Skip to main content

HSF1 Regulates Cellular Senescence: Role of the DHRS2-MDM2-p53 Pathway

  • Chapter
  • First Online:
Heat Shock Proteins in Human Diseases

Part of the book series: Heat Shock Proteins ((HESP,volume 21))

  • 413 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDK2:

cyclin dependent kinase 2

DHRS2:

dehydrogenase/reductase 2

DOX:

doxycycline

HDF:

human diploid fibroblast

HDIS:

HSF1 depletion-induced cellular senescence

HSF1:

heat shock transcription factor 1

Hsp:

heat shock protein

Mieap:

mitochondria-eating protein

NAMPT:

nicotinamide phosphoribosyltransferase

PGC1α:

peroxisome proliferator-activated receptor γ coactivator-1α

ROS:

reactive oxygen species

SASP:

senescence-associated secretory phenotype

SA-β-gal:

senescence-associated β-galactosidase

shRNA:

short-hairpin RNA

SDR:

short-chain NAD/NADP-dependent dehydrogenase/reductase

TERT:

telomerase reverse transcriptase

References

  1. Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Barna J, Csermely P, Vellai T (2018) Roles of heat shock factor 1 beyond the heat shock response. Cell Mol Life Sci 75:2897–2916

    CAS  PubMed  Google Scholar 

  4. Bierkamp C, Luxey M, Metchat A, Audouard C, Dumollard R, Christians E (2010) Lack of maternal Heat Shock Factor 1 results in multiple cellular and developmental defects, including mitochondrial damage and altered redox homeostasis, and leads to reduced survival of mammalian oocytes and embryos. Dev Biol 339:338–353

    CAS  PubMed  Google Scholar 

  5. Bjorkqvist AM, Wolf M, Nordling S et al (1999) Deletions at 14q in malignant mesothelioma detected by microsatellite marker analysis. Br J Cancer 81:1111–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Casella G, Munk R, Kim KM et al (2019) Transcriptome signature of cellular senescence. Nucleic Acids Res 47:7294–7305

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chapman J, Fielder E, Passos JF (2019) Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 593:1566–1579

    CAS  PubMed  Google Scholar 

  8. Crean D, Felice L, Taylor CT, Rabb H, Jennings P, Leonard MO (2012) Glucose reintroduction triggers the activation of Nrf2 during experimental ischemia reperfusion. Mol Cell Biochem 366:231–238

    CAS  PubMed  Google Scholar 

  9. Dai C, Whitesell L, Rogers AB, Lindquist S (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dai C, Sampson SB (2016) HSF1: Guardian of Proteostasis in Cancer. Trends Cell Biol 26:17–28

    CAS  PubMed  Google Scholar 

  11. Debiec-Rychter M, Sciot R, Pauwels P et al (2001) Molecular cytogenetic definition of three distinct chromosome arm 14q deletion intervals in gastrointestinal stromal tumors. Genes Chromosom Cancer 32:26–32

    CAS  PubMed  Google Scholar 

  12. Deisenroth C, Thorner AR, Enomoto T, Perou CM, Zhang Y (2010) Mitochondrial Hep27 is a c-Myb target gene that inhibits Mdm2 and stabilizes p53. Mol Cell Biol 30:3981–3993

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Faget DV, Ren Q, Stewart SA (2019) Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer 19:439–453

    CAS  PubMed  Google Scholar 

  14. Gabrielli F, Donadel G, Bensi G, Heguy A, Melli M (1995) A nuclear protein, synthesized in growth-arrested human hepatoblastoma cells, is a novel member of the short-chain alcohol dehydrogenase family. Eur J Biochem 232:473–477

    CAS  PubMed  Google Scholar 

  15. Gabrielli F, Tofanelli S (2012) Molecular and functional evolution of human DHRS2 and DHRS4 duplicated genes. Gene 511:461–469

    CAS  PubMed  Google Scholar 

  16. Gomez-Pastor R, Burchfiel ET, Thiele DJ (2018) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 19:4–19

    CAS  PubMed  Google Scholar 

  17. Gorgoulis V, Adams PD, Alimonti A et al (2019) Cellular senescence: defining a path forward. Cell 179:813–827

    CAS  PubMed  Google Scholar 

  18. Gross DN, van den Heuvel AP, Birnbaum MJ (2008) The role of FoxO in the regulation of metabolism. Oncogene 27:2320–2336

    CAS  PubMed  Google Scholar 

  19. Han Y, Song C, Wang J, Tang H, Peng Z, Lu S (2018) HOXA13 contributes to gastric carcinogenesis through DHRS2 interacting with MDM2 and confers 5-FU resistance by a p53-dependent pathway. Mol Carcinog 57:722–734

    CAS  PubMed  Google Scholar 

  20. Hayashida N, Fujimoto M, Tan K, Prakasam R, Shinkawa T, Li L, Ichikawa H, Takii R, Nakai A (2010) Heat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT. EMBO J 29:3459–3469

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    CAS  PubMed  Google Scholar 

  22. He S, Sharpless NE (2017) Senescence in health and disease. Cell 169:1000–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hensen SM, Heldens L, van Genesen ST, Pruijn GJ, Lubsen NH (2013) A delayed antioxidant response in heat-stressed cells expressing a non-DNA binding HSF1 mutant. Cell Stress Chaperones 18:455–473

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28:436–453

    CAS  PubMed  Google Scholar 

  25. Hoshino A, Mita Y, Okawa Y et al (2013) Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun 4:2308. https://doi.org/10.1038/ncomms3308

    Article  CAS  PubMed  Google Scholar 

  26. Jiang S, Tu K, Fu Q et al (2015) Multifaceted roles of HSF1 in cancer. Tumour Biol 36:4923–4931

    CAS  PubMed  Google Scholar 

  27. Kijima T, Prince T, Neckers L, Koga F, Fujii Y (2019) Heat shock factor 1 (HSF1)-targeted anticancer therapeutics: overview of current preclinical progress. Expert Opin Ther Targets 23:369–377

    CAS  PubMed  Google Scholar 

  28. Kim G, Meriin AB, Gabai VL et al (2012) The heat shock transcription factor Hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell 11:617–627

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee YJ, Lee HJ, Lee JS et al (2008) A novel function for HSF1-induced mitotic exit failure and genomic instability through direct interaction between HSF1 and Cdc20. Oncogene 27:2999–3009

    CAS  PubMed  Google Scholar 

  30. Li J, Labbadia J, Morimoto RI (2017) Rethinking HSF1 in stress, development, and organismal health. Trends Cell Biol 27:895–905

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li JM, Jiang GM, Zhao L et al (2019) Dehydrogenase/reductase SDR family member 2 silencing sensitizes an oxaliplatin-resistant cell line to oxaliplatin by inhibiting excision repair cross-complementing group 1 protein expression. Oncol Rep 42:1725–1734

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo X, Li N, Zhao X et al (2019) DHRS2 mediates cell growth inhibition induced by Trichothecin in nasopharyngeal carcinoma. J Exp Clin Cancer Res 38:300. https://doi.org/10.1186/s13046-019-1301-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma X, Xu L, Alberobello AT et al (2015) Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1α transcriptional axis. Cell Metab 22:695–708

    CAS  PubMed  Google Scholar 

  34. Mendillo ML, Santagata S, Koeva M et al (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Meng L, Gabai VL, Sherman MY (2010) Heat-shock transcription factor HSF1 has a critical role in human epidermal growth factor receptor-2-induced cellular transformation and tumorigenesis. Oncogene 29:5204–5213

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Monge M, Colas E, Doll A et al (2009) Proteomic approach to ETV5 during endometrial carcinoma invasion reveals a link to oxidative stress. Carcinogenesis 30:1288–1297

    CAS  PubMed  Google Scholar 

  37. Nakamura Y, Arakawa H (2017) Discovery of Mieap-regulated mitochondrial quality control as a new function of tumor suppressor p53. Cancer Sci 108:809–817

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nettersheim D, Berger D, Jostes S, Skowron M, Schorle H (2019) Deciphering the molecular effects of romidepsin on germ cell tumours: DHRS2 is involved in cell cycle arrest but not apoptosis or induction of romidepsin effectors. J Cell Mol Med 23:670–679

    CAS  PubMed  Google Scholar 

  39. Oda T, Sekimoto T, Kurashima K, Fujimoto M, Nakai A, Yamashita T (2018) Acute HSF1 depletion induces cellular senescence through the MDM2-p53-p21 pathway in human diploid fibroblasts. J Cell Sci 131. https://doi.org/10.1242/jcs.210724

  40. Ovadya Y, Krizhanovsky V (2018) Strategies targeting cellular senescence. J Clin Invest 128:1247–1254

    PubMed  PubMed Central  Google Scholar 

  41. Palikaras K, Lionaki E, Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20:1013–1022

    CAS  PubMed  Google Scholar 

  42. Qiao A, Jin X, Pang J, Moskophidis D, Mivechi NF (2017) The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol 216:723–741

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shafqat N, Shafqat J, Eissner G (2006) Hep27, a member of the short-chain dehydrogenase/reductase family, is an NADPH-dependent dicarbonyl reductase expressed in vascular endothelial tissue. Cell Mol Life Sci 63:1205–1213

    CAS  PubMed  Google Scholar 

  44. Shimonosono M, Idichi T, Seki N et al (2019) Molecular pathogenesis of esophageal squamous cell carcinoma: identification of the antitumor effects of miR-145-3p on gene regulation. Int J Oncol 5:673–688

    Google Scholar 

  45. Sun Y, Coppé JP, Lam EW (2018) Cellular senescence: the sought or the unwanted? Trends Mol Med 24:871–885

    CAS  PubMed  Google Scholar 

  46. Tan K, Fujimoto M, Takii R, Takaki E, Hayashida N, Nakai A (2015) Mitochondrial SSBP1 protects cells from proteotoxic stresses by potentiating stress-induced HSF1 transcriptional activity. Nat Commun 6:6580. https://doi.org/10.1038/ncomms7580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang Z, Dai S, He Y et al (2015) MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1. Cell 160:729–744

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang BL (2016) Sirt1 and the mitochondria. Mol Cells 39:87–95

    CAS  PubMed  PubMed Central  Google Scholar 

  49. van de Ven RAH, Santos D, Haigis MC (2017) Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol Med 23:320–331

    PubMed  PubMed Central  Google Scholar 

  50. Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yan LJ, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21:5164–5172

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou Y, Wang L, Ban X et al (2018) DHRS2 inhibits cell growth and motility in esophageal squamous cell carcinoma. Oncogene 37:1086–1094

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to members of my laboratory (Tsukasa Oda, Takayuki Sekimoto and Kiminori Kurashima) for their crucial contribution to this work, and to Mitsuaki Fujimoto and Akira Nakai for their collaboration. I thank Jeremy Allen, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript. This study was funded by Japan Society for the Promotion of Science (KAKENHI, Grant Number JP15K06866). Financial support was also provided by the Takeda Science Foundation and the Osaka Cancer Research Foundation.

Disclosure of Interests

The author declares he has no conflict of interest.

Ethical Approval for Studies Involving Humans

This article does not contain any studies with human participants performed by any of the authors.

Ethical Approval for Studies Involving Animals

This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamashita, T. (2020). HSF1 Regulates Cellular Senescence: Role of the DHRS2-MDM2-p53 Pathway. In: Asea, A.A.A., Kaur, P. (eds) Heat Shock Proteins in Human Diseases. Heat Shock Proteins, vol 21. Springer, Cham. https://doi.org/10.1007/7515_2020_17

Download citation

Publish with us

Policies and ethics