Skip to main content

Emerging Gene Therapy Approaches Under Clinical Investigation for Retinal Degenerative Diseases

  • Chapter
  • First Online:
Drug Delivery Challenges and Novel Therapeutic Approaches for Retinal Diseases

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 35))

  • 442 Accesses

Abstract

Inherited retinal diseases (IRDs) have until recently not had prospects of effective treatment options. Preclinical studies have been very promising, but the number of clinical gene therapy trials has been very limited. The improved visual function outcomes in individuals affected by retinal dystrophy caused by biallelic variants in the RPE65 gene after gene therapy treatment contributed to the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) approval of the first gene therapy for any human inherited disease. This milestone in treatment for IRDs has greatly enhanced the development of new treatment trials. There are currently several active clinical trials for IRDs including retinitis pigmentosa, Leber congenital amaurosis, Stargardt disease, choroideremia, and achromatopsia. The area of optogenetics is an alternative approach where the remaining retinal neurons are converted into photosensitive cells. The majority of the current trials utilize a viral vector delivered into the subretinal space or into the vitreous cavity in order to express a specific gene. Other treatment options are targeting the mechanism of the retinal degeneration. This chapter is a review of the current gene therapy treatment clinical trials for IRDs, which may finally contribute to powerful treatment options for these progressive retinal dystrophies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A2E:

N-retinylidene-N-retinylethanolamine

AAV:

Adeno-associated virus

ABCA4:

ATP-binding cassette subfamily A member 4

AMD:

Age-related macular degeneration

ASO:

Antisense oligonucleotide

Cas9:

CRISPR-associated protein 9

CEP290:

Centrosomal protein of 290 kDa

CHM:

Choroideremia

ChR:

Channelrhodopsin

CMV:

Cytomegalovirus

CNG:

Cyclic nucleotide-gated

CRISPR:

Clusters of regularly interspaced short palindromic repeats

EIAV:

Equine infectious anemia virus

EMA:

European Medicines Agency

ERG:

Electroretinogram

FDA:

Food and Drug Administration

FST:

Full-field sensitivity threshold

IRDs:

Inherited retinal diseases

LCA:

Leber congenital amaurosis

MERTK:

MER proto-oncogene tyrosine kinase

MYO7A:

Myosin 7A

NAC:

N-Acetylcysteine

NEI:

National Eye Institute

ORF:

Open reading frame

RALBP1:

RalA-binding protein 1

RBP4:

Retinol-binding protein 4

RetGC1:

Retinal guanylate cyclase-1

RHO:

Rhodopsin

RP:

Retinitis pigmentosa

RPE:

Retinal pigment epithelium

RPGR:

Retinitis pigmentosa GTPase regulator

RS1:

Retinoschisin 1

USH2A:

Usher syndrome type 2A

References

  1. Buch PK, Bainbridge JW, Ali RR (2008) AAV-mediated gene therapy for retinal disorders: from mouse to man. Gene Ther 15(11):849–857

    Article  CAS  Google Scholar 

  2. Wright JF, Le T, Prado J et al (2005) Identification of factors that contribute to recombinant AAV2 particle aggregation and methods to prevent its occurrence during vector purification and formulation. Mol Ther 12:171–178

    Article  CAS  Google Scholar 

  3. Wright JF, Wellman J, High KA (2010) Manufacturing and regulatory strategies for clinical AAV2-hRPE65. Curr Gene Ther 10:341–349

    Article  CAS  Google Scholar 

  4. Chung DC, McCague S, Yu ZF, Thill S, DiStefano-Pappas J, Bennett J, Cross D, Marshall K, Wellman J, High KA (2018) Novel mobility test to assess functional vision in patients with inherited retinal dystrophies. Clin Exp Ophthalmol 46(3):247–259

    Article  Google Scholar 

  5. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, Wittes J, Pappas J, Elci O, McCague S, Cross D, Marshall KA, Walshire J, Kehoe TL, Reichert H, Davis M, Raffini L, George LA, Hudson FP, Dingfield L, Zhu X, Haller JA, Sohn EH, Mahajan VB, Pfeifer W, Weckmann M, Johnson C, Gewaily D, Drack A, Stone E, Wachtel K, Simonelli F, Leroy BP, Wright JF, High KA, Maguire AM (2017) Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390(10097):849–860

    Article  CAS  Google Scholar 

  6. Georgiadis A, Duran Y, Ribeiro J, Abelleira-Hervas L, Robbie SJ, Sﺴnkel-Laing B, Fourali S, Gonzalez-Cordero A, Cristante E, Michaelides M, Bainbridge JW, Smith AJ, Ali RR (2016) Development of an optimized AAV2/5 gene therapy vector for Leber congenital amaurosis owing to defects in RPE65. Gene Ther 23(12):857–862

    Google Scholar 

  7. Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40. Review

    Article  Google Scholar 

  8. Vervoort R, Lennon A, Bird AC et al (2000) Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet 25(4):462–466

    Article  CAS  Google Scholar 

  9. Pawlyk BS, Bulgakov OV, Sun X et al (2015) Photoreceptor rescue by an abbreviated human RPGR gene in a murine model of X-linked retinitis pigmentosa. Gene Ther 23(2):196–204

    Google Scholar 

  10. Natasha G, Tan A, Farhatnia Y, Rajadas J, Hamblin MR, Khaw PT, Seifalian AM (2013) Channelrhodopsins: visual regeneration and neural activation by a light switch. New Biotechnol 30(5):461–474

    Google Scholar 

  11. Ivanova E, Hwang GS, Pan ZH, Troilo D (2010) Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Invest Ophthalmol Vis Sci 51(10):5288–5296

    Article  Google Scholar 

  12. Pan ZH, Lu Q, Bi A, Dizhoor AM, Abrams GW (2015) Optogenetic approaches to restoring vision. Annu Rev Vis Sci 1:185–210

    Article  Google Scholar 

  13. Wietek J, Prigge M (2016) Enhancing channelrhodopsins: an overview. Methods Mol Biol 1408:141–165. https://doi.org/10.1007/978-1-4939-3512-3_10. Review

    Article  CAS  PubMed  Google Scholar 

  14. Barrett JM, Berlinguer-Palmini R, Degenaar P (2014) Optogenetic approaches to retinal prosthesis. Vis Neurosci 31:345–354

    Article  Google Scholar 

  15. MacLachlan TK, Milton MN, Turner O, Tukov F, Choi VW, Penraat J, Delmotte MH, Michaut L, Jaffee BD, Bigelow CE (2017) Nonclinical safety evaluation of scAAV8-RLBP1 for treatment of RLBP1 retinitis Pigmentosa. Mol Ther Methods Clin Dev 8:105–120

    Article  Google Scholar 

  16. Conlon TJ, Deng WT, Erger K et al (2013) Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum Gene Ther Clin Dev 24(1):23–28

    Article  CAS  Google Scholar 

  17. Ghazi NG, Abboud EB, Nowilaty SR et al (2016) Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet 135(3):327–343

    Google Scholar 

  18. Murray SF, Jazayeri A, Matthes MT, Yasumura D, Yang H, Peralta R, Watt A, Freier S, Hung G, Adamson PS, Guo S, Monia BP, LaVail MM, McCaleb ML (2015) Allele-specific inhibition of rhodopsin with an antisense oligonucleotide slows photoreceptor cell degeneration. Invest Ophthalmol Vis Sci 56(11):6362–75

    Google Scholar 

  19. Cideciyan AV, Jacobson SG, Drack AV, Ho AC, Charng J, Garafalo AV, Roman AJ, Sumaroka A, Han IC, Hochstedler MD, Pfeifer WL, Sohn EH, Taiel M, Schwartz MR, Biasutto P, Wit W, Cheetham ME, Adamson P, Rodman DM, Platenburg G, Tome MD, Balikova I, Nerinckx F, Zaeytijd J, Van Cauwenbergh C, Leroy BP, Russell SR (2019) Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat Med 25(2):225–228

    Google Scholar 

  20. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, Bumcrot D, Chao H, Ciulla DM, DaSilva JA, Dass A, Dhanapal V, Fennell TJ, Friedland AE, Giannoukos G, Gloskowski SW, Glucksmann A, Gotta GM, Jayaram H, Haskett SJ, Hopkins B, Horng JE, Joshi S, Marco E, Mepani R, Reyon D, Ta T, Tabbaa DG, Samuelsson SJ, Shen S, Skor MN, Stetkiewicz P, Wang T, Yudkoff C, Myer VE, Albright CF, Jiang H (2019) Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 25(2):229–233

    Google Scholar 

  21. Boye SL, Peterson JJ, Choudhury S, Min SH, Ruan Q, McCullough KT, Zhang Z, Olshevskaya EV, Peshenko IV, Hauswirth WW, Ding XQ, Dizhoor AM, Boye SE (2015) Gene therapy fully restores vision to the all-cone Nrl(−/−) Gucy2e(−/−) mouse model of Leber congenital amaurosis-1. Hum Gene Ther 26(9):575–592

    Article  CAS  Google Scholar 

  22. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23

    Article  CAS  Google Scholar 

  23. Kong J, Kim SR, Binley K et al (2008) Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther 15(19):1311–1320

    Article  CAS  Google Scholar 

  24. Lopes VS, Williams DS (2015) Gene therapy for the retinal degeneration of usher syndrome caused by mutations in MYO7A. Cold Spring Harb Perspect Med 5(6):a017319

    Article  Google Scholar 

  25. Zallocchi M, Binley K, Lad Y et al (2014) EIAV-based retinal gene therapy in the shaker1 mouse model for usher syndrome type 1B: development of UshStat. PLoS One 9(4):e94272

    Article  Google Scholar 

  26. Michalakis S, Schön C, Becirovic E, Biel M (2017) Gene therapy for achromatopsia. J Gene Med 19(3):e2944

    Article  Google Scholar 

  27. Roberts MF, Fishman GA, Roberts DK et al (2002) Retrospective, longitudinal, and cross sectional study of visual acuity impairment in choroideraemia. Br J Ophthalmol 86(6):658–662

    Article  Google Scholar 

  28. Sengillo JD, Justus S, Tsai YT, Cabral T, Tsang SH (2016) Gene and cell-based therapies for inherited retinal disorders: an update. Am J Med Genet C Semin Med Genet 172(4):349–366

    Article  Google Scholar 

  29. Bush RA, Zeng Y, Colosi P et al (2016) Preclinical dose-escalation study of intravitreal AAV-RS1 gene therapy in a mouse model of X-linked retinoschisis: dose-dependent expression and improved retinal structure and function. Hum Gene Ther 27(5):376–389

    Article  CAS  Google Scholar 

  30. Kaufman Y, Ma L, Washington I (2011) Deuterium enrichment of vitamin A at the C20 position slows the formation of detrimental vitamin A dimers in wild-type rodents. J Biol Chem 286(10):7958–7965

    Article  CAS  Google Scholar 

  31. Charbel Issa P, Barnard AR, Herrmann P, Washington I, MacLaren RE (2015) Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc Natl Acad Sci U S A 112(27):8415–8420

    Article  Google Scholar 

  32. Zhang J, Kiser PD, Badiee M, Palczewska G, Dong Z, Golczak M, Tochtrop GP, Palczewski K (2015) Molecular pharmacodynamics of emixustat in protection against retinal degeneration. J Clin Invest 125(7):2781–2794

    Article  Google Scholar 

  33. Rosenfeld PJ, Dugel PU, Holz FG, Heier JS, Pearlman JA, Novack RL, Csaky KG, Koester JM, Gregory JK, Kubota R (2018) Emixustat hydrochloride for geographic atrophy secondary to age-related macular degeneration: a randomized clinical trial. Ophthalmology 125(10):1556–1567

    Article  Google Scholar 

  34. Lenis TL, Sarfare S, Jiang Z, Lloyd MB, Bok D, Radu RA (2017) Complement modulation in the retinal pigment epithelium rescues photoreceptor degeneration in a mouse model of Stargardt disease. Proc Natl Acad Sci U S A 114(15):3987–3992

    Article  CAS  Google Scholar 

  35. Racz B, Varadi A, Kong J, Allikmets R, Pearson PG, Johnson G, Cioffi CL, Petrukhin K (2018) A non-retinoid antagonist of retinol-binding protein 4 rescues phenotype in a model of Stargardt disease without inhibiting the visual cycle. J Biol Chem 293(29):11574–11588

    Article  CAS  Google Scholar 

  36. Racz B, Varadi A, Pearson PG, Petrukhin K (2020) Comparative pharmacokinetics and pharmacodynamics of the advanced Retinol-Binding Protein 4 antagonist in dog and cynomolgus monkey. PLoS One 24:15(1)

    Google Scholar 

  37. Lee SY, Usui S, Zafar AB, Oveson BC, Jo YJ, Lu L, Masoudi S, Campochiaro PA (2011) N-Acetylcysteine promotes long-term survival of cones in a model of retinitis pigmentosa. J Cell Physiol 226(7):1843–1849

    Article  CAS  Google Scholar 

  38. Campochiaro PA, Iftikhar M, Hafiz G, Akhlaq A, Tsai G, Wehling D, Lu L, Wall GM, Singh MS, Kong X (2019) Oral N-acetylcysteine improves cone function in retinitis pigmentosa patients in phase 1 trial. J Clin Invest:132990.

    Google Scholar 

  39. Sunitha K, Hemshekhar M, Thushara RM, Santhosh MS, Yariswamy M, Kemparaju K, Girish KS (2013) N-Acetylcysteine amide: a derivative to fulfill the promises of N-Acetylcysteine. Free Radic Res 47(5):357–367

    Article  CAS  Google Scholar 

  40. MacLaren RE, Groppe M, Barnard AR et al (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383(9923):1129–1137

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Bakall .

Editor information

Editors and Affiliations

Ethics declarations

This manuscript is a review of previously published accounts; as such, no animal or human studies were performed.

Conflict of Interest

BB is a consultant for Biogen and Spark (honoraria), and is an investigator for clinical trials sponsored by Biogen and Alkeus, and is a member of the data and safety monitoring committee for the Allergan RST-001 trial.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakall, B., Klein, K., Mears, K. (2020). Emerging Gene Therapy Approaches Under Clinical Investigation for Retinal Degenerative Diseases. In: Cioffi, C.L. (eds) Drug Delivery Challenges and Novel Therapeutic Approaches for Retinal Diseases. Topics in Medicinal Chemistry, vol 35. Springer, Cham. https://doi.org/10.1007/7355_2020_102

Download citation

Publish with us

Policies and ethics