Skip to main content

Sensors for Monitoring Faecal Indicator Bacteria in Bathing Waters

  • Chapter
  • First Online:
Biosensors for the Marine Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 122))

  • 180 Accesses

Abstract

Bathing waters have a major significance in today’s world and provide economic, cultural, social, and health benefits. Bathing areas are hubs for recreation, education, socio-cultural and wellbeing activities and are invaluable assets that need to be protected. Active management of microbiological water quality at such sites is thus critical.

Standard methods for faecal indicator bacteria (FIB) require a minimum of 18 h to produce results. This hampers the decision process and doesn’t allow for same-day action to be taken to protect users. To address this limitation alternative rapid methods, sensors, and forecasting models have been developed over the last years for the management of recreational waters. Although a wide range of technologies exist, this chapter aims to discuss only technologies that have been implemented and have demonstrated potential as decision support tools. Sensors and instrumentation relying on marker enzymes for FIB detection have shown largest potential for implementation. Enzyme-based systems including semi-automated, fully automated, and field portable devices were developed to target two key requirements for achieving active management of bathing areas: shorter time-to-result and automation. In this chapter, the performance of such systems is documented and discussed in detail with an emphasis on commercially available solutions. Advantages and limitations are discussed in terms of analytical performance, underlying operational principle, interferences, time-to-results, cost, power and communication capabilities, and sensor deployment requirements.

Parts of the chapter have been reproduced from Briciu Burghina (2016) Development and deployment of a faecal matter sensor for marine and freshwater environments. Dublin City University. https://doras.dcu.ie/21032/

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.H. Organization (n.d.) WHO guidelines on recreational water quality: volume 1: coastal and fresh waters, World Health Organization, Geneva PP-Geneva, https://apps.who.int/iris/handle/10665/342625

  2. Börger T, Campbell D, White MP, Elliott LR, Fleming LE, Garrett JK, Hattam C, Hynes S, Lankia T, Taylor T (2021) The value of blue-space recreation and perceived water quality across Europe: a contingent behaviour study. Sci Total Environ 771:137–144. https://doi.org/10.1016/j.scitotenv.2021.145597

    Article  CAS  Google Scholar 

  3. Börger T, Campbell D, White MP, Elliott LR, Fleming LE, Garrett JK, Hattam C, Hynes S, Lankia T, Taylor T (2021) The value of blue-space recreation and perceived water quality across Europe: a contingent behaviour study. Sci Total Environ 771:145597. https://doi.org/10.1016/j.scitotenv.2021.145597

    Article  CAS  Google Scholar 

  4. DeFlorio-Barker S, Wing C, Jones RM, Dorevitch S (2018) Estimate of incidence and cost of recreational waterborne illness on United States surface waters. Environ Heal A Glob Access Sci Source 17:1–10. https://doi.org/10.1186/s12940-017-0347-9

    Article  Google Scholar 

  5. Fewtrell L, Kay D (2015) Recreational water and infection: a review of recent findings. Curr Environ Health Rep 2:85–94. https://doi.org/10.1007/s40572-014-0036-6

    Article  Google Scholar 

  6. EU (2006) Directive 2006/7/EC of The European Parliament and of The Council of 15th February 2006 concerning the management of bathing water quality. Off J Eur Union 64:37–51

    Google Scholar 

  7. Sorensen JPR, Baker A, Cumberland SA, Lapworth DJ, MacDonald AM, Pedley S, Taylor RG, Ward JST (2018) Real-time detection of faecally contaminated drinking water with tryptophan-like fluorescence: defining threshold values. Sci Total Environ 622–623:1250–1257. https://doi.org/10.1016/j.scitotenv.2017.11.162

    Article  CAS  Google Scholar 

  8. Tiwari A, Oliver DM, Bivins A, Sherchan SP, Pitkänen T (2021) Bathing water quality monitoring practices in Europe and the United States. Int J Environ Res Public Health 18. https://doi.org/10.3390/ijerph18115513

  9. EPA (2012) Recreational water quality criteria. U S Environ Prot Agency 1–69

    Google Scholar 

  10. Muirhead RW, Meenken ED (2018) Variability of Escherichia coli concentrations in rivers during base-flow conditions in New Zealand. J Environ Qual 47:967–973. https://doi.org/10.2134/jeq2017.11.0458

    Article  CAS  Google Scholar 

  11. Madoux-Humery AS, Dorner S, Sauvé S, Aboulfadl K, Galarneau M, Servais P, Prévost M (2013) Temporal variability of combined sewer overflow contaminants: evaluation of wastewater micropollutants as tracers of fecal contamination. Water Res 47:4370–4382. https://doi.org/10.1016/J.WATRES.2013.04.030

    Article  CAS  Google Scholar 

  12. Ndione M, Ory P, Agion T, Treilles M, Vacher L, Simon-Bouhet B, Le Beguec M, Pineau P, Montanié H, Agogué H (2022) Temporal variations in fecal indicator bacteria in bathing water and sediment in a coastal ecosystem (Aytré Bay, Charente-Maritime, France). Mar Pollut Bull 175:113360. https://doi.org/10.1016/j.marpolbul.2022.113360

    Article  CAS  Google Scholar 

  13. Alamanos A (2022) Bathing water quality analysis, management and policy: an integrated assessment for Ireland. Water Policy 24:145–158. https://doi.org/10.2166/WP.2021.221

    Article  Google Scholar 

  14. Whitman RL, Nevers MB (2004) Escherichia coli sampling reliability at a frequently closed Chicago Beach: monitoring and management implications. Environ Sci Technol 38:4241–4246. https://doi.org/10.1021/es034978i

    Article  CAS  Google Scholar 

  15. Leecaster MK, Weisberg SB (2001) Effect of sampling frequency on shoreline microbiology assessments. Mar Pollut Bull 42:1150–1154. https://doi.org/10.1016/S0025-326X(01)00130-8

    Article  CAS  Google Scholar 

  16. Offenbaume KL, Bertone E, Stewart RA (2020) Monitoring approaches for faecal indicator bacteria in water: visioning a remote real-time sensor for E. coli and enterococci. Water 12. https://doi.org/10.3390/w12092591

  17. Heasley C, Sanchez JJ, Tustin J, Young I (2021) Systematic review of predictive models of microbial water quality at freshwater recreational beaches. PLoS One. https://doi.org/10.1371/journal.pone.0256785

  18. Noble RT, Weisberg SB (2005) A review of technologies for rapid detection of bacteria in recreational waters. J Water Health 3:381–392. https://doi.org/10.2166/wh.2005.051

    Article  Google Scholar 

  19. Cazals M, Stott R, Fleury C, Proulx F, Prévost M, Servais P, Dorner S, Burnet JB (2020) Near real-time notification of water quality impairments in recreational freshwaters using rapid online detection of β-D-glucuronidase activity as a surrogate for Escherichia coli monitoring. Sci Total Environ 720:137303. https://doi.org/10.1016/J.SCITOTENV.2020.137303

    Article  CAS  Google Scholar 

  20. Jamieson R, Gordon R, Joy D, Lee H (2004) Assessing microbial pollution of rural surface waters: a review of current watershed scale modeling approaches. Agric Water Manag 70:1–17. https://doi.org/10.1016/j.agwat.2004.05.006

    Article  Google Scholar 

  21. Dorner SM, Anderson WB, Slawson RM, Kouwen N, Huck PM (2006) Hydrologic modeling of pathogen fate and transport. Environ Sci Technol 40:4746–4753. https://doi.org/10.1021/es060426z

    Article  CAS  Google Scholar 

  22. Jiang G, Noonan MJ, Buchan GD, Smith (2007) Transport of Escherichia coli through variably saturated sand columns and modeling approaches. J Contam Hydrol 93:2–20. https://eurekamag.com/research/017/550/017550869.php

    Article  CAS  Google Scholar 

  23. Olyphant GA (2005) Statistical basis for predicting the need for bacterially induced beach closures: emergence of a paradigm? Water Res 39:4953–4960. https://doi.org/10.1016/j.watres.2005.09.031

    Article  CAS  Google Scholar 

  24. Byappanahalli MN, Nevers MB, Whitman RL, Ge Z, Shively D, Spoljaric A, Przybyla-Kelly K (2015) Wildlife, urban inputs, and landscape configuration are responsible for degraded swimming water quality at an embayed beach. J Great Lakes Res 41:156–163. https://doi.org/10.1016/j.jglr.2014.11.027

    Article  CAS  Google Scholar 

  25. Francy DS, Stelzer EA, Duris JW, Brady AMG, Harrison JH, Johnson HE, Ware MW (2013) Predictive models for Escherichia coli concentrations at inland lake beaches and relationship of model variables to pathogen detection. Appl Environ Microbiol 79:1676–1688. https://doi.org/10.1128/AEM.02995-12

    Article  CAS  Google Scholar 

  26. Shibata T, Solo-Gabriele HM, Sinigalliano CD, Gidley ML, Plano LRW, Fleisher JM, Wang JD, Elmir SM, He G, Wright ME, Abdelzaher AM, Ortega C, Wanless D, Garza AC, Kish J, Scott T, Hollenbeck J, Backer LC, Fleming LE (2010) Evaluation of conventional and alternative monitoring methods for a recreational marine beach with nonpoint source of fecal contamination. Environ Sci Technol 44:8175–8181. https://doi.org/10.1021/es100884w

    Article  CAS  Google Scholar 

  27. Lee He LM, He ZL (2008) Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA. Water Res 42:2563–2573. https://doi.org/10.1016/j.watres.2008.01.002

    Article  CAS  Google Scholar 

  28. Bertone E, Purandare J, Durand B (2019) Spatiotemporal prediction of Escherichia coli and enterococci for the commonwealth games triathlon event using Bayesian networks. Mar Pollut Bull 146:11–21. https://doi.org/10.1016/j.marpolbul.2019.05.066

    Article  CAS  Google Scholar 

  29. Francy DS (2009) Use of predictive models and rapid methods to nowcast bacteria levels at coastal beaches. Aquat Ecosyst Health Manage 12:177–182. https://doi.org/10.1080/14634980902905767

    Article  CAS  Google Scholar 

  30. Deshmukh RA, Joshi K, Bhand S, Roy U (2016) Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. Microbiology 5:901–922. https://doi.org/10.1002/mbo3.383

    Article  Google Scholar 

  31. Fiksdal L, Tryland I (2008) Application of rapid enzyme assay techniques for monitoring of microbial water quality. Curr Opin Biotechnol 19:289–294. https://doi.org/10.1016/j.copbio.2008.03.004

    Article  CAS  Google Scholar 

  32. Demeter K, Burnet JB, Stadler P, Kirschner A, Zessner M, Farnleitner AH (2020) Automated online monitoring of fecal pollution in water by enzymatic methods. Curr Opin Environ Sci Health 16:82–91. https://doi.org/10.1016/j.coesh.2020.03.002

    Article  Google Scholar 

  33. Chen J, Alcaine SD, Jiang Z, Rotello VM, Nugen SR (2015) Detection of Escherichia coli in drinking water using T7 bacteriophage-conjugated magnetic probe. Anal Chem 87:8977–8984

    Article  CAS  Google Scholar 

  34. Kalele SA, Kundu AA, Gosavi SW, Deobagkar DN, Deobagkar DD, Kulkarni SK (2006) Rapid detection of escherichia coli by using antibody-conjugated silver nanoshells. Small 2:335–338. https://doi.org/10.1002/smll.200500286

    Article  CAS  Google Scholar 

  35. Verbarg J, Plath WD, Shriver-Lake LC, Howell PB, Erickson JS, Golden JP, Ligler FS (2013) Catch and release: integrated system for multiplexed detection of bacteria. Anal Chem 85:4944–4950. https://doi.org/10.1021/ac303801v

    Article  CAS  Google Scholar 

  36. Hahn MA, Tabb JS, Krauss TD (2005) Detection of single bacterial pathogens with semiconductor quantum dots. Anal Chem 77:4861–4869. https://doi.org/10.1021/ac050641i

    Article  CAS  Google Scholar 

  37. U.S. Environmental Protection Agency (2012) Method 1611: Enterococci in water by TaqMan® quantitative polymerase chain reaction (qPCR) assay. Off Water EPA-821-R-12-008

    Google Scholar 

  38. Truchado P, Lopez-Galvez F, Gil MI, Pedrero-Salcedo F, Alarcón JJ, Allende A (2016) Suitability of different Escherichia coli enumeration techniques to assess the microbial quality of different irrigation water sources. Food Microbiol 58:29–35. https://doi.org/10.1016/J.FM.2016.03.006

    Article  CAS  Google Scholar 

  39. Shrestha A, Kelty CA, Sivaganesan M, Shanks OC, Dorevitch S (2020) Fecal pollution source characterization at non-point source impacted beaches under dry and wet weather conditions. Water Res 182:116014. https://doi.org/10.1016/J.WATRES.2020.116014

    Article  CAS  Google Scholar 

  40. Oliver DM, van Niekerk M, Kay D, Heathwaite AL, Porter J, Fleming LE, Kinzelman JL, Connolly E, Cummins A, McPhail C, Rahman A, Thairs T, de Roda Husman AM, Hanley ND, Dunhill I, Globevnik L, Harwood VJ, Hodgson CJ, Lees DN, Nichols GL, Nocker A, Schets C, Quilliam RS (2014) Opportunities and limitations of molecular methods for quantifying microbial compliance parameters in EU bathing waters. Environ Int 64:124–128. https://doi.org/10.1016/j.envint.2013.12.016

    Article  CAS  Google Scholar 

  41. Ali MM, Aguirre SD, Lazim H, Li Y (2011) Fluorogenic DNAzyme probes as bacterial indicators. Angew Chem Int Ed 50:3751–3754. https://doi.org/10.1002/anie.201100477

    Article  CAS  Google Scholar 

  42. Hashemi E, Forouzandeh M (2018) Designing a new biosensor “DNA ELISA” to detect Escherichia coli using genomic DNA and comparison of this method to PCR-ELISA. J Enzyme Inhib Med Chem 33:722–725. https://doi.org/10.1080/14756366.2018.1450748

    Article  CAS  Google Scholar 

  43. Lee J, Deininger RA (2004) Detection of E. coli in beach water within 1 hour using immunomagnetic separation and ATP bioluminescence. Luminescence 19:31–36. https://doi.org/10.1002/bio.753

    Article  CAS  Google Scholar 

  44. Zimmer-Faust AG, Thulsiraj V, Ferguson D, Jay JA (2014) Performance and specificity of the covalently linked immunomagnetic separation-ATP method for rapid detection and enumeration of enterococci in coastal environments. Appl Environ Microbiol 80:2705–2714. https://doi.org/10.1128/AEM.04096-13

    Article  CAS  Google Scholar 

  45. Guo T, Wei Y, Xu C, Watts BR, Zhang Z, Fang Q, Zhang H, Selvaganapathy PR, Deen MJ (2015) Counting of Escherichia coli by a microflow cytometer based on a photonic–microfluidic integrated device. Electrophoresis 36:298–304. https://doi.org/10.1002/elps.201400211

    Article  CAS  Google Scholar 

  46. Khamis K, Sorensen JPR, Bradley C, Hannah DM, Lapworth DJ, Stevens R (2015) In situ tryptophan-like fluorometers: assessing turbidity and temperature effects for freshwater applications. Environ Sci Process Impacts 17:740–752. https://doi.org/10.1039/c5em00030k

    Article  CAS  Google Scholar 

  47. Baker A, Cumberland SA, Bradley C, Buckley C, Bridgeman J (2015) To what extent can portable fluorescence spectroscopy be used in the real-time assessment of microbial water quality? Sci Total Environ 532:14–19. https://doi.org/10.1016/j.scitotenv.2015.05.114

    Article  CAS  Google Scholar 

  48. Sorensen JPR, Lapworth DJ, Marchant BP, Nkhuwa DCW, Pedley S, Stuart ME, Bell RA, Chirwa M, Kabika J, Liemisa M, Chibesa M (2015) In-situ tryptophan-like fluorescence: a real-time indicator of faecal contamination in drinking water supplies. Water Res 81:38–46. https://doi.org/10.1016/j.watres.2015.05.035

    Article  CAS  Google Scholar 

  49. Henry A, Scherpereel G, Brown RS, Baudart J, Servais P, Ben Tabassi NC (2012) Comparison of rapid methods for active bathing water quality monitoring

    Google Scholar 

  50. Noble RT, Weisberg R, Weisberg SB (2005) A review of technologies for rapid detection of bacteria in recreational waters. J Water Health 3:381–392. https://doi.org/10.2166/wh.2005.051

    Article  Google Scholar 

  51. Manafi M (1996) Fluorogenic and chromogenic enzyme substrates in culture media and identification tests. Int J Food Microbiol 31:45–58. https://doi.org/10.1016/0168-1605(96)00963-4

    Article  CAS  Google Scholar 

  52. Rompré A, Servais P, Baudart J, De-Roubin MR, Laurent P (2002) Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods 49:31–54. https://doi.org/10.1016/S0167-7012(01)00351-7

    Article  Google Scholar 

  53. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316. https://doi.org/10.1042/bj2800309

    Article  CAS  Google Scholar 

  54. Jobin C, Yeh L-A, Venkatesh M, Scott JE, Wang H, Redinbo MR, Wallace BD, Mani S, Koo JS, Lane KT, Orans J (2010) Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330:831–835. https://doi.org/10.1126/science.1191175

    Article  CAS  Google Scholar 

  55. Frampton EW, Restaino L (2008) Methods for Escherichia coli identification in food, water and clinical samples based on beta-glucuronidase detection. J Appl Microbiol 74:223–233

    Google Scholar 

  56. Wu J, Stewart JR, Sobsey MD, Cormency C, Fisher MB, Bartram JK (2018) Rapid detection of Escherichia coli in water using sample concentration and optimized enzymatic hydrolysis of chromogenic substrates. Curr Microbiol 75:827–834. https://doi.org/10.1007/s00284-018-1454-8

    Article  CAS  Google Scholar 

  57. Suzuki S, Henderson PJF, Rutherford NG, Xie H, Wilson KJ, Liang W-J, Knol J, Jefferson RA (2005) The gusBC genes of Escherichia coli encode a glucuronide transport system. J Bacteriol 187:2377–2385. https://doi.org/10.1128/jb.187.7.2377-2385.2005

    Article  Google Scholar 

  58. Geary JR, Nijak GM, Larson SL, Talley JW (2011) Hydrolysis of the soluble fluorescent molecule carboxyumbelliferyl-beta-d-glucuronide by E. coli beta-glucuronidase as applied in a rugged, in situ optical sensor. Enzyme Microb Technol 49:6–10. https://doi.org/10.1016/j.enzmictec.2011.03.009

    Article  CAS  Google Scholar 

  59. Briciu-Burghina C, Heery B, Regan F (2017) Protocol for the recovery and detection of Escherichia coli in environmental water samples. Anal Chim Acta 964:178–186. https://doi.org/10.1016/j.aca.2017.02.035

    Article  CAS  Google Scholar 

  60. Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh LA, Mani S, Redinbo MR (2010) Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330:831–835. https://doi.org/10.1126/science.1191175

    Article  CAS  Google Scholar 

  61. Briciu-Burghina C, Heery B, Regan F (2015) Continuous fluorometric method for measuring β-glucuronidase activity: comparative analysis of three fluorogenic substrates. Analyst 140:5953–5964. https://doi.org/10.1039/c5an01021g

    Article  CAS  Google Scholar 

  62. TECTA™ B16 (n.d.) http://technomaps.veoliawatertechnologies.com/tecta/en/

  63. Brown RS, Dunkinson CE, Douma MD, Zhou J, Aston WP, Marcotte EJ-P, Miron M, Radcliffe T, Gallant PJ, Wilton D (2013) A fibre-optic coupled fluorescence multiwavelength sensor for automated monitoring of bacteria culture from drinking water. In: Imaging and applied optics. Optica Publishing Group, p AM3B.1. https://doi.org/10.1364/AIO.2013.AM3B.1

    Chapter  Google Scholar 

  64. Zuser K, Ettenauer J, Kellner K, Posnicek T, Mazza G, Brandl M (2019) A sensitive voltammetric biosensor for Escherichia Coli detection using an electroactive substrate for β-D-glucuronidase. IEEE Sensors J 19:7789–7802. https://doi.org/10.1109/JSEN.2019.2917883

    Article  CAS  Google Scholar 

  65. Tryland I, Eregno FE, Braathen H, Khalaf G, Sjølander I, Fossum M (2015) On-line monitoring of Escherichia coli in raw water at oset drinking water treatment plant, Oslo (Norway). Int J Environ Res Public Health 12:1788–1802. https://doi.org/10.3390/ijerph120201788

    Article  CAS  Google Scholar 

  66. Angelescu DE, Huynh V, Hausot A, Yalkin G, Plet V, Mouchel JM, Guérin-Rechdaoui S, Azimi S, Rocher V (2019) Autonomous system for rapid field quantification of Escherichia coli in surface waters. J Appl Microbiol 126:332–343. https://doi.org/10.1111/jam.14066

    Article  CAS  Google Scholar 

  67. Nijak GM, Geary JR, Larson SL, Talley JW (2012) Autonomous, wireless in-situ sensor (AWISS) for rapid warning of Escherichia coli outbreaks in recreational and source waters. Environ Eng Sci 29:64–69. https://doi.org/10.1089/ees.2011.0148

    Article  CAS  Google Scholar 

  68. Tryland I, Braathen H, Wennberg AC, Eregno F, Beschorner AL (2016) Monitoring of β-D-galactosidase activity as a surrogate parameter for rapid detection of sewage contamination in urban recreational water. Water 8. https://doi.org/10.3390/w8020065

  69. Stadler P, Blöschl G, Vogl W, Koschelnik J, Epp M, Lackner M, Oismüller M, Kumpan M, Nemeth L, Strauss P, Sommer R, Ryzinska-Paier G, Farnleitner AH, Zessner M (2016) Real-time monitoring of beta-d-glucuronidase activity in sediment laden streams: a comparison of prototypes. Water Res 101:252–261. https://doi.org/10.1016/j.watres.2016.05.072

    Article  CAS  Google Scholar 

  70. Koschelnik J, Vogl W, Epp M, Lackner M (2015) Rapid analysis of β-D-glucuronidase activity in water using fully automated technology. Water Resour Manag VIII 1:471–481. https://doi.org/10.2495/wrm150401

    Article  CAS  Google Scholar 

  71. George I, Petit M, Servais P (2001) Use of enzymatic methods for rapid enumeration of coliforms in freshwaters. J Appl Microbiol 88:404–413

    Article  Google Scholar 

  72. Ryzinska-Paier G, Lendenfeld T, Correa K, Stadler P, Blaschke AP, Mach RL, Stadler H, Kirschner AKT, Farnleitner AH (2014) A sensitive and robust method for automated on-line monitoring of enzymatic activities in water and water resources. Water Sci Technol 69:1349–1358. https://doi.org/10.2166/wst.2014.032

    Article  CAS  Google Scholar 

  73. Servais P, Pena G, Lebaron P, Henry A, Lepeuple A-SA-S, Pena G, Servais P (2005) An operational method for the real-time monitoring of E. coli numbers in bathing waters. Mar Pollut Bull 50:652–659. https://doi.org/10.1016/j.marpolbul.2005.01.016

    Article  CAS  Google Scholar 

  74. Farnleitner AH, Hocke L, Beiwl C, Kavka GG, Mach RL (2002) Hydrolysis of 4-methylumbelliferyl- β-d-glucuronide in differing sample fractions of river waters and its implication for the detection of fecal pollution. Water Res 36:975–981. https://doi.org/10.1016/S0043-1354(01)00288-3

    Article  CAS  Google Scholar 

  75. Davies CM, Apte SC (2000) An evaluation of potential interferences in a fluorimetric assay for the rapid detection of thermotolerant coliforms in sewage. Lett Appl Microbiol 30:99–104. https://doi.org/10.1046/j.1472-765X.2000.00677.x

    Article  CAS  Google Scholar 

  76. Wutor VC, Togo CA, Pletschke BI (2007) The effect of physico-chemical parameters and chemical compounds on the activity of β-d-galactosidase (B-GAL), a marker enzyme for indicator microorganisms in water. Chemosphere 68:622–627. https://doi.org/10.1016/j.chemosphere.2007.02.050

    Article  CAS  Google Scholar 

  77. Wutor VC, Pletschke BI (2006) (GUS): evaluation of chemical interference on the direct enzyme assay for faecal pollution detection in water. J Biotechnol 5:2338–2344

    Google Scholar 

  78. ColiPlage (n.d.) https://www.veolia.com/en/citizens/health/france-monitoring-bathing-water-quality

  79. ColiFast, (n.d.). https://www.colifast.no/products/

  80. ALERT LAB (n.d.) http://fluidion.com/en/products/alert-lab

  81. Huynh V, Hausot A, Angelescu DE (2016) An autonomous field sensor for total coliform and E.coli monitoring at remote sites, Ocean. 2016 MTS/IEEE Monterey, OCE 2016. https://doi.org/10.1109/OCEANS.2016.7761360

  82. P. Application (2018) Manual automation

    Google Scholar 

  83. Heery B, Briciu-Burghina C, Zhang D, Duffy G, Brabazon D, O’Connor N, Regan F (2016) ColiSense, today’s sample today: a rapid on-site detection of β-d-glucuronidase activity in surface water as a surrogate for E. coli. Talanta 148. https://doi.org/10.1016/j.talanta.2015.10.035

  84. Briciu-Burghina C, Heery B, Duffy G, Brabazon D, Regan F (2019) Demonstration of an optical biosensor for the detection of faecal indicator bacteria in freshwater and coastal bathing areas. Anal Bioanal Chem 411:7637–7643. https://doi.org/10.1007/s00216-019-02182-6

    Article  CAS  Google Scholar 

  85. ColiMinder (n.d.) https://www.coliminder.com/

  86. Stadler P, Farnleitner AH, Zessner M (2017) Development and evaluation of a self-cleaning custom-built auto sampler controlled by a low-cost RaspberryPi microcomputer for online enzymatic activity measurements. Talanta 162:390–397. https://doi.org/10.1016/j.talanta.2016.10.031

    Article  CAS  Google Scholar 

  87. Burnet J-BB, Dinh QT, Imbeault S, Servais P, Dorner S, Prévost M (2019) Autonomous online measurement of Β-D-glucuronidase activity in surface water: is it suitable for rapid E. coli monitoring? Water Res 152:241–250. https://doi.org/10.1016/j.watres.2018.12.060

    Article  CAS  Google Scholar 

  88. Ender A, Goeppert N, Grimmeisen F, Goldscheider N (2017) Evaluation of β-d-glucuronidase and particle-size distribution for microbiological water quality monitoring in northern Vietnam. Sci Total Environ 580:996–1006. https://doi.org/10.1016/J.SCITOTENV.2016.12.054

    Article  CAS  Google Scholar 

  89. Stadler P, Loken LC, Crawford JT, Schramm PJ, Sorsa K, Kuhn C, Savio D, Striegl RG, Butman D, Stanley EH, Farnleitner AH, Zessner M (2019) Spatial patterns of enzymatic activity in large water bodies: ship-borne measurements of beta-D-glucuronidase activity as a rapid indicator of microbial water quality. Sci Total Environ 651:1742–1752. https://doi.org/10.1016/J.SCITOTENV.2018.10.084

    Article  CAS  Google Scholar 

  90. Burnet JB, Sylvestre É, Jalbert J, Imbeault S, Servais P, Prévost M, Dorner S (2019) Tracking the contribution of multiple raw and treated wastewater discharges at an urban drinking water supply using near real-time monitoring of β-d-glucuronidase activity. Water Res 164:114869. https://doi.org/10.1016/J.WATRES.2019.114869

    Article  CAS  Google Scholar 

  91. BACTcontrol (n.d.) http://www.microlan.nl/monitoring-products/bactcontrol-online-monitor-of-total-and-specific-bacteria-activity-in-water/

  92. Alert System (n.d.) http://fluidion.com/en/products/alert-system-2

  93. Martins MT, Rivera IG, Clark DL, Stewart MH, Wolfe RL, Olson BH (1993) Distribution of uidA gene sequences in Escherichia coli isolates in water sources and comparison with the expression of beta-glucuronidase activity in 4-methylumbelliferyl-beta-D-glucuronide media. Appl Environ Microbiol 59:2271–2276

    Article  CAS  Google Scholar 

  94. Chang GW, Brill J, Lum R (1989) Proportion of β-D-glucuronidase-negative Escherichia coli in human fecal samples. Appl Environ Microbiol 55:335–339

    Article  CAS  Google Scholar 

  95. Garcia-Armisen T, Lebaron P, Servais P, Garcia-Armisen T, Lebaron P, Servais P, Garcia-Armisen T, Lebaron P, Servais P (2005) β-D-glucuronidase activity assay to assess viable Escherichia coli abundance in freshwaters. Lett Appl Microbiol 40:278–282. https://doi.org/10.1111/j.1472-765X.2005.01670.x

    Article  CAS  Google Scholar 

  96. Pisciotta JM, Rath DF, Stanek PA, Flanery DM, Harwood VJ, Stanek PA, Flanery DM, Rath DF, Pisciotta JM (2003) Marine bacteria cause false-positive results in the Colilert-18 rapid identification test for Escherichia coli in Florida waters. Appl Environ Microbiol 68:539–544. https://doi.org/10.1128/aem.68.2.539-544.2002

    Article  Google Scholar 

  97. Baudart J, Servais P, De Paoli H, Henry A, Lebaron P (2009) Rapid enumeration of Escherichia coli in marine bathing waters: potential interference of nontarget bacteria. J Appl Microbiol 107:2054–2062

    Article  CAS  Google Scholar 

  98. Davies CM, Apte SC, Peterson SM, Stauber JL (1994) Plant and algal interference in bacterial 3-D-galactosidase and, 3-D-glucuronidase assays. Appl Environ Microbiol 60:3959–3964

    Article  CAS  Google Scholar 

  99. Jenkins MB, Fisher DS, Endale DM, Adams P (2011) Comparative die-off of Escherichia coli 0157:H7 and fecal indicator bacteria in pond water. Environ Sci Technol 45:1853–1858. https://doi.org/10.1021/es1032019

    Article  CAS  Google Scholar 

  100. Fiksdal L, Pommepuy M, Caprais M-PP, Midttun I (1994) Monitoring of fecal pollution in coastal waters by use of rapid enzymatic techniques. Appl Environ Microbiol 60:1581–1584. https://doi.org/10.1112/S0024609303002200

    Article  CAS  Google Scholar 

  101. George I, Anzil A, Servais P (2004) Quantification of fecal coliform inputs to aquatic systems through soil leaching. Water Res 38:611–618

    Article  CAS  Google Scholar 

  102. Caruso G, Crisafi E, Mancuso M (2002) Development of an enzyme assay for rapid assessment of Escherichia coli in seawaters. J Appl Microbiol 93:548–556. https://doi.org/10.1046/j.1365-2672.2002.01729.x

    Article  CAS  Google Scholar 

  103. Farnleitner AH, Hocke L, Beiwl C, Kavka GC, Zechmeister T, Kirschner AKT, Mach RL (2001) Rapid enzymatic detection of Escherichia coli contamination in polluted river water. Lett Appl Microbiol 33:246–250. https://doi.org/10.1046/j.1472-765X.2001.00990.x

    Article  CAS  Google Scholar 

  104. Servais P, Garcia-Armisen T, Lepeuple AS, Lebaron P (2005) An early warning method to detect faecal contamination of river waters. Ann Microbiol 55:151–156

    Google Scholar 

  105. Stadler P, Blöschl G, Nemeth L, Oismüller M, Kumpan M, Krampe J, Farnleitner AH, Zessner M (2019) Event-transport of beta-D-glucuronidase in an agricultural headwater stream: assessment of seasonal patterns by on-line enzymatic activity measurements and environmental isotopes. Sci Total Environ 662:236–245. https://doi.org/10.1016/j.scitotenv.2019.01.143

    Article  CAS  Google Scholar 

  106. Delgado A, Briciu-Burghina C, Regan F (2021) Antifouling strategies for sensors used in water monitoring: review and future perspectives. Sensors 21:1–25. https://doi.org/10.3390/s21020389

    Article  CAS  Google Scholar 

  107. Anciaes P (2022) Revealed preference valuation of beach and river water quality in Wales. J Environ Econ Policy 11:75–94. https://doi.org/10.1080/21606544.2020.1864778

    Article  Google Scholar 

  108. Merino F, Prats MA (2022) Are blue flags a good indicator of the quality of sea water on beaches? An empirical analysis of the Western Mediterranean basin. J Clean Prod 330:129865. https://doi.org/10.1016/j.jclepro.2021.129865

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Regan .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Briciu-Burghina, C., Regan, F. (2023). Sensors for Monitoring Faecal Indicator Bacteria in Bathing Waters. In: Regan, F., Hansen, PD., Barceló, D. (eds) Biosensors for the Marine Environment. The Handbook of Environmental Chemistry, vol 122. Springer, Cham. https://doi.org/10.1007/698_2022_946

Download citation

Publish with us

Policies and ethics