 

  52. Mullen P, Cameron DA, Hasmann M, Smyth JF, Langdon SP. Sensitivity to pertuzumab (2C4) in ovarian cancer models: cross-talk with estrogen receptor signaling. Mol Cancer Ther. 2007;6:93–100.

    CAS  PubMed  Google Scholar 

  53. Kim JW, et al. The growth inhibitory effect of lapatinib, a dual inhibitor of EGFR and HER2 tyrosine kinase, in gastric cancer cell lines. Cancer Lett. 2008;272:296–306.

    CAS  PubMed  Google Scholar 

  54. Lewis Phillips GD, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68:9280–90.

    CAS  PubMed  Google Scholar 

  55. Remillard S, Rebhun LI, Howie GA, Kupchan SM. Antimitotic activity of the potent tumor inhibitor maytansine. Science. 1975;189:1002–5.

    CAS  PubMed  Google Scholar 

  56. Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat. 2011;128:347–56.

    CAS  PubMed  Google Scholar 

  57. Wilken JA, Maihle NJ. Primary trastuzumab resistance: new tricks for an old drug. Ann N Y Acad Sci. 2010;1210:53–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Boyraz B, et al. Trastuzumab emtansine (T-DM1) for HER2-positive breast cancer. Curr Med Res Opin. 2013;29:405–14.

    CAS  PubMed  Google Scholar 

  59. English DP, et al. T-DM1, a novel antibody-drug conjugate, is highly effective against primary HER2 overexpressing uterine serous carcinoma in vitro and in vivo. Cancer Med. 2014;3:1256–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    CAS  PubMed  Google Scholar 

  61. Kamat AA, et al. Clinical and biological significance of vascular endothelial growth factor in endometrial cancer. Clin Cancer Res. 2007;13:7487–95.

    CAS  PubMed  Google Scholar 

  62. Hirai M, et al. Expression of vascular endothelial growth factors (VEGF-A/VEGF-1 and VEGF-C/VEGF-2) in postmenopausal uterine endometrial carcinoma. Gynecol Oncol. 2001;80:181–8.

    CAS  PubMed  Google Scholar 

  63. Mazurek A, et al. Evaluation of angiogenesis, p-53 tissue protein expression and serum VEGF in patients with endometrial cancer. Neoplasma. 2004;51:193–7.

    CAS  PubMed  Google Scholar 

  64. Aghajanian C, et al. Phase II trial of bevacizumab in recurrent or persistent endometrial cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2011;29:2259–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Alvarez EA, et al. Phase II trial of combination bevacizumab and temsirolimus in the treatment of recurrent or persistent endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2013;129:22–7.

    CAS  PubMed  Google Scholar 

  66. Paclitaxel, carboplatin, and bevacizumab or paclitaxel, carboplatin, and temsirolimus or ixabepilone, carboplatin, and bevacizumab in treating patients with stage III, stage IV, or recurrent endometrial cancer—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/show/NCT00977574

  67. Coleman RL, et al. Corrigendum to “A phase II evaluation of aflibercept in the treatment of recurrent or persistent endometrial cancer: a Gynecologic Oncology Group study” [Gynecol Oncol 127 (2012) 538–543]. Gynecol Oncol. 2013;130.

    Google Scholar 

  68. Fuchs CS, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383:31–9.

    CAS  PubMed  Google Scholar 

  69. Powell MA, et al. A phase II trial of brivanib in recurrent or persistent endometrial cancer: an NRG Oncology/Gynecologic Oncology Group Study. Gynecologic. 2014;135:38–43. at <http://www.sciencedirect.com/science/article/pii/S0090825814011585>.

    CAS  Google Scholar 

  70. Kuhn E, et al. Identification of molecular pathway aberrations in uterine serous carcinoma by genome-wide analyses. J Natl Cancer Inst. 2012;104:1503–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 2008;8:83–93.

    CAS  PubMed  Google Scholar 

  72. Mao J-H, et al. FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science. 2008;321:1499–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cassia R, et al. Cyclin E gene (CCNE) amplification and hCDC4 mutations in endometrial carcinoma. J Pathol. 2003;201:589–95.

    CAS  PubMed  Google Scholar 

  74. Shih I-M, et al. Somatic mutations of PPP2R1A in ovarian and uterine carcinomas. Am J Pathol. 2011;178:1442–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nagendra DC, Burke 3rd J, Maxwell GL, Risinger JI. PPP2R1A mutations are common in the serous type of endometrial cancer. Mol Carcinog. 2012;51:826–31.

    CAS  PubMed  Google Scholar 

  76. Zhao S, et al. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc Natl Acad Sci U S A. 2013;110:2916–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin CL, Lin JK. Curcumin: a potential cancer chemopreventive agent through suppressing NF-κB signaling. J Cancer Mol. 2008;4:11–6. at <http://mupnet.com/JOCM%204(1)%2011-16.pdf>.

    CAS  Google Scholar 

  78. Bloom J, Pagano M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol. 2003;13.

    CAS  PubMed  Google Scholar 

  79. Pagano M, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science. 1995;269.

    Google Scholar 

  80. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13.

    CAS  Google Scholar 

  81. Lahav-Baratz S. Decreased level of the cell cycle regulator p27 and increased level of its ubiquitin ligase Skp2 in endometrial carcinoma but not in normal secretory or in hyperstimulated endometrium. Mol Hum Reprod. 2004;10.

    Google Scholar 

  82. Miyamoto T, et al. Inverse correlation between Skp2 and p27Kip1 in normal endometrium and endometrial carcinoma. Gynecol Endocrinol. 2009. doi:10.1080/09513590903215482.

    Article  Google Scholar 

  83. Oshita T, Shigemasa K, Nagai N, Ohama K. p27, cyclin E, and CDK2 expression in normal and cancerous endometrium. Int J Oncol. 2002. doi:10.3892/ijo.21.4.737.

    Article  PubMed  Google Scholar 

  84. Lecanda J, et al. Transforming growth factor-beta, estrogen, and progesterone converge on the regulation of p27Kip1 in the normal and malignant endometrium. Cancer Res. 2007;67:1007–18.

    CAS  PubMed  Google Scholar 

  85. Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer. 2008;8.

    CAS  PubMed  Google Scholar 

  86. Kamata Y, et al. High expression of skp2 correlates with poor prognosis in endometrial endometrioid adenocarcinoma. J Cancer Res Clin Oncol. 2005;131.

    CAS  PubMed  Google Scholar 

  87. Wander SA, Zhao D, Slingerland JM. p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clin Cancer Res. 2010;17.

    PubMed  PubMed Central  Google Scholar 

  88. Davidovich S, Ben-Izhak O, Shapira M, Futerman B, Hershko DD. Over-expression of Skp2 is associated with resistance to preoperative doxorubicin-based chemotherapy in primary breast cancer. Breast Cancer Res. 2008;10.

    Google Scholar 

  89. Huang KT, Pavlides SC, Lecanda J, Blank SV, Mittal KR, Gold LI. Estrogen and progesterone regulate p27kip1 levels via the ubiquitin-proteasome system: pathogenic and therapeutic implications for endometrial cancer. PLoS One. 2012;7.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Di Cristofano A, Ellenson LH. Endometrial carcinoma. Annu Rev Pathol Mech Dis. 2007;445:53–7. at <http://www.annualreviews.org/doi/abs/10.1146/annurev.pathol.2.010506.091905>.

    Google Scholar 

  91. Ellenson LH, Wu T-C. Focus on endometrial and cervical cancer. Cancer Cell. 2004;5.

    CAS  PubMed  Google Scholar 

  92. Shiozawa T, et al. Up-regulation of p27Kip1 by progestins is involved in the growth suppression of the normal and malignant human endometrial glandular cells. Endocrinology. 2001;142:4182–8.

    CAS  PubMed  Google Scholar 

  93. Watanabe J, et al. Significance of p27 as a predicting marker for medroxyprogesterone acetate therapy against endometrial endometrioid adenocarcinoma. Int J Gynecol Cancer. 2006;16 Suppl 1:452–7.

    PubMed  Google Scholar 

  94. An H-J, et al. Alteration of PTEN expression in endometrial carcinoma is associated with down-regulation of cyclin-dependent kinase inhibitor, p27. Histopathology. 2002;41:437–45.

    PubMed  Google Scholar 

  95. Mamillapalli R, et al. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Curr Biol. 2001;11:263–7.

    CAS  PubMed  Google Scholar 

  96. Mitsiades CS, Mitsiades N, Hideshima T, Richardson PG, Anderson KC. Proteasome inhibitors as therapeutics. Essays Biochem. 2005;41:205–18.

    CAS  PubMed  Google Scholar 

  97. Kitagawa K, Kotake Y, Kitagawa M. Ubiquitin-mediated control of oncogene and tumor suppressor gene products. Cancer Sci. 2009;100:1374–81.

    CAS  PubMed  Google Scholar 

  98. Hao B, et al. Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol Cell. 2005;20:9–19.

    CAS  PubMed  Google Scholar 

  99. Cardozo T, Pagano M. Wrenches in the works: drug discovery targeting the SCF ubiquitin ligase and APC/C complexes. BMC Biochem. 2007;8 Suppl 1:S9.

    PubMed  PubMed Central  Google Scholar 

  100. Wu L, et al. Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem Biol. 2012;19:1515–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Denicourt C, Saenz CC, Datnow B, Cui X-S, Dowdy SF. Relocalized p27Kip1 tumor suppressor functions as a cytoplasmic metastatic oncogene in melanoma. Cancer Res. 2007;67:9238–43.

    CAS  PubMed  Google Scholar 

  102. Larrea MD, Wander SA, Slingerland JM. p27 as Jekyll and Hyde: regulation of cell cycle and cell motility. Cell Cycle. 2009;8:3455–61.

    CAS  PubMed  Google Scholar 

  103. Pavlides SC, et al. Inhibitors of SCF-Skp2/Cks1 E3 ligase block estrogen-induced growth stimulation and degradation of nuclear p27kip1: therapeutic potential for endometrial cancer. Endocrinology. 2013;154:4030–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ungermannova D, et al. High-throughput screening AlphaScreen assay for identification of small-molecule inhibitors of ubiquitin E3 ligase SCFSkp2-Cks1. J Biomol Screen. 2013;18:910–20.

    PubMed  PubMed Central  Google Scholar 

  105. Rico-Bautista E, Wolf DA. Skipping cancer: small molecule inhibitors of SKP2-mediated p27 degradation. Chem Biol. 2012;19:1497–8.

    CAS  PubMed  Google Scholar 

  106. Chan C-H, et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell. 2013;154:556–68.

    CAS  PubMed  Google Scholar 

  107. Swift JG, Mukherjee TM, Rowland R. Intercellular junctions in hepatocellular carcinoma. J Submicrosc Cytol. 1983;15:799–810.

    CAS  PubMed  Google Scholar 

  108. Morita K, Furuse M, Fujimoto K, Tsukita S. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A. 1999;96:511–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Santin AD, et al. Overexpression of claudin-3 and claudin-4 receptors in uterine serous papillary carcinoma: novel targets for a type-specific therapy using Clostridium perfringens enterotoxin (CPE). Cancer. 2007;109:1312–22.

    CAS  PubMed  Google Scholar 

  110. Morin PJ. Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res. 2005;65:9603–6.

    CAS  PubMed  Google Scholar 

  111. Hewitt KJ, Agarwal R, Morin PJ. The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer. 2006;6:186.

    PubMed  PubMed Central  Google Scholar 

  112. Kavallaris M, et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest. 1997;100:1282–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Vitolo MI, et al. Loss of PTEN induces microtentacles through PI3K-independent activation of cofilin. Oncogene. 2013;32:2200–10.

    CAS  PubMed  Google Scholar 

  114. Magnani M, et al. The betaI/betaIII-tubulin isoforms and their complexes with antimitotic agents. Docking and molecular dynamics studies. FEBS J. 2006;273:3301–10.

    CAS  PubMed  Google Scholar 

  115. Hari M, Yang H, Zeng C, Canizales M, Cabral F. Expression of class III beta-tubulin reduces microtubule assembly and confers resistance to paclitaxel. Cell Motil Cytoskeleton. 2003;56:45–56.

    CAS  PubMed  Google Scholar 

  116. Roque DM, et al. Class III β-tubulin overexpression in ovarian clear cell and serous carcinoma as a maker for poor overall survival after platinum/taxane chemotherapy and sensitivity to patupilone. Am J Obstet Gynecol. 2013;209:62.e1–9.

    CAS  Google Scholar 

  117. Roque DM, et al. Tubulin-β-III overexpression by uterine serous carcinomas is a marker for poor overall survival after platinum/taxane chemotherapy and sensitivity to epothilones. Cancer. 2013;119:2582–92.

    CAS  PubMed  Google Scholar 

  118. Ferrandina G, et al. Class III beta-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin Cancer Res. 2006;12:2774–9.

    CAS  PubMed  Google Scholar 

  119. Bollag DM, et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 1995;55:2325–33.

    CAS  PubMed  Google Scholar 

  120. English DP, Roque DM, Santin AD. Class III b-tubulin overexpression in gynecologic tumors: implications for the choice of microtubule targeted agents? Expert Rev Anticancer Ther. 2013;13:63–74.

    CAS  PubMed  Google Scholar 

  121. Carrara L, et al. Differential in vitro sensitivity to patupilone versus paclitaxel in uterine and ovarian carcinosarcoma cell lines is linked to tubulin-beta-III expression. Gynecol Oncol. 2012;125:231–6.

    CAS  PubMed  Google Scholar 

  122. Paik D, et al. Higher sensitivity to patupilone versus paclitaxel chemotherapy in primary uterine serous papillary carcinoma cell lines with high versus low HER-2/neu expression in vitro. Gynecol Oncol. 2010;119:140–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Dizon DS, et al. Phase II trial of ixabepilone as second-line treatment in advanced endometrial cancer: gynecologic oncology group trial 129-P. J Clin Oncol. 2009;27:3104–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Duska LR, et al. A phase II evaluation of ixabepilone (IND #59699, NSC #710428) in the treatment of recurrent or persistent leiomyosarcoma of the uterus: an NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol. 2014;135:44–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro D. Santin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Black, J.D., Roque, D.M., Gold, L.I., Santin, A.D. (2015). Future Directions and New Targets in Endometrial Cancer. In: Muggia, F., Santin, A.D., Oliva, E. (eds) Uterine Cancer. Current Clinical Oncology. Springer, Cham. https://doi.org/10.1007/7631_2015_1

Download citation

  • DOI: https://doi.org/10.1007/7631_2015_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47267-6

  • Online ISBN: 978-3-319-47269-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics