Skip to main content

Heat Shock Proteins Mediate Anastasis and Plasticity of Thermotolerant Cells

  • Chapter
  • First Online:
Heat Shock Proteins in Human Diseases

Part of the book series: Heat Shock Proteins ((HESP,volume 21))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAD:

caspase-activated DNase

Cyt c:

cytochrome c

Hsp:

heat shock proteins

MOMP:

mitochondrial outer membrane permeabilization

PS:

phosphatidylserine

PSM:

peptide spectrum match

TNF:

tumor necrosis factor

XIAP:

X-linked inhibitor of apoptosis

References

  1. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  CAS  Google Scholar 

  2. Carper SW, Duffy JJ, Gerner EW (1987) Heat shock proteins in thermotolerance and other cellular processes. Cancer Res 47:5249–5255

    CAS  PubMed  Google Scholar 

  3. Chakraborty S, Mir KB, Seligson ND, Nayak D, Kumar R, Goswami A (2020) Integration of EMT and cellular survival instincts in reprogramming of programmed cell death to anastasis. Cancer Metastasis Rev 39(2):553–566

    Article  Google Scholar 

  4. Dings RP, Loren ML, Zhang Y, Mikkelson S, Mayo KH, Corry P, Griffin RJ (2011) Tumour thermotolerance, a physiological phenomenon involving vessel normalisation. Int J Hyperth 27:42–52

    Article  Google Scholar 

  5. Geiser F (2010) Aestivation in mammals and birds. Prog Mol Subcell Biol 49:95–111

    Article  Google Scholar 

  6. Gong YN, Crawford JC, Heckmann BL, Green DR (2018) To the edge of cell death and back. FEBS J 286:430–440

    Article  Google Scholar 

  7. Guo S, Wharton W, Moseley P, Shi H (2007) Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones 12:245

    Article  CAS  Google Scholar 

  8. Kosaka M, Othman T, Matsumoto T, Ohwatari N (1998) Heat shock proteins: roles in thermotolerance and as molecular targets for Cancer therapy. Therm Med (Jpn J Hypertherm Oncol) 14:170–188

    Article  Google Scholar 

  9. Lüders J, Demand J, Höhfeld J (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275:4613–4617

    Article  Google Scholar 

  10. Mounier N, Arrigo A-P (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7:167

    Article  CAS  Google Scholar 

  11. Ohtsuka K (1986) Thermotolerance in normal and tumor tissues. Gan no rinsho Jpn J Cancer Clin 32:1671–1677

    CAS  Google Scholar 

  12. Raj AT, Kheur S, Bhonde R, Gupta AA, Patil VR, Kharat A (2019) Potential role of anastasis in cancer initiation and progression. Apoptosis 24:383–384

    Article  Google Scholar 

  13. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  CAS  Google Scholar 

  14. Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES (2017) Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun 8:14128

    Article  CAS  Google Scholar 

  15. Saadeldin IM, Swelum AA-A, Elsafadi M, Mahmood A, Alfayez M, Alowaimer AN (2018) Differences between the tolerance of camel oocytes and cumulus cells to acute and chronic hyperthermia. J Therm Biol 74:47–54

    Article  Google Scholar 

  16. Saadeldin IM, Swelum AA-A, Elsafadi M, Mahmood A, Osama A, Shikshaky H, Alfayez M, Alowaimer AN, Magdeldin S (2020a) Thermotolerance and plasticity of camel somatic cells exposed to acute and chronic heat stress. J Adv Res 22:105–118

    Article  CAS  Google Scholar 

  17. Saadeldin IM, Swelum AA-A, Noreldin AE, Tukur HA, Abdelazim AM, Abomughaid MM, Alowaimer AN (2019a) Isolation and culture of skin-derived differentiated and stem-like cells obtained from the Arabian camel (Camelus dromedarius). Animals 9:378

    Article  Google Scholar 

  18. Saadeldin IM, Swelum AA-A, Tukur HA, Alowaimer AN (2019b) Thermotolerance of camel (Camelus dromedarius) somatic cells affected by the cell type and the dissociation method. Environ Sci Pollut Res 26(28):29490–29496

    Article  CAS  Google Scholar 

  19. Saadeldin IM, Swelum AA-A, Zakri AM, Tukur HA, Alowaimer AN (2020b) Effects of acute hyperthermia on the Thermotolerance of cow and sheep skin-derived fibroblasts. Animals 10:545

    Article  Google Scholar 

  20. Song AS, Najjar AM, Diller KR (2014) Thermally induced apoptosis, necrosis, and heat shock protein expression in three-dimensional culture. J Biomech Eng 136. https://doi.org/10.1115/1.4027272

  21. Staples JF (2016) Metabolic flexibility: hibernation, torpor, and estivation. Compr Physiol 6:737–771

    Article  Google Scholar 

  22. Sun G, Guzman E, Balasanyan V, Conner CM, Wong K, Zhou HR, Kosik KS, Montell DJ (2017) A molecular signature for anastasis, recovery from the brink of apoptotic cell death. J Cell Biol 216:3355–3368

    Article  CAS  Google Scholar 

  23. Tang HL, Tang HM, Mak KH, Hu S, Wang SS, Wong KM, Wong CST, Wu HY, Law HT, Liu K et al (2012) Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol Biol Cell 23:2240–2252

    Article  CAS  Google Scholar 

  24. Tang HM, Talbot CC Jr, Fung MC, Tang HL (2017) Molecular signature of anastasis for reversal of apoptosis. F1000Research 6:43

    Article  Google Scholar 

  25. Tang HM, Tang HL (2018) Anastasis: recovery from the brink of cell death. R Soc Open Sci 5:180442

    Article  Google Scholar 

  26. Urano M (1986) Kinetics of thermotolerance in normal and tumor tissues: a review. Cancer Res 46:474–482

    CAS  PubMed  Google Scholar 

  27. van den Tempel N, Horsman MR, Kanaar R (2016) Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms. Int J Hyperth 32:446–454

    Article  Google Scholar 

  28. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K, Shao F (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547:99–103

    Article  CAS  Google Scholar 

  29. Xiang W, Rensing L (1999) Changes in cell morphology and actin organization during heat shock in Dictyostelium discoideum: does HSP70 play a role in acquired thermotolerance? FEMS Microbiol Lett 178:95–107

    Article  CAS  Google Scholar 

  30. Zhang Y, Zhao H, Liu T, Wan C, Liu X, Gao Z, Hou X, Jiang L, Liu F (2015) Activation of transcription factor AP-1 in response to thermal injury in rat small intestine and IEC-6 cells. BMC Gastroenterol 15:83

    Article  Google Scholar 

Download references

Acknowledgements

None.

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval for Studies Involving Humans

This article does not contain any studies with human participants performed by any of the authors.

Ethical Approval for Studies Involving Animals

This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islam M. Saadeldin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saadeldin, I.M., Hussein, M.A., Magdeldin, S. (2020). Heat Shock Proteins Mediate Anastasis and Plasticity of Thermotolerant Cells. In: Asea, A.A.A., Kaur, P. (eds) Heat Shock Proteins in Human Diseases. Heat Shock Proteins, vol 21. Springer, Cham. https://doi.org/10.1007/7515_2020_16

Download citation

Publish with us

Policies and ethics