Skip to main content

Function, Structure and Topology of Protein Kinases

  • Chapter
  • First Online:
Proteinkinase Inhibitors

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 36))

Abstract

Protein kinases represent one of the most successful target classes for the development of new medicines. Because of their key roles in cellular signalling, kinases are stringently regulated by a large diversity of mechanisms such as post-translational modifications, interacting domains and proteins and cellular localization. The high plasticity of protein kinases has been exploited for the development of new inhibitor types such as type-II and type-I½ inhibitors targeting inactive states of the kinase catalytic domain and allosteric inhibitors that target induced binding pockets either adjacent (type-III) or distantly located (type-IV) to the kinase ATP-binding site. Here we discuss structural elements of the kinase active site, key mechanisms of kinase regulation and how these mechanisms can be exploited for the development of selective kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manning G et al (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934

    CAS  PubMed  Google Scholar 

  2. Ishikawa HO et al (2012) The Raine syndrome protein FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins. PLoS One 7(8):e42988

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cui J et al (2015) A secretory kinase complex regulates extracellular protein phosphorylation. elife 4:e06120

    PubMed  PubMed Central  Google Scholar 

  4. Zhang H et al (2018) Structure and evolution of the Fam20 kinases. Nat Commun 9(1):1218

    PubMed  PubMed Central  Google Scholar 

  5. Taylor SS et al (2013) Pseudokinases from a structural perspective. Biochem Soc Trans 41(4):981–986

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Boudeau J et al (2006) Emerging roles of pseudokinases. Trends Cell Biol 16(9):443–452

    CAS  PubMed  Google Scholar 

  7. Knapp S, Sundstrom M (2014) Recently targeted kinases and their inhibitors-the path to clinical trials. Curr Opin Pharmacol 17:58–63

    CAS  PubMed  Google Scholar 

  8. Fedorov O, Muller S, Knapp S (2010) The (un)targeted cancer kinome. Nat Chem Biol 6(3):166–169

    CAS  PubMed  Google Scholar 

  9. van Linden OP et al (2014) KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. J Med Chem 57(2):249–277

    PubMed  Google Scholar 

  10. Liu Q et al (2013) Developing irreversible inhibitors of the protein kinase cysteinome. Chem Biol 20(2):146–159

    PubMed  PubMed Central  Google Scholar 

  11. Chaikuad A et al (2018) The Cysteinome of protein kinases as a target in drug development. Angew Chem Int Ed Engl 57(16):4372–4385

    CAS  PubMed  Google Scholar 

  12. Mobitz H, Jahnke W, Cowan-Jacob SW (2017) Expanding the opportunities for modulating kinase targets with allosteric approaches. Curr Top Med Chem 17(1):59–70

    CAS  PubMed  Google Scholar 

  13. Cowan-Jacob SW, Jahnke W, Knapp S (2014) Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Med Chem 6(5):541–561

    CAS  PubMed  Google Scholar 

  14. Muller S et al (2015) The ins and outs of selective kinase inhibitor development. Nat Chem Biol 11(11):818–821

    CAS  PubMed  Google Scholar 

  15. Zheng J et al (1993) 2.2 a refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. Acta Crystallogr D Biol Crystallogr 49(Pt 3):362–365

    CAS  PubMed  Google Scholar 

  16. Knighton DR et al (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253(5018):407–414

    CAS  PubMed  Google Scholar 

  17. Taylor SS et al (1992) Structural framework for the protein kinase family. Annu Rev Cell Biol 8:429–462

    CAS  PubMed  Google Scholar 

  18. Fabbro D, Cowan-Jacob SW, Moebitz H (2015) Ten things you should know about protein kinases: IUPHAR review 14. Br J Pharmacol 172(11):2675–2700

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nolen B, Taylor S, Ghosh G (2004) Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell 15(5):661–675

    CAS  PubMed  Google Scholar 

  20. Adams JA (2003) Activation loop phosphorylation and catalysis in protein kinases: is there functional evidence for the autoinhibitor model? Biochemistry 42(3):601–607

    CAS  PubMed  Google Scholar 

  21. Johnson LN, Lewis RJ (2001) Structural basis for control by phosphorylation. Chem Rev 101(8):2209–2242

    CAS  PubMed  Google Scholar 

  22. Roskoski Jr R (2015) A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol Res 100:1–23

    CAS  PubMed  Google Scholar 

  23. Kornev AP et al (2006) Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc Natl Acad Sci U S A 103(47):17783–17788

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kornev AP, Taylor SS (2015) Dynamics-driven allostery in protein kinases. Trends Biochem Sci 40(11):628–647

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ten Eyck LF, Taylor SS, Kornev AP (2008) Conserved spatial patterns across the protein kinase family. Biochim Biophys Acta 1784(1):238–243

    PubMed  Google Scholar 

  26. Taylor SS, Kornev AP (2011) Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 36(2):65–77

    CAS  PubMed  Google Scholar 

  27. Yang J et al (2009) Contribution of non-catalytic core residues to activity and regulation in protein kinase A. J Biol Chem 284(10):6241–6248

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bishop AC et al (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407(6802):395–401

    CAS  PubMed  Google Scholar 

  29. Yun CH et al (2008) The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A 105(6):2070–2075

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Azam M et al (2008) Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat Struct Mol Biol 15(10):1109–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sicheri F, Moarefi I, Kuriyan J (1997) Crystal structure of the Src family tyrosine kinase Hck. Nature 385(6617):602–609

    CAS  PubMed  Google Scholar 

  32. Meng W et al (2002) Structure of mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 suggests a bifunctional switch that couples kinase activation with nuclear export. J Biol Chem 277(40):37401–37405

    CAS  PubMed  Google Scholar 

  33. Prowse CN, Lew J (2001) Mechanism of activation of ERK2 by dual phosphorylation. J Biol Chem 276(1):99–103

    CAS  PubMed  Google Scholar 

  34. Dajani R et al (2003) Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex. EMBO J 22(3):494–501

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Weiss A, Schlessinger J (1998) Switching signals on or off by receptor dimerization. Cell 94(3):277–280

    CAS  PubMed  Google Scholar 

  36. Mellado M et al (2001) Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 19:397–421

    CAS  PubMed  Google Scholar 

  37. Rellos P et al (2010) Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation. PLoS Biol 8(7):e1000426

    PubMed  PubMed Central  Google Scholar 

  38. Rosenberg OS et al (2006) Oligomerization states of the association domain and the holoenyzme of Ca2+/CaM kinase II. FEBS J 273(4):682–694

    CAS  PubMed  Google Scholar 

  39. Rosenberg OS et al (2005) Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 123(5):849–860

    CAS  PubMed  Google Scholar 

  40. Lochhead PA et al (2006) A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation. Mol Cell 24(4):627–633

    CAS  PubMed  Google Scholar 

  41. Lochhead PA et al (2005) Activation-loop autophosphorylation is mediated by a novel transitional intermediate form of DYRKs. Cell 121(6):925–936

    CAS  PubMed  Google Scholar 

  42. Oliver AW, Knapp S, Pearl LH (2007) Activation segment exchange: a common mechanism of kinase autophosphorylation? Trends Biochem Sci 32(8):351–356

    CAS  PubMed  Google Scholar 

  43. Oliver AW et al (2006) Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange. EMBO J 25(13):3179–3190

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pike AC et al (2008) Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. EMBO J 27(4):704–714

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137

    CAS  PubMed  Google Scholar 

  46. Citri A, Skaria KB, Yarden Y (2003) The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 284(1):54–65

    CAS  PubMed  Google Scholar 

  47. Yarden Y, Schlessinger J (1987) Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochemistry 26(5):1434–1442

    CAS  PubMed  Google Scholar 

  48. Lemmon MA, Schlessinger J, Ferguson KM (2014) The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol 6(4):a020768

    PubMed  PubMed Central  Google Scholar 

  49. Schlessinger J (2002) Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110(6):669–672

    CAS  PubMed  Google Scholar 

  50. Jura N et al (2009) Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137(7):1293–1307

    PubMed  PubMed Central  Google Scholar 

  51. Jura N et al (2009) Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc Natl Acad Sci U S A 106(51):21608–21613

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jura N et al (2011) Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol Cell 42(1):9–22

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang X et al (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125(6):1137–1149

    CAS  PubMed  Google Scholar 

  54. Endres NF et al (2013) Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152(3):543–556

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang Y et al (2016) Molecular basis for multimerization in the activation of the epidermal growth factor receptor. elife 5:e14107

    PubMed  PubMed Central  Google Scholar 

  56. Wellbrock C, Karasarides M, Marais R (2004) The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5(11):875–885

    CAS  PubMed  Google Scholar 

  57. Brose MS et al (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62(23):6997–7000

    CAS  PubMed  Google Scholar 

  58. Davies H et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    CAS  PubMed  Google Scholar 

  59. Farrar MA, Alberol-Ila J, Perlmutter RM (1996) Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383(6596):178–181

    CAS  PubMed  Google Scholar 

  60. Hatzivassiliou G et al (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464(7287):431–435

    CAS  PubMed  Google Scholar 

  61. Weber CK et al (2001) Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res 61(9):3595–3598

    CAS  PubMed  Google Scholar 

  62. Heidorn SJ et al (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140(2):209–221

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Poulikakos PI et al (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464(7287):427–430

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Garnett MJ et al (2005) Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 20(6):963–969

    CAS  PubMed  Google Scholar 

  65. Hu J et al (2013) Allosteric activation of functionally asymmetric RAF kinase dimers. Cell 154(5):1036–1046

    CAS  PubMed  Google Scholar 

  66. Chong H, Lee J, Guan KL (2001) Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO J 20(14):3716–3727

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang BH, Guan KL (2000) Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J 19(20):5429–5439

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Diaz B et al (1997) Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling. Mol Cell Biol 17(8):4509–4516

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mason CS et al (1999) Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J 18(8):2137–2148

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Morrison DK, Cutler RE (1997) The complexity of Raf-1 regulation. Curr Opin Cell Biol 9(2):174–179

    CAS  PubMed  Google Scholar 

  71. Owen JL, Lopez IE, Desai SR (2015) Cutaneous manifestations of vemurafenib therapy for metastatic melanoma. J Drugs Dermatol 14(5):509–510

    PubMed  Google Scholar 

  72. Young MA et al (2001) Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105(1):115–126

    CAS  PubMed  Google Scholar 

  73. Hantschel O et al (2003) A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112(6):845–857

    CAS  PubMed  Google Scholar 

  74. Filippakopoulos P et al (2008) Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 134(5):793–803

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lorenz S et al (2015) Crystal structure of an SH2-kinase construct of c-Abl and effect of the SH2 domain on kinase activity. Biochem J 468(2):283–291

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Grebien F et al (2011) Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis. Cell 147(2):306–319

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166

    CAS  PubMed  Google Scholar 

  78. Asghar U et al (2015) The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 14(2):130–146

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Whittaker SR et al (2017) Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol Ther 173:83–105

    CAS  PubMed  PubMed Central  Google Scholar 

  80. De Bondt HL et al (1993) Crystal structure of cyclin-dependent kinase 2. Nature 363(6430):595–602

    PubMed  Google Scholar 

  81. Russo AA, Jeffrey PD, Pavletich NP (1996) Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol 3(8):696–700

    CAS  PubMed  Google Scholar 

  82. Echalier A, Endicott JA, Noble ME (2010) Recent developments in cyclin-dependent kinase biochemical and structural studies. Biochim Biophys Acta 1804(3):511–519

    CAS  PubMed  Google Scholar 

  83. Brown NR et al (1999) The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1(7):438–443

    CAS  PubMed  Google Scholar 

  84. Babon JJ et al (2014) The molecular regulation of Janus kinase (JAK) activation. Biochem J 462(1):1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Boudeau J et al (2004) Analysis of the LKB1-STRAD-MO25 complex. J Cell Sci 117(Pt 26):6365–6375

    CAS  PubMed  Google Scholar 

  86. Baas AF et al (2003) Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 22(12):3062–3072

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mehellou Y et al (2013) Structural insights into the activation of MST3 by MO25. Biochem Biophys Res Commun 431(3):604–609

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zeqiraj E et al (2009) Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science 326(5960):1707–1711

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zeqiraj E et al (2009) ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor. PLoS Biol 7(6):e1000126

    PubMed  PubMed Central  Google Scholar 

  90. Koeberle SC et al (2011) Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor. Nat Chem Biol 8(2):141–143

    PubMed  Google Scholar 

  91. Fischer S et al (2013) Dibenzosuberones as p38 mitogen-activated protein kinase inhibitors with low ATP competitiveness and outstanding whole blood activity. J Med Chem 56(1):241–253

    CAS  PubMed  Google Scholar 

  92. Martz KE et al (2012) Targeting the hinge glycine flip and the activation loop: novel approach to potent p38alpha inhibitors. J Med Chem 55(17):7862–7874

    CAS  PubMed  Google Scholar 

  93. Schindler T et al (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289(5486):1938–1942

    CAS  PubMed  Google Scholar 

  94. Mol CD et al (2004) Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 279(30):31655–31663

    CAS  PubMed  Google Scholar 

  95. Karaman MW et al (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26(1):127–132

    CAS  PubMed  Google Scholar 

  96. Goldstein DM, Gray NS, Zarrinkar PP (2008) High-throughput kinase profiling as a platform for drug discovery. Nat Rev Drug Discov 7(5):391–397

    CAS  PubMed  Google Scholar 

  97. Zhao Z et al (2014) Exploration of type II binding mode: a privileged approach for kinase inhibitor focused drug discovery? ACS Chem Biol 9(6):1230–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Alexander LT et al (2015) Type II inhibitors targeting CDK2. ACS Chem Biol 10(9):2116–2125

    CAS  PubMed  Google Scholar 

  99. Georgi V et al (2018) Binding kinetics survey of the drugged Kinome. J Am Chem Soc 140(46):15774–15782

    CAS  PubMed  Google Scholar 

  100. Heroven C et al (2018) Halogen-aromatic pi interactions modulate inhibitor residence times. Angew Chem Int Ed Engl 57(24):7220–7224

    CAS  PubMed  Google Scholar 

  101. Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2(7):358–364

    CAS  PubMed  Google Scholar 

  102. Zuccotto F et al (2010) Through the “gatekeeper door”: exploiting the active kinase conformation. J Med Chem 53(7):2681–2694

    CAS  PubMed  Google Scholar 

  103. Wentsch HK et al (2017) Optimized target residence time: type I1/2 inhibitors for p38alpha MAP kinase with improved binding kinetics through direct interaction with the R-spine. Angew Chem Int Ed Engl 56(19):5363–5367

    CAS  PubMed  Google Scholar 

  104. Wood ER et al (2004) A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64(18):6652–6659

    CAS  PubMed  Google Scholar 

  105. Axten JM et al (2012) Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem 55(16):7193–7207

    CAS  PubMed  Google Scholar 

  106. Wang H et al (2010) Structural determinants of PERK inhibitor potency and selectivity. Chem Biol Drug Des 76(6):480–495

    CAS  PubMed  Google Scholar 

  107. Guimaraes CR et al (2011) Understanding the impact of the P-loop conformation on kinase selectivity. J Chem Inf Model 51(6):1199–1204

    CAS  PubMed  Google Scholar 

  108. Chaikuad A et al (2014) A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nat Chem Biol 10(10):853–860

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Buchanan SG et al (2009) SGX523 is an exquisitely selective, ATP-competitive inhibitor of the MET receptor tyrosine kinase with antitumor activity in vivo. Mol Cancer Ther 8(12):3181–3190

    CAS  PubMed  Google Scholar 

  110. Over B et al (2013) Natural-product-derived fragments for fragment-based ligand discovery. Nat Chem 5(1):21–28

    CAS  PubMed  Google Scholar 

  111. Tomita N et al (2013) Structure-based discovery of cellular-active allosteric inhibitors of FAK. Bioorg Med Chem Lett 23(6):1779–1785

    CAS  PubMed  Google Scholar 

  112. Heinrich T et al (2010) Allosteric IGF-1R inhibitors. ACS Med Chem Lett 1(5):199–203

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Goodwin NC et al (2015) Discovery of a type III inhibitor of LIM kinase 2 that binds in a DFG-out conformation. ACS Med Chem Lett 6(1):53–57

    CAS  PubMed  Google Scholar 

  114. Odogwu L et al (2018) FDA approval summary: Dabrafenib and Trametinib for the treatment of metastatic non-small cell lung cancers Harboring BRAF V600E mutations. Oncologist 23(6):740–745

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Garnock-Jones KP (2015) Cobimetinib: First Global Approval. Drugs 75(15):1823–1830

    CAS  PubMed  Google Scholar 

  116. Martin-Liberal J (2018) Encorafenib plus binimetinib: an embarrassment of riches. Lancet Oncol 19(10):1263–1264

    PubMed  Google Scholar 

  117. Wu P, Clausen MH, Nielsen TE (2015) Allosteric small-molecule kinase inhibitors. Pharmacol Ther 156:59–68

    CAS  PubMed  Google Scholar 

  118. Hashemzadeh S, Ramezani F, Rafii-Tabar H (2018) Study of molecular mechanism of the interaction between MEK1/2 and Trametinib with docking and molecular dynamic simulation. Interdiscip Sci 11(1):115–124

    PubMed  Google Scholar 

  119. Roskoski Jr R (2017) Allosteric MEK1/2 inhibitors including cobimetanib and trametinib in the treatment of cutaneous melanomas. Pharmacol Res 117:20–31

    CAS  PubMed  Google Scholar 

  120. Shang J et al (2016) Allosteric modulators of MEK1: drug design and discovery. Chem Biol Drug Des 88(4):485–497

    CAS  PubMed  Google Scholar 

  121. Iverson C et al (2009) RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res 69(17):6839–6847

    CAS  PubMed  Google Scholar 

  122. Bagal SK et al (2018) Discovery of allosteric, potent, subtype selective, and peripherally restricted TrkA kinase inhibitors. J Med Chem 62(1):247–265

    PubMed  Google Scholar 

  123. Furuya N et al (2017) The juxtamembrane region of TrkA kinase is critical for inhibitor selectivity. Bioorg Med Chem Lett 27(5):1233–1236

    CAS  PubMed  Google Scholar 

  124. Freeman SN, Mainwaring WI, Furr BJ (1989) A possible explanation for the peripheral selectivity of a novel non-steroidal pure antiandrogen, Casodex (ICI 176,334). Br J Cancer 60(5):664–668

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lamba V, Ghosh I (2012) New directions in targeting protein kinases: focusing upon true allosteric and bivalent inhibitors. Curr Pharm Des 18(20):2936–2945

    CAS  PubMed  Google Scholar 

  126. Zhang J et al (2010) Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463(7280):501–506

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Nagar B et al (2003) Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112(6):859–871

    CAS  PubMed  Google Scholar 

  128. Pendergast AM, Witte ON (1987) Role of the ABL oncogene tyrosine kinase activity in human leukaemia. Baillieres Clin Haematol 1(4):1001–1020

    CAS  PubMed  Google Scholar 

  129. Adrian FJ et al (2006) Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat Chem Biol 2(2):95–102

    CAS  PubMed  Google Scholar 

  130. Schneider R et al (2012) Direct binding assay for the detection of type IV allosteric inhibitors of Abl. J Am Chem Soc 134(22):9138–9141

    CAS  PubMed  Google Scholar 

  131. Nagar B et al (2006) Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase. Mol Cell 21(6):787–798

    CAS  PubMed  Google Scholar 

  132. Fang Z, Grutter C, Rauh D (2013) Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem Biol 8(1):58–70

    CAS  PubMed  Google Scholar 

  133. Eadie LN et al (2018) The new allosteric inhibitor asciminib is susceptible to resistance mediated by ABCB1 and ABCG2 overexpression in vitro. Oncotarget 9(17):13423–13437

    PubMed  PubMed Central  Google Scholar 

  134. Schoepfer J et al (2018) Discovery of Asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J Med Chem 61(18):8120–8135

    CAS  PubMed  Google Scholar 

  135. Converso A et al (2009) Development of thioquinazolinones, allosteric Chk1 kinase inhibitors. Bioorg Med Chem Lett 19(4):1240–1244

    CAS  PubMed  Google Scholar 

  136. Vanderpool D et al (2009) Characterization of the CHK1 allosteric inhibitor binding site. Biochemistry 48(41):9823–9830

    CAS  PubMed  Google Scholar 

  137. Rettenmaier TJ et al (2014) A small-molecule mimic of a peptide docking motif inhibits the protein kinase PDK1. Proc Natl Acad Sci U S A 111(52):18590–18595

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hartnett JC et al (2008) Optimization of 2,3,5-trisubstituted pyridine derivatives as potent allosteric Akt1 and Akt2 inhibitors. Bioorg Med Chem Lett 18(6):2194–2197

    CAS  PubMed  Google Scholar 

  139. Siu T et al (2008) The design and synthesis of potent and cell-active allosteric dual Akt 1 and 2 inhibitors devoid of hERG activity. Bioorg Med Chem Lett 18(14):4191–4194

    CAS  PubMed  Google Scholar 

  140. Bjune K et al (2018) MK-2206, an allosteric inhibitor of AKT, stimulates LDLR expression and LDL uptake: a potential hypocholesterolemic agent. Atherosclerosis 276:28–38

    CAS  PubMed  Google Scholar 

  141. Huang BX et al (2017) Identification of 4-phenylquinolin-2(1H)-one as a specific allosteric inhibitor of Akt. Sci Rep 7(1):11673

    PubMed  PubMed Central  Google Scholar 

  142. Ahad AM et al (2011) Development of sulfonamide AKT PH domain inhibitors. Bioorg Med Chem 19(6):2046–2054

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kim D et al (2010) A small molecule inhibits Akt through direct binding to Akt and preventing Akt membrane translocation. J Biol Chem 285(11):8383–8394

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ranieri C et al (2018) In vitro efficacy of ARQ 092, an allosteric AKT inhibitor, on primary fibroblast cells derived from patients with PIK3CA-related overgrowth spectrum (PROS). Neurogenetics 19(2):77–91

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Jeffrey PD et al (1995) Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376(6538):313–320

    CAS  PubMed  Google Scholar 

  146. Roskoski Jr R (2018) Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol Res 139:471–488

    PubMed  Google Scholar 

  147. Thill M, Schmidt M (2018) Management of adverse events during cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-based treatment in breast cancer. Ther Adv Med Oncol 10:1758835918793326

    PubMed  PubMed Central  Google Scholar 

  148. Christodoulou MS et al (2017) Probing an allosteric pocket of CDK2 with small molecules. ChemMedChem 12(1):33–41

    CAS  PubMed  Google Scholar 

  149. Mariaule G, Belmont P (2014) Cyclin-dependent kinase inhibitors as marketed anticancer drugs: where are we now? A short survey. Molecules 19(9):14366–14382

    PubMed  PubMed Central  Google Scholar 

  150. Betzi S et al (2011) Discovery of a potential allosteric ligand binding site in CDK2. ACS Chem Biol 6(5):492–501

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhao P et al (2018) Crystal structure of EGFR T790M/C797S/V948R in complex with EAI045. Biochem Biophys Res Commun 502(3):332–337

    CAS  PubMed  Google Scholar 

  152. Jia Y et al (2016) Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 534(7605):129–132

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Caporuscio F et al (2018) Identification of small-molecule EGFR allosteric inhibitors by high-throughput docking. Future Med Chem 10(13):1545–1553

    CAS  PubMed  Google Scholar 

  154. Carlino L et al (2018) Structure-activity relationships of Hexahydrocyclopenta[c]quinoline derivatives as allosteric inhibitors of CDK2 and EGFR. ChemMedChem 13(24):2627–2634

    CAS  PubMed  Google Scholar 

  155. Liu H et al (2018) A novel allosteric inhibitor that prevents IKKbeta activation. MedChemComm 9(2):239–243

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Knapp .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of interest: The authors have no conflict of interest.

Funding: The authors are grateful for support by the SGC, a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada, Innovative Medicines Initiative (EU/EFPIA), Janssen, Merck KGaA Darmstadt Germany, MSD, Novartis Pharma AG, Ontario Ministry of Economic Development and Innovation, Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome [106169/ZZ14/Z].

Ethical Approval: This manuscript is a review of previously published accounts, as such no animal or human studies were performed.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Röhm, S., Krämer, A., Knapp, S. (2020). Function, Structure and Topology of Protein Kinases. In: Laufer, S. (eds) Proteinkinase Inhibitors. Topics in Medicinal Chemistry, vol 36. Springer, Cham. https://doi.org/10.1007/7355_2020_97

Download citation

Publish with us

Policies and ethics