Skip to main content

Effects of Metals on Human Health and Ecosystem

  • Chapter
  • First Online:
Design of Materials and Technologies for Environmental Remediation

Abstract

Heavy metals are one of the main constituents of the earth and have played an important role in living organisms. However, ingestion of large amounts of even essential heavy metals can cause serious damage and continue to cause many sufferings as pollutants in the environment. This chapter outlines the toxicity common to the general properties of heavy metals, and then details the effects of individual heavy metals on living organisms, mainly human health. And finally, it also describes the effect of reducing the antioxidant heavy metals that coexist with the adverse health effects of these heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bradl H (2002) Heavy metals in the environment: origin, interaction and remediation, vol 6. Academic, London

    Google Scholar 

  2. Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity in humans. Poisoning in the modern world – new tricks for an old dog? IntechOpen, pp 1–23

    Google Scholar 

  3. Duffus JH (2002) Heavy metals – a meaningless term? Pure Appl Chem 74(5):793–807

    Article  CAS  Google Scholar 

  4. Flora SJS, Flora GJS, Saxena G (2006) Environmental occurrence, health effects and management of lead poisoning. In: Cascas SB, Sordo J (eds) Lead: chemistry, analytical aspects, environmental impacts and health effects. Elsevier, pp 158–228

    Chapter  Google Scholar 

  5. Mahurpawar M (2015) Effects of heavy metals on human health. Int J Res Granthaalayah:1–7

    Google Scholar 

  6. McCally M (2003) Life support: the environment and human health. J Sociol Soc Welfare 30(4):19

    Google Scholar 

  7. Agency for Toxic Substances and Disease Registry (2017) Investigating Environmental Hazards to Advance Community Health. U.S. Department of Health & Human Services

    Google Scholar 

  8. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  9. Nriagu JO (1996) History of global metal pollution. Science 272:223–224

    Article  CAS  Google Scholar 

  10. Singh DJ, Kamaldhad AS (2011) Effects of heavy metals on soil, plants, human health and aquatic life. Int J Res Chem Environ 1(2):15–21

    Google Scholar 

  11. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Experientia Suppl 101:133–164

    Article  Google Scholar 

  12. Solomon F (2008) Impacts of metals on aquatic ecosystems and human health. University of Washington Water Center

    Google Scholar 

  13. Muhib MI, Chowdhury MAZ, Easha NJ (2016) Investigation of heavy metal contents in cow milk samples from area of Dhaka, Bangladesh. Food Contam 3:16

    Article  Google Scholar 

  14. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  15. Trasande L, Landrigan PJ, Schechter C (2005) Public health and economic consequences of methyl mercury toxicity to the developing brain. Environ Health Perspect 113(5):590–596

    Article  CAS  Google Scholar 

  16. Esmaeilzadeh M, Jaafari J, Mohammadi AA, Panahandeh M, Javid A, Javan S (2019) Investigation of the extent of contamination of heavy metals in agricultural soil using statistical analyses and contamination indices. Hum Ecol Risk Assess Int J 25(5):1125–1136

    Article  CAS  Google Scholar 

  17. Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG, Tinkov AA (2018) Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. Environ Res 166:234–250

    Article  Google Scholar 

  18. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  Google Scholar 

  19. Morais S, Costa FG, Pereira ML (2012) Heavy metals and human health, in environmental health – emerging issues and practice. InTech Open, pp 227–246

    Google Scholar 

  20. McGreer JC, Brix KV, Skeaff JM, DeForest DK, Brigham SI (2003) Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem 22(5):1017–1037

    Article  Google Scholar 

  21. Juwarkar AA, Yadav SK (2010) Bioaccumulation and biotransformation of heavy metals. Biotechnology:266–284

    Google Scholar 

  22. Mosby CV, Glanze WD, Anderson KN (1996) Mosby medical encyclopedia. The Signet, St. Louis. Revised Edition

    Google Scholar 

  23. Florea A-M, Busselberg D (2006) Occurrence, use and potential toxic effects of metals and metal compounds. Biometals 19:419–427

    Article  CAS  Google Scholar 

  24. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    Article  Google Scholar 

  25. Ferner DJ (2001) Toxicity, heavy metals. eMed 2(5):1

    Google Scholar 

  26. Yongsheng W, Qihui L, Qian T (2011) Effect of lead on growth, accumulation and quality component of tea plant. Procedia Eng 18:214–219

    Article  Google Scholar 

  27. Hirner AV, Emons H (2004) Organic metal and metalloid species in the environment: analysis, distribution, processes and toxicological evaluation. Springer, Berlin, pp 205–219

    Book  Google Scholar 

  28. Mahaffey KR (1990) Environmental lead toxicity: nutrition as a component of intervention. Environ Health Perspect 89:75–78

    Article  CAS  Google Scholar 

  29. Moore CP, Cock JH (1985) Cassava forage silage as a feed source for zebu calves in the tropics. Trop Agric (Trinidad) 62(2):142–144

    Google Scholar 

  30. Ward JD, Spears JW, Gengelbach GP (1995) Differences in copper status and copper metabolism among Angus, Simmental, and Charolais cattle. J Anim Sci 73(2):571–577

    Article  CAS  Google Scholar 

  31. Agency for Toxic Substances and Disease Registry (2018) Protecting People from Harmful Environmental Exposures. U.S. Department of Health & Human Services

    Google Scholar 

  32. Centers for Disease Control and Prevention (2019) Annual review: towards a decade of action

    Google Scholar 

  33. Akbor MA, Rahman MM, Bodrud-Doza M, Haque MM, Abu Bakar Siddique M, Ahsan MA, Bondad SEC, Uddin MK (2020) Metal pollution in water and sediment of the Buriganga River, Bangladesh: an ecological risk perspective. Desalin Water Treat 193:284–301

    Article  CAS  Google Scholar 

  34. Chen CW, Chen CF, Dong CD (2012) Distribution and accumulation of mercury in sediments of Kaohsiung River mouth, Taiwan. APCBEE Procedia 1:153–158

    Article  CAS  Google Scholar 

  35. Alina M, Azrina A, Mohd-Yunus AS, Mohd-Zakiuddin S, Mohd-Izuan EE, Radyaqsa M (2012) Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the straits of Malacca. Int Food Res 19(1):135–140

    CAS  Google Scholar 

  36. Bjørklund G, Hofer T, Nurchi VM, Aaseth J (2019) Iron and other metals in the pathogenesis of Parkinson’s disease: toxic effects and possible detoxification. J Inorg Biochem 199:110717

    Article  Google Scholar 

  37. Crous-Bou M, Minguillón C, Gramunt N (2017) Alzheimer’s disease prevention: from risk factors to early intervention. Alz Res Therapy 9:71

    Article  Google Scholar 

  38. Semionov A (2018) Minamata disease – review. World J Neurosci 8:178–184

    Article  CAS  Google Scholar 

  39. Han JX, Shang Q, Du Y (2009) Effect of environmental cadmium pollution on human health. Health 1(3):159–166

    Article  Google Scholar 

  40. Henson MC, Chedrese PJ (2004) Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med 229(5):383–392

    Article  CAS  Google Scholar 

  41. Regoli L (2005) The relative contributions of different environmental sources to human exposure and the EU cadmium risk assessment meeting of UNECE task force on heavy metals. Presentation for the UNECE Long-Range-Trans-boundary Air Pollutants – Task Force on Heavy Metals

    Google Scholar 

  42. Järup L, Akesson A (2009) Current status of Cd as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  Google Scholar 

  43. Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128:501–523

    CAS  Google Scholar 

  44. Lalor GC (2008) Review of cadmium transfers from soil to humans and its health effects in the Jamaican environment. Sci Total Environ 400:162–172

    Article  CAS  Google Scholar 

  45. Jain J, Gauba P (2017) Heavy metal toxicity-implications on metabolism and health. Int J Pharm Bio Sci 8(4):452-460. https://doi.org/10.22376/ijpbs.2017.8.4.b452-460

    Article  CAS  Google Scholar 

  46. Satarug S, Garrett SH, Sens MA, Sens DA (2011) Cadmium, environmental exposure, and health outcomes. Cien Saude Colet 16(5):2587–2602

    Article  Google Scholar 

  47. Bernard A (2008) Cadmium & its adverse effects on human health. Indian J Med Res 128(4):557–564

    CAS  Google Scholar 

  48. Nishijo M, Nakagawa H, Suwazono Y, Nogawa K, Kido T (2017) Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case-control analysis of a follow-up study in Japan. BMJ Open 7(7):e015694

    Article  Google Scholar 

  49. Agency for Toxic Substances and Disease Registry (2017) Public Health Statement Copper. ATSDR Publication CAS#7440-50-8

    Google Scholar 

  50. Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem:1–14. 6730305

    Google Scholar 

  51. Taylor AA, Tsuji JS, Garry MR (2020) Critical review of exposure and effects: implications for setting regulatory health criteria for ingested copper. Environ Manag 65:131–159

    Article  Google Scholar 

  52. Hefnawy A, Elkhaiat H (2015) The importance of copper and the effects of its deficiency and toxicity in animal health. Int J Livest Res 5(12):1–20

    Article  Google Scholar 

  53. Nkwunonwo UC, Odika PO, Onyia NT (2020) A review of the health implications of heavy metals in food chain in Nigeria. Sci World J:1–11. 6594109

    Google Scholar 

  54. Woody DCA (2012) Effects of copper on fish and aquatic resources. The Nature Preservancy

    Google Scholar 

  55. Mazumder G (2008) Chronic arsenic toxicity & human health. Indian J Med Res 128(4):436–447

    Google Scholar 

  56. Singh N, Kumar D, Sahu A (2007) Arsenic in the environment: effects on human health and possible prevention. J Environ Biol 28(2 Suppl):359–365

    CAS  Google Scholar 

  57. Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108(5):393–397

    Article  CAS  Google Scholar 

  58. Saha JC, Dikshit AK, Bandyopadhyay M, Saha KC (1999) A review of arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol 29(3):281–313

    Article  CAS  Google Scholar 

  59. Shrivastava R, Upreti RK, Seth PK, Chaturvedi UC (2002) Effects of chromium on the immune system. FEMS Immunol Med Microbiol 34(1):1–7

    Article  CAS  Google Scholar 

  60. Agency for Toxic Substances and Disease Registry (ATSDR) (2011) Case studies in environmental medicine (CSEM): chromium toxicity

    Google Scholar 

  61. Dayan AD, Paine AJ (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20(9):439–451

    Article  CAS  Google Scholar 

  62. Milatovic D, Gupta RC, Yin Z, Zaja- Milatovic S, Aschner M (2017) Manganese. In: Reproductive and developmental toxicology, pp 567–581

    Chapter  Google Scholar 

  63. Röllin H (2011) Manganese: environmental pollution and health effects. In: Encyclopedia of environmental health, chapter: manganese: environmental pollution and health effects. Elsevier, Nriagu, pp 617–629

    Google Scholar 

  64. Wright DA, Welbourn P (2002) Environmental toxicology (Cambridge environmental chemistry series 11). Cambridge University Press, Cambridge

    Google Scholar 

  65. Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B 10(1):1–269

    Article  CAS  Google Scholar 

  66. Vardar F, Ünal M (2007) Aluminum toxicity and resistance in higher plants. Adv Mol Biol 1:1–12

    Google Scholar 

  67. Akter M, Sikder MT, Rahman MM (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16

    Article  CAS  Google Scholar 

  68. Miyayama T, Arai Y, Hirano S (2012) Environmental exposure to silver and its health effects. Nihon Eiseigaku Zasshi 67(3):383–389

    Article  CAS  Google Scholar 

  69. Rosenman KD, Seixas N, Jacobs I (1987) Potential nephrotoxic effects of exposure to silver. Br J Ind Med 44:267–272

    CAS  Google Scholar 

  70. Fung MC, Bowen DL (1996) Silver products for medical indications: risk-benefit assessment. J Toxicol Clin Toxicol 34(1):119–126

    Article  CAS  Google Scholar 

  71. Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49(7):575–585

    CAS  Google Scholar 

  72. Tabacova S, Baird DD, Balabaeva L, Lolova D, Petrov I (1994) Placental arsenic and cadmium in relation to lipid peroxides and glutathione levels in maternal-infant pairs from a copper smelter area. Placenta 15:873–881

    Article  CAS  Google Scholar 

  73. Dimitrova MS, Tishinova V, Velcheva V (1994) Combined effect of zinc and lead on the hepatic superoxide dismutase-catalase system in carp (Cyprinus carpio). Comp Biochem Physiol 108C:43–46

    Google Scholar 

  74. Qian H, Li J, Sun L, Chen W, Sheng GD, Liu W, Fu Z (2009) Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat Toxicol 94:56–61

    Article  CAS  Google Scholar 

  75. Yuan G, Dai S, Yin Z, Lu H, Jia R, Xu J, Song X, Li L, Shu Y, Zhao X (2014) Toxicological assessment of combined lead and cadmium: acute and sub-chronic toxicity study in rats. Food Chem Toxicol 65:260–268

    Article  CAS  Google Scholar 

  76. Hambach R, Lison D, D’Haese PC, Weyler J, De Graef E, De Schryver A, Lamberts LV, Van Sprundel M (2013) Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers. Toxicol Lett 222:233–238

    Article  CAS  Google Scholar 

  77. Hernández-García A, Romero D, Gómez-Ramírez P, María-Mojica P, Martínez-López E, García-Fernández A (2014) In vitro evaluation of cell death induced by cadmium, lead and their binary mixtures on erythrocytes of common buzzard (Buteo buteo). Toxicol In Vitro 28:300–306

    Article  Google Scholar 

  78. Wu B, Liu Z, Xu Y, Li D, Li M (2012) Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta). Ecotoxicol Environ Saf 81:122–126

    Article  CAS  Google Scholar 

  79. Le MT, Hassanin M, Mahadeo M, Gailer J, Prenner EJ (2013) Hg-and cd-induced modulation of lipid packing and monolayer fluidity in biomimetic erythrocyte model systems. Chem Phys Lipids 170:46–54

    Article  Google Scholar 

  80. Smith E, Gancarz D, Rofe A, Kempson IM, Weber J, Juhasz AL (2012) Antagonistic effects of cadmium on lead accumulation in pregnant and non-pregnant mice. J Hazard Mater 199:453–456

    Article  Google Scholar 

  81. Vellinger C, Parant M, Rousselle P, Usseglio-Polatera P (2012) Antagonistic toxicity of arsenate and cadmium in a freshwater amphipod (Gammarus pulex). Ecotoxicology 21:1817–1827

    Article  CAS  Google Scholar 

  82. Vellinger C, Gismondi E, Felten V, Rousselle P, Mehennaoui K, Parant M, Usseglio-Polatera P (2013) Single and combined effects of cadmium and arsenate in Gammarus pulex (Crustacea, Amphipoda): understanding the links between physiological and behavioural responses. Aquat Toxicol 140:106–116

    Article  Google Scholar 

  83. Jadhav S, Sarkar S, Patil R, Tripathi H (2007) Effects of subchronic exposure via drinking water to a mixture of eight water contaminating metals: a biochemical and histopathological study in male rats. Arch Environ Contam Toxicol 53:667–677

    Article  CAS  Google Scholar 

  84. Jadhav S, Sarkar S, Ram G, Tripathi H (2007) Immunosuppressive effect of subchronic exposure to a mixture of eight heavy metals, found as groundwater contaminants in different areas of India, through drinking water in male rats. Arch Environ Contam Toxicol 53:450–458

    Article  CAS  Google Scholar 

  85. Whittaker MH, Wang G, Chen XQ, Lipsky M, Smith D, Gwiazda R, Fowler BA (2011) Exposure to Pb, Cd, and As mixtures potentiates the production of oxidative stress precursors: 30-day, 90-day, and 180-day drinking water studies in rats. Toxicol Appl Pharmacol 254:154–166

    Article  CAS  Google Scholar 

  86. Martínez-Pacheco M, Hidalgo-Miranda A, Romero-Córdoba S, Valverde M, Rojas E (2014) mRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects. Gene 533:508–514

    Article  Google Scholar 

  87. Tully DB, Collins BJ, Overstreet JD, Smith CS, Dinse GE, Mumtaz MM, Chapin RE (2000) Effects of arsenic, cadmium, chromium, and lead on gene expression regulated by a battery of 13 different promoters in recombinant HepG2 cells. Toxicol Appl Pharmacol 168:79–90

    Article  CAS  Google Scholar 

  88. An YJ, Kim YM, Kwon TI, Jeong SW (2004) Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci Total Environ 326:85–93

    Article  CAS  Google Scholar 

  89. Lin X, Gu Y, Zhou Q, Mao G, Zou B, Zhao J (2016) Combined toxicity of heavy metal mixtures in liver cells. J Appl Toxicol 36:1163–1172

    Article  CAS  Google Scholar 

  90. Yizong H, Ying H, Yunxia L (2009) Heavy metal accumulation in iron plaque and growth of rice plants upon exposure to single and combined contamination by copper, cadmium and lead. Acta Ecol Sin 29:320–326

    Article  Google Scholar 

  91. Romaniuk A, Sikora V, Lyndin M, Smiyanov V, Sikora V, Lyndina Y, Piddubnyi A, Gyryavenko N, Korobchanska A (2017) The features of morphological changes in the urinary bladder under combined effect of heavy metal salts. Interv Med Appl Sci 9(2):105–111

    Google Scholar 

  92. Antonio MT, Corredor L, Leret ML (2003) Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett 143:331–340

    Article  CAS  Google Scholar 

  93. Mejía JJ, Díaz-Barriga F, Calderón J, Ríos C, Jiménez-Capdeville ME (1997) Effects of lead–arsenic combined exposure on central monoaminergic systems. Neurotoxicol Teratol 19:489–497

    Article  Google Scholar 

  94. Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S (2010) Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 118:586–601

    Article  CAS  Google Scholar 

  95. Vinodhini R, Narayanan M (2009) The impact of toxic heavy metals on the hematological parameters in common carp (Cyprinus carpio L.). Iran J Environ Health Sci Eng 6:23–28

    CAS  Google Scholar 

  96. Chandanshive S, Sarwade P, Humbe A, Mohekar A (2012) Effect of heavy metal model mixture on haematological parameters of Labeo rohita from Gharni Dam Nalegaon. Latur Int Multidisc Res J 2:10–12

    CAS  Google Scholar 

  97. Yoo JW, Cho H, Lee KW, Won EJ, Lee YM (2021) Combined effects of heavy metals (Cd, As, and Pb): comparative study using conceptual models and the antioxidant responses in the brackish water flea. Comp Biochem Physiol C 239:108863

    CAS  Google Scholar 

  98. Fırat Ö, Kargın F (2010) Individual and combined effects of heavy metals on serum biochemistry of Nile tilapia Oreochromis niloticus. Arch Environ Contam Toxicol 58:151–157

    Article  Google Scholar 

  99. Rahman MM, Ukiana J, Lopez RU, Sikder MT, Saito T, Kurasaki M (2017) Cytotoxic effects of cadmium and zinc co-exposure in PC12 cells and the underlying mechanism. Chem Biol Interact 269:41–49

    Article  CAS  Google Scholar 

  100. Hossain KFB, Hosokawa T, Saito T, Kurasaaki M (2021) Zinc-pretreatment triggers glutathione and Nrf2-mediated protection against inorganic mercury-induced cytotoxicity and intrinsic apoptosis in PC12 cells. Ecotoxicol Environ Saf 207:111320

    Article  CAS  Google Scholar 

  101. Rahman MM, Lopez-Uson AR, Sikder MT, Tan G, Hosokawa T, Saito T, Kurasaki M (2018) Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12 cells via modulating autophagy/apoptosis. Chemosphere 196:453–466

    Article  CAS  Google Scholar 

  102. Hossain KFB, Rahman MM, Sikder MT, Saito T, Hosokawa T, Kurasaki M (2018) Inhibitory effects of selenium on cadmium-induced cytotoxicity in PC12 cells via regulating oxidative stress and apoptosis. Food Chem Toxicol 114:180–189

    Article  Google Scholar 

  103. Hossain KFB, Rahman MM, Sikder MT, Hosokawa T, Saito T, Kurasaaki M (2021) Selenium modulates inorganic mercury induced cytotoxicity and intrinsic apoptosis in PC12 cells. Ecotoxicol Environ Saf 207:111262

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mostafizur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, M.M., Hossain, M.K.F.B., Afrin, S., Saito, T., Kurasaki, M. (2022). Effects of Metals on Human Health and Ecosystem. In: Tanaka, S., Kurasaki, M., Morikawa, M., Kamiya, Y. (eds) Design of Materials and Technologies for Environmental Remediation. The Handbook of Environmental Chemistry, vol 115. Springer, Singapore. https://doi.org/10.1007/698_2021_825

Download citation

Publish with us

Policies and ethics