Skip to main content

Innovative Treatment Processes for Emerging Contaminants Removal from Sewage Sludge

  • Chapter
  • First Online:
Emerging Pollutants in Sewage Sludge and Soils

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 114))

  • 454 Accesses

Abstract

This chapter deals with an environmental aspect not sufficiently taken into account by the scientific community as well as the economy productive sectors: the removal of emerging contaminants (ECs) from sewage sludge. The most common ECs that can be found in the sludge, their adsorption mechanisms, and the most suitable removal treatments, in such order, are analyzed and discussed in the following pages. An accurate scientific literature survey has highlighted, primarily, that the anaerobic digestion (AD) process is the most common treatment used to stabilize sewage sludge and, secondly, that such process is not appropriate for properly treating ECs. Therefore, further treatments are required to be coupled with AD for removing ECs. Among all possible treatments, those innovative, chemical (ozonation, hydrogen peroxide, Fenton) as well as thermal (hydrothermal liquefaction) are discussed and their performance is compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bell CH, Gentile M, Kalve E, Ross I, Horst J, Suthersan S (2019) Emerging contaminants handbook. CRC Press

    Google Scholar 

  2. Mo L, Zheng J, Wang T, Shi Y-G, Chen B-J, Liu B, Ma Y-H, Li M, Zhuo L, Chen S-J (2019) Legacy and emerging contaminants in coastal surface sediments around Hainan Island in South China. Chemosphere 215:133–141

    CAS  Google Scholar 

  3. Sauvé S, Desrosiers M (2014) A review of what is an emerging contaminant. Chem Cent J 8:1–7

    Google Scholar 

  4. Fijalkowski K, Rorat A, Grobelak A, Kacprzak MJ (2017) The presence of contaminations in sewage sludge–The current situation. J Environ Manage 203:1126–1136

    CAS  Google Scholar 

  5. Mailler R, Gasperi J, Chebbo G, Rocher V (2014) Priority and emerging pollutants in sewage sludge and fate during sludge treatment. Waste Manag 34:1217–1226

    CAS  Google Scholar 

  6. Stasinakis AS (2012) Review on the fate of emerging contaminants during sludge anaerobic digestion. Bioresour Technol 121:432–440

    CAS  Google Scholar 

  7. Tran NH, Reinhard M, Gin KY-H (2018) Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res 133:182–207

    CAS  Google Scholar 

  8. Ni B-J, Zeng S, Wei W, Dai X, Sun J (2020) Impact of roxithromycin on waste activated sludge anaerobic digestion: methane production, carbon transformation and antibiotic resistance genes. Sci Total Environ 703:134899

    CAS  Google Scholar 

  9. Yin F, Dong H, Ji C, Tao X, Chen Y (2016) Effects of anaerobic digestion on chlortetracycline and oxytetracycline degradation efficiency for swine manure. Waste Manag 56:540–546

    CAS  Google Scholar 

  10. Yin F, Dong H, Zhang W, Zhu Z, Shang B, Wang Y (2019) Removal of combined antibiotic (florfenicol, tylosin and tilmicosin) during anaerobic digestion and their relative effect. Renew Energy 139:895–903

    CAS  Google Scholar 

  11. Zhao L, Ji Y, Sun P, Deng J, Wang H, Yang Y (2019) Effects of individual and combined zinc oxide nanoparticle, norfloxacin, and sulfamethazine contamination on sludge anaerobic digestion. Bioresour Technol 273:454–461

    CAS  Google Scholar 

  12. Lapen DR, Topp E, Metcalfe CD, Li H, Edwards M, Gottschall N, Bolton P, Curnoe W, Payne M, Beck A (2008) Pharmaceutical and personal care products in tile drainage following land application of municipal biosolids. Sci Total Environ 399:50–65

    CAS  Google Scholar 

  13. Sabourin L, Beck A, Duenk PW, Kleywegt S, Lapen DR, Li H, Metcalfe CD, Payne M, Topp E (2009) Runoff of pharmaceuticals and personal care products following application of dewatered municipal biosolids to an agricultural field. Sci Total Environ 407:4596–4604

    CAS  Google Scholar 

  14. Hospido A, Carballa M, Moreira M, Omil F, Lema JM, Feijoo G (2010) Environmental assessment of anaerobically digested sludge reuse in agriculture: potential impacts of emerging micropollutants. Water Res 44:3225–3233

    CAS  Google Scholar 

  15. Ivanová L, Mackuľak T, Grabic R, Golovko O, Koba O, Staňová AV, Szabová P, Grenčíková A, Bodík I (2018) Pharmaceuticals and illicit drugs–a new threat to the application of sewage sludge in agriculture. Sci Total Environ 634:606–615

    Google Scholar 

  16. Escher B, Leusch F (2011) Bioanalytical tools in water quality assessment. IWA Publishing

    Google Scholar 

  17. de Jesus Gaffney V, Almeida CMM, Rodrigues A, Ferreira E, Benoliel MJ, Cardoso VV (2015) Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res 72:199–208

    Google Scholar 

  18. Barret M, Barcia GC, Guillon A, Carrère H, Patureau D (2010) Influence of feed characteristics on the removal of micropollutants during the anaerobic digestion of contaminated sludge. J Hazard Mater 181:241–247

    CAS  Google Scholar 

  19. Núñez-Delgado A, Pousada-Ferradás Y, Álvarez-Rodríguez E, Fernández-Sanjurjo MJ, Conde-Cid M, Nóvoa-Muñoz JC, Arias-Estévez M (2019) Effects of microbiological and non-microbiological treatments of sewage sludge on antibiotics as emerging pollutants present in wastewater: a review. Microb Wastewater Treat:1–17

    Google Scholar 

  20. Ibáñez GR, Esteban B, Ponce-Robles L, López JLC, Agüera A, Pérez JAS (2015) Fate of micropollutants during sewage sludge disintegration by low-frequency ultrasound. Chem Eng J 280:575–587

    Google Scholar 

  21. Reyes-Contreras C, Neumann P, Barriga F, Venegas M, Domínguez C, Bayona JM, Vidal G (2020) Organic micropollutants in sewage sludge: influence of thermal and ultrasound hydrolysis processes prior to anaerobic stabilization. Environ Technol 41:1358–1365

    CAS  Google Scholar 

  22. Zhang X, Li R (2018) Variation of antibiotics in sludge pretreatment and anaerobic digestion processes: Degradation and solid-liquid distribution. Bioresour Technol 255:266–272

    CAS  Google Scholar 

  23. Patureau D, Delgenes N, Delgenes J-P (2008) Impact of sewage sludge treatment processes on the removal of the endocrine disrupters nonylphenol ethoxylates. Chemosphere 72:586–591

    CAS  Google Scholar 

  24. Flotron V, Delteil C, Padellec Y, Camel V (2005) Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere 59:1427–1437

    CAS  Google Scholar 

  25. Zheng X-J, Blais J-F, Mercier G, Bergeron M, Drogui P (2007) PAH removal from spiked municipal wastewater sewage sludge using biological, chemical and electrochemical treatments. Chemosphere 68:1143–1152

    CAS  Google Scholar 

  26. Andersen HR, Hansen M, Kjølholt J, Stuer-Lauridsen F, Ternes T, Halling-Sørensen B (2005) Assessment of the importance of sorption for steroid estrogens removal during activated sludge treatment. Chemosphere 61:139–146

    CAS  Google Scholar 

  27. Goss K-U, Schwarzenbach RP (2001) Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environ Sci Technol 35:1–9

    CAS  Google Scholar 

  28. Schwarzenbach RP, Gschwend PM, Imboden DM (2016) Environmental organic chemistry. Wiley

    Google Scholar 

  29. Carballa M, Fink G, Omil F, Lema JM, Ternes T (2008) Determination of the solid–water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Water Res 42:287–295

    CAS  Google Scholar 

  30. Simonich SL, Federle TW, Eckhoff WS, Rottiers A, Webb S, Sabaliunas D, De Wolf W (2002) Removal of fragrance materials during US and European wastewater treatment. Environ Sci Technol 36:2839–2847

    CAS  Google Scholar 

  31. Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A (2004) A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Res 38:4075–4084

    CAS  Google Scholar 

  32. Bourdat-Deschamps M, Ferhi S, Bernet N, Feder F, Crouzet O, Patureau D, Montenach D, Moussard GD, Mercier V, Benoit P (2017) Fate and impacts of pharmaceuticals and personal care products after repeated applications of organic waste products in long-term field experiments. Sci Total Environ 607:271–280

    Google Scholar 

  33. Gao P, Ding Y, Li H, Xagoraraki I (2012) Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes. Chemosphere 88:17–24

    CAS  Google Scholar 

  34. Golet EM, Xifra I, Siegrist H, Alder AC, Giger W (2003) Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ Sci Technol 37:3243–3249

    CAS  Google Scholar 

  35. Golet EM, Strehler A, Alder AC, Giger W (2002) Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal Chem 74:5455–5462

    CAS  Google Scholar 

  36. Jia A, Wan Y, Xiao Y, Hu J (2012) Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant. Water Res 46:387–394

    CAS  Google Scholar 

  37. Martín J, Santos JL, Aparicio I, Alonso E (2015) Pharmaceutically active compounds in sludge stabilization treatments: Anaerobic and aerobic digestion, wastewater stabilization ponds and composting. Sci Total Environ 503:97–104

    Google Scholar 

  38. Takács-Novák K, Józan M, Hermecz I, Szász G (1992) Lipophilicity of antibacterial fluoroquinolones. Int J Pharm 79:89–96

    Google Scholar 

  39. Dal Pozzo A, Donzelli G, Rodriquez L, Tajana A (1989) “In vitro” model for the evaluation of drug distribution and plasma protein-binding relationships. Int J Pharm 50:97–101

    CAS  Google Scholar 

  40. Dong R, Yu G, Guan Y, Wang B, Huang J, Deng S, Wang Y (2016) Occurrence and discharge of pharmaceuticals and personal care products in dewatered sludge from WWTPs in Beijing and Shenzhen. Emerg Contam 2:1–6

    Google Scholar 

  41. Subedi B, Balakrishna K, Joshua DI, Kannan K (2017) Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere 167:429–437

    CAS  Google Scholar 

  42. Avdeef A, Box KJ, Comer JEA, Hibbert C, Tam KY (1998) pH-Metric logP 10. Determination of liposomal membrane-water partition coefficients of lonizable drugs. Pharm Res 15:209–215

    CAS  Google Scholar 

  43. Czyrski A (2019) Determination of the lipophilicity of ibuprofen, naproxen, ketoprofen, and flurbiprofen with thin-layer chromatography. J Chem 2019

    Google Scholar 

  44. Samaras VG, Stasinakis AS, Mamais D, Thomaidis NS, Lekkas TD (2013) Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion. J Hazard Mater 244:259–267

    Google Scholar 

  45. Yu Y, Wu L (2012) Analysis of endocrine disrupting compounds, pharmaceuticals and personal care products in sewage sludge by gas chromatography–mass spectrometry. Talanta 89:258–263

    CAS  Google Scholar 

  46. Martín J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E (2012) Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. J Hazard Mater 239:40–47

    Google Scholar 

  47. Prasad MNV, Vithanage M, Kapley A (2019) Pharmaceuticals and personal care products: waste management and treatment technology: emerging contaminants and micro pollutants. Butterworth-Heinemann

    Google Scholar 

  48. Kinney CA, Furlong ET, Zaugg SD, Burkhardt MR, Werner SL, Cahill JD, Jorgensen GR (2006) Survey of organic wastewater contaminants in biosolids destined for land application. Environ Sci Technol 40:7207–7215

    CAS  Google Scholar 

  49. Lindberg RH, Olofsson U, Rendahl P, Johansson MI, Tysklind M, Andersson BAV (2006) Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ Sci Technol 40:1042–1048

    CAS  Google Scholar 

  50. Ben W, Zhu B, Yuan X, Zhang Y, Yang M, Qiang Z (2018) Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes. Water Res 130:38–46

    CAS  Google Scholar 

  51. Göbel A, Thomsen A, McArdell CS, Alder AC, Giger W, Theiß N, Löffler D, Ternes TA (2005) Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge. J Chromatogr A 1085:179–189

    Google Scholar 

  52. Göbel A, Thomsen A, McArdell CS, Joss A, Giger W (2005) Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ Sci Technol 39:3981–3989

    Google Scholar 

  53. Hansch C, Leo A, Hoekman D (1995) Hydrophobic, electronic, and steric constants. American Chemical Society, Washington, pp 219–304

    Google Scholar 

  54. McClellan K, Halden RU (2010) Pharmaceuticals and personal care products in archived US biosolids from the 2001 EPA national sewage sludge survey. Water Res 44:658–668

    CAS  Google Scholar 

  55. Chen X, Bester K (2009) Determination of organic micro-pollutants such as personal care products, plasticizers and flame retardants in sludge. Anal Bioanal Chem 395:1877–1884

    CAS  Google Scholar 

  56. Chu S, Metcalfe CD (2007) Simultaneous determination of triclocarban and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry. J Chromatogr A 1164:212–218

    CAS  Google Scholar 

  57. Lyndall J, Fuchsman P, Bock M, Barber T, Lauren D, Leigh K, Perruchon E, Capdevielle M (2010) Probabilistic risk evaluation for triclosan in surface water, sediments, and aquatic biota tissues. Integr Environ Assess Manag An Int J 6(3):419–440

    CAS  Google Scholar 

  58. Peysson W, Vulliet E (2013) Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography–time-of-flight-mass spectrometry. J Chromatogr A 1290:46–61

    CAS  Google Scholar 

  59. Shi L, Zhou X, Zhang Y, Jiang T (2011) Comparison of sorption coefficients of triclosan in different activated sludge and application in sewage treatment system. In: 2011 Third international conference on measuring technology and mechatronics automation. IEEE, pp 749–752

    Google Scholar 

  60. Stasinakis AS, Gatidou G, Mamais D, Thomaidis NS, Lekkas TD (2008) Occurrence and fate of endocrine disrupters in Greek sewage treatment plants. Water Res 42:1796–1804

    CAS  Google Scholar 

  61. Ying G-G, Kookana RS (2007) Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environ Int 33:199–205

    CAS  Google Scholar 

  62. Balk F, Ford RA (1999) Environmental risk assessment for the polycyclic musks AHTN and HHCB in the EU: I. Fate and exposure assessment. Toxicol Lett 111:57–79

    CAS  Google Scholar 

  63. Ternes TA, Bonerz M, Herrmann N, Löffler D, Keller E, Lacida BB, Alder AC (2005) Determination of pharmaceuticals, iodinated contrast media and musk fragrances in sludge by LC tandem MS and GC/MS. J Chromatogr A 1067:213–223

    CAS  Google Scholar 

  64. Stevens JL, Northcott GL, Stern GA, Tomy GT, Jones KC (2003) PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in UK sewage sludge: survey results and implications. Environ Sci Technol 37:462–467

    CAS  Google Scholar 

  65. Venegas M, Leiva AM, Reyes-Contreras C, Neumann P, Piña B, Vidal G (2020) Presence and fate of micropollutants during anaerobic digestion of sewage and their implications for the circular economy: a short review. J Environ Chem Eng:104931

    Google Scholar 

  66. De Maria IC, Chiba MK, Costa A, Berton RS (2010) Sewage sludge application to agricultural land as soil physical conditioner. Rev Bras Ciência do Solo 34:967–974

    Google Scholar 

  67. Rybacka A, Andersson PL (2016) Considering ionic state in modeling sorption of pharmaceuticals to sewage sludge. Chemosphere 165:284–293

    CAS  Google Scholar 

  68. Li B, Zhang T (2010) Biodegradation and adsorption of antibiotics in the activated sludge process. Environ Sci Technol 44:3468–3473

    CAS  Google Scholar 

  69. Ben W, Qiang Z, Yin X, Qu J, Pan X (2014) Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater. J Environ Sci 26:1623–1629

    CAS  Google Scholar 

  70. Galán MJG, Díaz-Cruz MS, Barceló D (2012) Removal of sulfonamide antibiotics upon conventional activated sludge and advanced membrane bioreactor treatment. Anal Bioanal Chem 404:1505–1515

    Google Scholar 

  71. Song X, Liu D, Zhang G, Frigon M, Meng X, Li K (2014) Adsorption mechanisms and the effect of oxytetracycline on activated sludge. Bioresour Technol 151:428–431

    CAS  Google Scholar 

  72. Tran NH, Chen H, Reinhard M, Mao F, Gin KY-H (2016) Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res 104:461–472

    CAS  Google Scholar 

  73. Tran NH, Gin KY-H (2017) Occurrence and removal of pharmaceuticals, hormones, personal care products, and endocrine disrupters in a full-scale water reclamation plant. Sci Total Environ 599:1503–1516

    Google Scholar 

  74. Ou X, Wang C, Zhang F, Quan X, Ma Y, Liu H (2010) Complexation of iron by salicylic acid and its effect on atrazine photodegradation in aqueous solution. Front Environ Sci Eng China 4:157–163

    CAS  Google Scholar 

  75. Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Total Environ 429:123–155

    CAS  Google Scholar 

  76. Dubey M, Mohapatra S, Tyagi VK, Suthar S, Kazmi AA (2021) Occurrence, fate, and persistence of emerging micropollutants in sewage sludge treatment. Environ Pollut 273:116515

    CAS  Google Scholar 

  77. Oberoi AS, Jia Y, Zhang H, Khanal SK, Lu H (2019) Insights into the fate and removal of antibiotics in engineered biological treatment systems: a critical review. Environ Sci Technol 53:7234–7264

    CAS  Google Scholar 

  78. Eddy M, Abu-Orf M, Bowden G, Burton FL, Pfrang W, Stensel HD, Tchobanoglous G, Tsuchihashi R, (Firm) A (2014) Wastewater engineering: treatment and resource recovery. McGraw Hill Education

    Google Scholar 

  79. Hörsing M, Ledin A, Grabic R, Fick J, Tysklind M, la Cour Jansen J, Andersen HR (2011) Determination of sorption of seventy-five pharmaceuticals in sewage sludge. Water Res 45:4470–4482

    Google Scholar 

  80. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    CAS  Google Scholar 

  81. Carballa M, Omil F, Ternes T, Lema JM (2007) Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Res 41:2139–2150

    CAS  Google Scholar 

  82. Chang Y, Tsai K, Tseng C, Chen J, Kao C, Lin K (2015) Rapid nonylphenol degradation in wastewater sludge using microwave peroxide oxidation with nitric acid. Environ Prog Sustain Energy 34:520–525

    CAS  Google Scholar 

  83. Paterakis N, Chiu TY, Koh YKK, Lester JN, McAdam EJ, Scrimshaw MD, Soares A, Cartmell E (2012) The effectiveness of anaerobic digestion in removing estrogens and nonylphenol ethoxylates. J Hazard Mater 199:88–95

    Google Scholar 

  84. Mitchell SM, Ullman JL, Teel AL, Watts RJ, Frear C (2013) The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion. Bioresour Technol 149:244–252

    CAS  Google Scholar 

  85. Boševski I, Gotvajn AŽ (2021) The impact of single step ozonation of antibiotics-contaminated waste sludge to biogas production. Chemosphere 271:129527

    Google Scholar 

  86. Carballa M, Omil F, Alder AC, Lema JM (2006) Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products. Water Sci Technol 53:109–117

    CAS  Google Scholar 

  87. Liu X, Huang X, Wu Y, Xu Q, Du M, Wang D, Yang Q, Liu Y, Ni B-J, Yang G (2020) Activation of nitrite by freezing process for anaerobic digestion enhancement of waste activated sludge: performance and mechanisms. Chem Eng J 387:124147

    CAS  Google Scholar 

  88. Zhen G, Lu X, Kato H, Zhao Y, Li YY (2017) Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale application and future perspectives. Renew Sustain Energy Rev 69:559–577. https://doi.org/10.1016/j.rser.2016.11.187

    Article  CAS  Google Scholar 

  89. Khare P, Patel RK, Sharan S, Shankar R (2021) Recent trends in advanced oxidation process for treatment of recalcitrant industrial effluents. In: Advanced oxidation processes for effluent treatment plants. Elsevier, pp 137–160

    Google Scholar 

  90. Silvestre G, Ruiz B, Fiter M, Ferrer C, Berlanga JG, Alonso S, Canut A (2015) Ozonation as a pre-treatment for anaerobic digestion of waste-activated sludge: effect of the ozone doses. Ozone Sci Eng 37:316–322

    CAS  Google Scholar 

  91. Carballa M, Manterola G, Larrea L, Ternes T, Omil F, Lema JM (2007) Influence of ozone pre-treatment on sludge anaerobic digestion: removal of pharmaceutical and personal care products. Chemosphere 67:1444–1452

    CAS  Google Scholar 

  92. Ak MS, Muz M, Komesli OT, Gökçay CF (2013) Enhancement of bio-gas production and xenobiotics degradation during anaerobic sludge digestion by ozone treated feed sludge. Chem Eng J 230:499–505

    CAS  Google Scholar 

  93. Guan R, Yuan X, Wu Z, Jiang L, Li Y, Zeng G (2018) Principle and application of hydrogen peroxide based advanced oxidation processes in activated sludge treatment: A review. Chem Eng J 339:519–530

    CAS  Google Scholar 

  94. Yu Y, Chan WI, Liao PH, Lo KV (2010) Disinfection and solubilization of sewage sludge using the microwave enhanced advanced oxidation process. J Hazard Mater 181:1143–1147

    CAS  Google Scholar 

  95. Zhang A, Li Y (2014) Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: effects of reaction conditions and sludge matrix. Sci Total Environ 493:307–323

    CAS  Google Scholar 

  96. Li Y, Zhang A (2014) Removal of steroid estrogens from waste activated sludge using Fenton oxidation: influencing factors and degradation intermediates. Chemosphere 105:24–30

    CAS  Google Scholar 

  97. Pulicharla R, Brar SK, Rouissi T, Auger S, Drogui P, Verma M, Surampalli RY (2017) Degradation of chlortetracycline in wastewater sludge by ultrasonication, Fenton oxidation, and ferro-sonication. Ultrason Sonochem 34:332–342

    CAS  Google Scholar 

  98. Biller P, Johannsen I, Dos Passos JS, Ottosen LDM (2018) Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction. Water Res 130:58–68

    CAS  Google Scholar 

  99. Madsen RB, Glasius M (2019) How do hydrothermal liquefaction conditions and feedstock type influence product distribution and elemental composition? Ind Eng Chem Res 58:17583–17600

    CAS  Google Scholar 

  100. Marrone PA, Elliott DC, Billing JM, Hallen RT, Hart TR, Kadota P, Moeller JC, Randel MA, Schmidt AJ (2018) Bench-scale evaluation of hydrothermal processing technology for conversion of wastewater solids to fuels: Marrone et al. Water Environ Res 90:329–342

    CAS  Google Scholar 

  101. Pham M, Schideman L, Sharma BK, Zhang Y, Chen W-T (2013) Effects of hydrothermal liquefaction on the fate of bioactive contaminants in manure and algal feedstocks. Bioresour Technol 149:126–135

    CAS  Google Scholar 

  102. Thomsen LBS, Carvalho PN, Dos Passos JS, Anastasakis K, Bester K, Biller P (2020) Hydrothermal liquefaction of sewage sludge; energy considerations and fate of micropollutants during pilot scale processing. Water Res 183:116101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Race .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferraro, A. et al. (2022). Innovative Treatment Processes for Emerging Contaminants Removal from Sewage Sludge. In: Núñez-Delgado, A., Arias-Estévez, M. (eds) Emerging Pollutants in Sewage Sludge and Soils. The Handbook of Environmental Chemistry, vol 114. Springer, Cham. https://doi.org/10.1007/698_2022_850

Download citation

Publish with us

Policies and ethics