Skip to main content

Fate of Neonicotinoids in the Environment: Why Bees Are Threatened

  • Chapter
  • First Online:
Emerging Pollutants in Sewage Sludge and Soils

Abstract

Pollinators are vital for ecosystems, agriculture and the economy. Their population has been declining over several decades and the current situation is serious and of great concern. Multiple stressors are likely to have contributed to this, and exposure to neonicotinoid pesticides is one possible causative factor. Pollinators, including bees, can encounter neonicotinoids when foraging contaminated flowers, and although they were not the target organism for such pesticides, neonicotinoids can be fatal for them (lethal dose that will reduce the insect population by 50% is ~2 mg/kg). The specific application of these pesticides plays an important role in their dispersion into the environment and application to the seed coating itself provides a more targeted way to release the pesticide with a reduced risk. Neonicotinoids can disperse via aerosols (when sprayed), bound to soil dust and dust abrasion from the seed coating, via the degradation of contaminated plants or run-off from crops treated with the pesticide. They have high solubility in water (e.g. 39.8 g dinotefuran/L, 4.1 g thiamethoxam/L) and this favours their spread, however natural factors such as sunlight, warm weather and microorganisms can degrade them and reduce their persistence. The time required for the concentration of neonicotinoids in soil to reach half of their initial concentration is varied (e.g. 3.4–7,000 days). Soils that are poor in organic matter will poorly retain neonicotinoids and as a result they will be very mobile in them and potentially pollute water systems. In contrast, soils rich in organic matter will have greater retention of neonicotinoids and once saturated, neonicotinoids will leach in a sustained manner. The benefits given by neonicotinoids explain why they are widely used across the globe. Their potential impact in the fields on bees and pollinators in general thus calls for a globally responsible and restricted use of neonicotinoids as well as innovation to reduce their ecotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breeze TD, Bailey AP, Balcombe KG, Potts SG (2011) Pollination services in the UK: how important are honeybees? Agric Ecosyst Environ 142:137–143

    Google Scholar 

  2. Jeschke P, Nauen R (2008) Neonicotinoids—from zero to hero in insecticide chemistry. Pest Manag Sci 64(11):1084–1098

    CAS  Google Scholar 

  3. Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59(7):2897–2908

    CAS  Google Scholar 

  4. Giorio C, Safer A, Sánchez-Bayo F, Tapparo A, Lentola A, Girolami V, van Lexmond MB, Bonmatin JM (2021) An update of the worldwide integrated assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate, and transport. Environ Sci Pollut Res Int 28(10):11716–11748

    Google Scholar 

  5. US EPA (2020) Imidacloprid. Proposed interim registration review decision. U.S. Environmental Protection Agency, Docket Number EPA-HQ-OPP-2008-0844, pp 5 and 32. Imidacloprid proposed interim registration review decision case number 7605 (epa.gov)

  6. Anderson JC, Dubetz C, Palace VP (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci Total Environ 505:409–422

    CAS  Google Scholar 

  7. Bass C, Denholm I, Williamson MS, Nauen R (2015) The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem Physiol 121:78–87

    CAS  Google Scholar 

  8. Hovda LR, Hooser SB (2002) Toxicology of newer pesticides for use in dogs and cats. Vet Clin Small Anim 32:455–467

    Google Scholar 

  9. Stokstad E (2013) Pesticides under fire for risks to pollinators. Science 340(6133):674–676. https://doi.org/10.1126/science.340.6133.674

    Article  CAS  Google Scholar 

  10. US EPA (2014) Benefits of neonicotinoid seed treatments to soybean production. https://www.epa.gov/sites/default/files/2014-10/documents/benefits_of_neonicotinoid_seed_treatments_to_soybean_production_2.pdf

  11. Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M (2014) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22:5–34

    Google Scholar 

  12. Lundin O, Rundlöf M, Smith HG, Fries I, Bommarco R (2015) Neonicotinoid insecticides and their impacts on bees: a systematic review of research approaches and identification of knowledge gaps. PLoS One 10(8):e0136928

    Google Scholar 

  13. Merck KGaA (2021) Neonicotinoids. https://www.sigmaaldrich.com/technical-documents/articles/analytical/neonicotinoids-bee-pesticides.html. Accessed Jul 2021

  14. Cavallaro MC, Morrissey CA, Headley JV, Peru KM, Liber K (2017) Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors. Environ Toxicol Chem 36(2):372–382

    CAS  Google Scholar 

  15. Craddock HA, Huang D, Turner PC, Quirós-Alcalá L, Payne-Sturges DC (2019) Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ Heal Glob Access Sci Source 18:1–16

    Google Scholar 

  16. Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC, Liber K (2015) Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ Int 74:291–303

    CAS  Google Scholar 

  17. Raby M, Zhao X, Hao C, Poirier DG, Sibley PK (2018) Chronic toxicity of 6 neonicotinoid insecticides to Chironomus dilutus and Neocloeon triangulifer. Environ Toxicol Chem 37(10):2727–2739

    CAS  Google Scholar 

  18. IHS Markit (2019) Global crop protection market down 1% in 2019. https://ihsmarkit.com/research-analysis/global-crop-protection-market-down-1-in-2019.html. Accessed Jul 2021

  19. Phillips MWA (2020) Agrochemical industry development, trends in R&D and the impact of regulation. Pest Manag Sci 76:3348–3356

    CAS  Google Scholar 

  20. European Commission (2021) Neonicotinoids Food Safety (europa.eu). Neonicotinoids (europa.eu). Accessed Jul 2021

  21. Food and Environment Research Agency (FERA) (2019) Pesticide usage survey reports in UK. https://secure.fera.defra.gov.uk/pusstats/. Accessed Jul 2021

  22. The White House (2014) Presidential memorandum - creating a federal strategy to promote the health of honey bees and other pollinators. https://obamawhitehouse.archives.gov/the-press-office/2014/06/20/presidential-memorandum-creating-federal-strategy-promote-health-honey-b. Accessed Jul 2021

  23. Illien N (2021) Swiss voters reject proposal to ban synthetic pesticides. The New York Times. https://www.nytimes.com/2021/06/13/world/swiss-pesticide-referendum-ban.html?smid=url-share. Accessed Jul 2021

  24. Glenn (2014) CropLife America statement on TFSP report on systemic pesticides. CropLife America. https://www.croplifeamerica.org/news-releases/oggeb7e6f76txh68ehaxjixzh5rwo2?rq=neonicotinoid. Accessed Jul 2021

  25. Bayer (2021) Neonicotinoid insecticides @Bayer. Systematic risk mitigation & portfolio evolution towards minimized risk for the environment, pp 1–11. https://www.bayer.com/sites/default/files/Report%20Neonicotinoid%20Insecticides%40Bayer.pdf. Accessed Jul 2021

  26. Struger J, Grabuski J, Cagampan S, Sverko E, McGoldrick D, Marvin CH (2017) Factors influencing the occurrence and distribution of neonicotinoid insecticides in surface waters of southern Ontario, Canada. Chemosphere 169:516–523

    CAS  Google Scholar 

  27. Jones A, Harrington P, Turnbull G (2014) Neonicotinoid concentrations in arable soils after seed treatment applications in preceding years. Pest Manag Sci 70(12):1780–1784

    CAS  Google Scholar 

  28. Sur R, Stork A (2003) Uptake, translocation and metabolism of imidacloprid in plants. Bull Insectol 56:35–40

    Google Scholar 

  29. Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50(4):977–987. https://doi.org/10.1111/1365-2664.12111

    Article  Google Scholar 

  30. Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EAD, Noome DA, Simon-Delso N, Tapparo A (2014) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22:35–67. https://doi.org/10.1007/s11356-014-3332-7

    Article  CAS  Google Scholar 

  31. Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EAD, Noome DA, Simon-Delso N, Tapparo A (2014) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res:35–67

    Google Scholar 

  32. Tapparo A, Marton D, Giorio C, Zanella A, Soldà L, Marzaro M, Vivan L, Girolami V (2012) Environ Sci Technol 46(5):2592–2599

    CAS  Google Scholar 

  33. Hitaj C, Smith DJ, Code A, Wechsler S, Esker PD, Douglas MR (2020) Sowing uncertainty: what we do and don’t know about the planting of pesticide-treated seed. Bioscience 70(5):390–403

    Google Scholar 

  34. Chevillot F, Convert Y, Desrosiers M, Cadoret N, Veilleux É, Cabana H, Bellenger JP (2017) Selective bioaccumulation of neonicotinoids and sub-lethal effects in the earthworm Eisenia andrei exposed to environmental concentrations in an artificial soil. Chemosphere 186:839–847. https://doi.org/10.1016/j.chemosphere.2017.08.046

    Article  CAS  Google Scholar 

  35. Butcherine P, Benkendorff K, Kelaher B, Barkla BJ (2018) The risk of neonicotinoid exposure to shrimp aquaculture. Chemosphere 217:329–348

    Google Scholar 

  36. Hernando MD, Gámiz V, Gil-Lebrero S, Rodríguez I, García-Valcárcel AI, Cutillas V, Fernández-Alba AR, Flores JM (2018) Viability of honeybee colonies exposed to sunflowers grown from seeds treated with the neonicotinoids thiamethoxam and clothianidin. Chemosphere 202:609–617

    CAS  Google Scholar 

  37. Cresswell JE (2011) A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 20:149–157

    CAS  Google Scholar 

  38. Evans JD, Schwarz RS (2011) Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 19:614–620

    CAS  Google Scholar 

  39. Paradis D, Bérail G, Bonmatin JM, Belzunces LP (2014) Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS/MS and LC-MS/MS. Anal Bioanal Chem 406:621–633

    CAS  Google Scholar 

  40. vanEngelsdorp D, Evans JD, Donovall L, Mullin C, Frazier M, Frazier J, Tarpy DR, Hayes J, Pettis JS (2009) Entombed pollen: a new condition in honey bee colonies associated with increased risk of colony mortality. J Invertebr Pathol 101:147–149

    Google Scholar 

  41. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–286

    CAS  Google Scholar 

  42. Farooqui T (2013) A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: a unique hypothesis. Neurochem Int 62:122–136

    CAS  Google Scholar 

  43. Tapparo A, Giorio C, Marzaro M, Marton D, Soldà L, Girolami V (2011) Rapid analysis of neonicotinoid insecticides in guttation drops of corn seedlings obtained from coated seeds. J Environ Monit 13:1564–1568

    CAS  Google Scholar 

  44. Naug D (2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol Conserv 142:2369–2372

    Google Scholar 

  45. Sharpe RJ, Heyden LC (2009) Honey bee colony collapse disorder is possibly caused by a dietary pyrethrum deficiency. Biosci Hypotheses 2:439–440

    Google Scholar 

  46. Di Prisco G, Pennacchio F, Caprio E, Boncristiani HF, Evans JD, Chen Y (2011) Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J Gen Virol 92:151–155

    Google Scholar 

  47. Genersch E (2010) Honey bee pathology: current threats to honey bees and beekeeping. Appl Microbiol Biotechnol 87:87–97

    CAS  Google Scholar 

  48. Underwood R, VanEngelsdorp D (2007) Colony collapse disorder: have we seen this before? Bee Cult 17110:13–18

    Google Scholar 

  49. EFSA (2008) Bee mortality and bee surveillance in Europe (EFSA-Q-2008-428). EFSA J:1–28. https://doi.org/10.2903/j.efsa.2008.154r

  50. EU Directives (2013) Commission implementing regulation (EU) no. 485/2013. Conclusion on the peer review of the pesticide risk assessment for bees for the active substance thiamethoxam. Off J Eur Union 56:12–26. https://doi.org/10.2903/j.efsa.2013.3067

    Article  CAS  Google Scholar 

  51. EU Directives (2018) Commision regulation (EU) 2018/781. Off J Eur Union 61

    Google Scholar 

  52. Tomizawa M, Casida JE, Mu P (2009) Molecular recognition of neonicotinoid insecticides: the determinants of life or death. Acc Chem Res 42:260–269

    CAS  Google Scholar 

  53. García MDG, Galera MM, Valverde RS, Galanti A, Girotti S (2007) Column switching liquid chromatography and post-column photochemically fluorescence detection to determine imidacloprid and 6-chloronicotinic acid in honeybees. J Chromatogr A 1147:17–23

    Google Scholar 

  54. Pandey G, Dorrian SJ, Russell RJ, Oakeshott JG (2009) Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by pseudomonas sp. 1G. Biochem Biophys Res Commun 380:710–714

    CAS  Google Scholar 

  55. Le Questel J, Graton J, Cerón-carrasco JP, Jacquemin D, Planchat A, Thany SH (2011) Bioorganic & medicinal chemistry new insights on the molecular features and electrophysiological properties of dinotefuran, imidacloprid and acetamiprid neonicotinoid insecticides. Bioorg Med Chem 19:7623–7634. https://doi.org/10.1016/j.bmc.2011.10.019

    Article  CAS  Google Scholar 

  56. Arce AN, Rodriguez Ramos A, Jiaju Y, Colgan TJ, Wurm Y, Gill RJ (2018) Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure. Proc R Soc B 285(1885)

    Google Scholar 

  57. Colgan TJ, Fletcher IK, Gill RJ, Ramos Rodriguez A, Stolle E, Chittka L, Wurm Y (2019) Caste-and-pesticide-specific effects of neonicotinoid pesticide exposure on gene expression in bumblebees. Mol Ecol 28:1964–1974

    Google Scholar 

  58. Crall JD, Switzer CM, Oppenheimer RL, For Versypt AN, Dey B, Brown A, Eyster M, Guérin C, Pierce NE, Combe SA, de Bivort BL (2018) Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362(6415):683–686

    CAS  Google Scholar 

  59. Evans M (2019) Neonics hinder bees’ grooming ability: study. The Western Producer, May 23, 2019. https://www.producer.com/2019/05/neonics-hinder-bees-grooming-ability-study/. Accessed Jul 2021

  60. Kenna D, Cooley H, Pretelli I, Ramos Rodrigues A, Gill SD, Gill RG (2019) Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecol Evol 9:5637–5650

    Google Scholar 

  61. Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268

    CAS  Google Scholar 

  62. IUPAC Pesticide Properties Database, AERU-University of Hertfordshire. PPDB A to Z Index (herts.ac.uk). Accessed Jul 2021

    Google Scholar 

  63. Franco A, Trapp S (2008) Estimation of the soil-water partition coefficient normalized organic carbon for ionizable organic chemicals. Environ Toxicol Chem 27:1995–2004

    CAS  Google Scholar 

  64. Fliedner A (1997) Ecotoxicology of poorly water-solube substances. Chemosphere 35(97):295–305

    CAS  Google Scholar 

  65. Hladik ML, Corsi SR, Kolpin DW, Baldwin AK, Blackwell BR, Cavallin JE (2018) Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA. Environ Pollut 235:1022–1029

    CAS  Google Scholar 

  66. Dankyi E, Gordon C, Carboo D, Fomsgaard IS (2014) Quantification of neonicotinoid insecticide residues in soils from cocoa plantations using a QuEChERS extraction procedure and LC-MS/MS. Sci Total Environ 499:276–283

    CAS  Google Scholar 

  67. Botías C, David A, Hill EM, Goulson D (2016) Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Sci Total Environ 566–567:269–278

    Google Scholar 

  68. Gbylik-Sikorska M, Sniegocki T, Posyniak A (2015) Determination of neonicotinoid insecticides and their metabolites in honey bee and honey by liquid chromatography tandem mass spectrometry. J. Chromatogr B Anal Technol Biomed Life Sci 990:132–140

    CAS  Google Scholar 

  69. Humann-Guilleminot S, Clément S, Desprat J, Binkowski ŁJ, Glauser G, Helfenstein F (2019) A large-scale survey of house sparrows feathers reveals ubiquitous presence of neonicotinoids in farmlands. Sci Total Environ 660:1091–1097

    CAS  Google Scholar 

  70. Zhiming et al (2013) Determination of neonicotinoid insecticides residues in eels using subcritical water extraction and ultra-performance liquid chromatography–tandem mass spectrometry. Anal Chim Acta 777:32–40

    Google Scholar 

  71. Kavvalakis MP, Tzatzarakis MN, Theodoropoulou EP, Barbounis EG, Tsakalof AK, Tsatsakis AM (2013) Development and application of LC–APCI–MS method for biomonitoring of animal and human exposure to imidacloprid. Chemosphere 93:2612–2620

    CAS  Google Scholar 

  72. Taira K, Fujioka K, Aoyama Y (2013) Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry. PLoS One 8:1–13

    Google Scholar 

  73. Gaweł M, Kiljanek T, Niewiadowska A, Semeniuk S, Goliszek M, Burek O, Posyniak A (2019) Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chem 282:36–47

    Google Scholar 

  74. Golge O, Kabak B (2015) Determination of 115 pesticide residues in oranges by high-performance liquid chromatography-triple-quadrupole mass spectrometry in combination with QuEChERS method. J Food Compos Anal 41:86–97

    CAS  Google Scholar 

  75. Montiel-León JM, Duy SV, Munoz G, Verner MA, Hendawi MY, Moya H, Amyot M, Sauvé S (2019) Occurrence of pesticides in fruits and vegetables from organic and conventional agriculture by QuEChERS extraction liquid chromatography tandem mass spectrometry. Food Control 104:74–82

    Google Scholar 

  76. MacDonald AM, Jardine CM, Thomas PJ, Nemeth NM (2018) Detection in wild turkeys (Meleagris gallopavo silvestris) in Ontario, Canada. Environ Sci Pollut Res 25:16254–16260

    CAS  Google Scholar 

  77. Eng ML, Stutchbury BJM, Morrissey CA (2019) A neonicotinoid insecticide reduces fueling and delays migration in songbirds. Science 365(6458):1177–1180

    CAS  Google Scholar 

  78. Adegun AO, Akinnifesi TA, Ololade IA, Busquets R, Hooda PS, Cheung PCW, Aseperi AK, Barker J (2020) Quantification of neonicotinoid pesticides in six cultivable fish species from the river Owena in Nigeria and a template for food safety assessment. Water 12:2422

    CAS  Google Scholar 

  79. Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50:977–987

    Google Scholar 

  80. Sanchez-Bayo F, Goka K (2014) Pesticide residues and bees – a risk assessment. PLoS One 9(4):e94482. https://doi.org/10.1371/journal.pone.0094482

    Article  CAS  Google Scholar 

  81. Sánchez-Bayo F, Hyne RV (2014) Detection and analysis of neonicotinoids in river waters – development of a passive sampler for three commonly used insecticides. Chemosphere 99:143–151

    Google Scholar 

  82. Hano T, Ito K, Ohkubo N, Sakaji H, Watanabe A, Takashima K, Sato T, Sugaya T, Matsuki K, Onduka T, Ito M, Somiya R, Mochida K (2019) Occurrence of neonicotinoids and fipronil in estuaries and their potential risks to aquatic invertebrates. Environ Pollut 252:205–215

    CAS  Google Scholar 

  83. Kurwadkar S, Evans A, DeWinne D, White P, Mitchell F (2016) Modeling photodegradation kinetics of three systemic neonicotinoids—dinotefuran, imidacloprid, and thiamethoxam—in aqueous and soil environment. Environ Toxicol Chem 35:1718–1726

    CAS  Google Scholar 

  84. Banić ND, Šojić DV, Krstić JB, Abramović BF (2014) Photodegradation of neonicotinoid active ingredients and their commercial formulations in water by different advanced oxidation processes. Water Air Soil Pollut 225:1955

    Google Scholar 

  85. Wintermantel D, Odoux J-F, Decourtye A, Henry M, Allier F, Bretagnolle V (2020) Neonicotinoid-induced mortality risk for bees foraging on oilseed rape nectar persists despite EU moratorium. Sci Total Environ 707:135400

    Google Scholar 

  86. Zhang H, Zhang Z, Song J, Mei J, Fang H, Gui W (2021) Reduced bacterial network complexity in agricultural soils after application of the neonicotinoid insecticide thiamethoxam. Environ Pollut 274:116540

    CAS  Google Scholar 

  87. Hussain S, Hartley CJ, Shettigar M, Pandey G (2016) Bacterial biodegradation of neonicotinoid pesticides in soil and water systems. FEMS Microbiol Lett 363:1–13

    Google Scholar 

  88. Chopra I, Chauhan R, Kumari B, Dahiya KK (2011) Fate of fipronil in cotton and soil under tropical climatic conditions. Bull Environ Contam Toxicol 86:242–245

    CAS  Google Scholar 

  89. Cao J, Guo H, Zhu HM, Jiang L, Yang H (2008) Effects of SOM, surfactant and pH on the sorption-desorption and mobility of prometryne in soils. Chemosphere 70:2127–2134

    CAS  Google Scholar 

  90. Peng X, Wang J, Fan B, Luan Z (2009) Sorption of endrin to montmorillonite and kaolinite clays. J Hazard Mater 168:210–214

    CAS  Google Scholar 

  91. Kasozi GN, Nkedi-Kizza P, Li Y, Zimmerman AR (2012) Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin. Environ Pollut 169:12–19

    CAS  Google Scholar 

  92. Zhang P, Ren C, Sun H, Min L (2018) Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Sci Total Environ 615:59–69

    CAS  Google Scholar 

  93. Aseperi AAK, Busquets R, Hooda PS, Cheung PCW, Barker J (2020) Behaviour of neonicotinoids in contrasting soils. J Environ Manag 276:111329

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Busquets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aseperi, A.K., Busquets, R., Cheung, P.C.W., Hooda, P.S., Barker, J. (2022). Fate of Neonicotinoids in the Environment: Why Bees Are Threatened. In: Núñez-Delgado, A., Arias-Estévez, M. (eds) Emerging Pollutants in Sewage Sludge and Soils. The Handbook of Environmental Chemistry, vol 114. Springer, Cham. https://doi.org/10.1007/698_2022_853

Download citation

Publish with us

Policies and ethics