Skip to main content

Socio-Economical Aspects of NBS

  • Chapter
  • First Online:
Nature-Based Solutions for Flood Mitigation

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 107))

Abstract

The flood management needs to be undertaken in a more integrated manner. Incorporating the risk in flood management should be synchronized with the adequate measures which give their contribution to the reduction in the damage caused by a natural hazard. In this chapter, a multidisciplinary approach is used for presenting the socio-economic aspects of nature-based solutions (NBS). Implementation of NBS requires a more structured and comprehensive process that starts with the valuation of the services provided by the ecosystem. Several barriers are identified in the socio-economic area connected with the implementation of NBS and flood risks.

In the framework of the institutional setting, more actors or players are involved, with different resources, different values and preferences, and more views and perceptions. To select the most effective combination of measures, stakeholders required adequate analysis, with specific reference to the costs and benefits of the chosen actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission (2016) Topics: nature-based solutions. https://ec.europa.eu/research/environment/index.cfm?pg=nbs

  2. Raymond CM, Berry P, Breil M, Nita MR, Kabisch N, de Bel M, Enzi V, Frantzeskaki N, Geneletti D, Cardinaletti M, Lovinger L, Basnou C, Monteiro A, Robrecht H, Sgrigna G, Muhari L, Calfapietra C (2017) An impact evaluation framework to support planning and evaluation of nature-based solutions projects. In: Report prepared by the EKLIPSE expert working group on nature-based solutions to promote climate resilience in urban areas. Centre for Ecology & Hydrology, Wallington, UK

    Google Scholar 

  3. Raymond CM, Frantzeskaki N, Kabisch N, Berry P, Breil M, Nita MR, Geneletti D, Calfapietra C (2017) A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ Sci Pol 77:15–24. https://doi.org/10.1016/j.envsci.2017.07.008

    Article  Google Scholar 

  4. Santoro S, Pluchinotta I, Pagano A, Pengal P, Cokan B, Giordano R (2019) Assessing stakeholders` risk perception to promote nature based solutions ad flood protection strategies: the case of the Glinscica river (Slovenia). Sci Total Environ 655:188–201

    Article  CAS  Google Scholar 

  5. Rosenhead J, Mingers J (2005) Rational analysis for a problematic world revisited. 2nd edn. Wiley, Chichester

    Google Scholar 

  6. Renn O (1998) The role of risk perception for risk management. Reliab Eng Syst Saf 59:49–62

    Article  Google Scholar 

  7. Flynn J, Slovic P, Mertz CK, Carlisle C (1999) Public support for earthquake risk mitigation in Portland, Oregon. Risk Anal 2:205–216

    Google Scholar 

  8. Bickerstaff K (2004) Risk perception research: socio-cultural perspectives on the public experience of air pollution. Environ Int 30(6):827–840. https://doi.org/10.1016/j.envint.2003.12.001

    Article  Google Scholar 

  9. Figueiredo E, Valente S, Coelho C, Pinho L (2009) Coping with risk: analysis on the importance of integrating social perceptions on flood risk into management mechanisms– the case of the municipality of Aqueda, Portugal. J Risk Res 12(5):581–602

    Article  Google Scholar 

  10. Harclerode MA, Lal P, Vedwan N, Wolde B, Miller ME (2016) Evaluation of the role of risk perception in stakeholder engagement to prevent lead exposure in an urban setting. J Environ Manag 184:132–142

    Article  CAS  Google Scholar 

  11. Savadori L, Savio S, Nicotra E, Rumiati R, Finucane M, Slovic P (2004) Expert and public perception of risk from biotechnology. Risk Anal 24:1289–1299

    Article  Google Scholar 

  12. Kabisch N, Korn H, Stadler J, Bonn A (2017) Nature-based solutions for societal goals under climate change in urban areas − synthesis and ways forward. In: Kabisch N, Korn H, Stadler J, Bonn A (eds) Nature-based solutions to climate change adaptation in urban areas − linkages between science, policy and practice. Springer, Berlin

    Chapter  Google Scholar 

  13. Maes J, Jacobs S (2017) Nature-based solutions for Europe’s sustainable development. Conserv Lett 10(1):121–124

    Article  Google Scholar 

  14. McPhearson H, Kabisch G (2016) Advancing understanding of the complex nature of urban systems. Ecol Indic 70:566–573. https://doi.org/10.1016/J.ECOLIND.2016.03.054

    Article  Google Scholar 

  15. Eisenack M, Hoffmann K, Oberlack P, Rotter T (2014) Explaining and overc0oming barriers to climate change adaptation. Nat Clim Chang 4:867. https://doi.org/10.1038/nclimate2350

    Article  Google Scholar 

  16. Sarabi S, Han Q, Romme AG, de Vries B, Valkenburg R, den Ouden E (2020) Uptake and implementation of nature-based solutions: an analysis of barriers using interpretive structural modeling. J Environ Manag 270:110749. https://doi.org/10.1016/j.jenvman.2020.110749

    Article  Google Scholar 

  17. Kabisch S, Korn B, Frantzeskaki P, Naumann D, Artmann H, Knapp K, Stadler, Zaunberger B (2016) Nature-based solutions to climate change mitigation and adaptation in urban areas. Ecol Soc 21(2). https://doi.org/10.5751/ES-08373-210239

  18. Zuniga-Teran S, de Vito G, Ward S, Hart B (2019) Challenges of mainstreaming green infrastructure in built environment professions. J Environ Plann Manag 1:23. https://doi.org/10.1080/09640568.2019.1605890

    Article  Google Scholar 

  19. Droste N, Schröter-Schlaack C, Hansjürgens B, Zimmermann H (2017) Implementing nature-based solutions in urban areas: financing and governance aspects. In: Kabisch K, Stadler B (eds) Nature-based solutions to climate change adaptation in urban areas: linkages between science, policy and practice. Springer, Berlin, pp 307–321. https://doi.org/10.1007/978-3-319-56091-5_18

    Chapter  Google Scholar 

  20. Olorunkiya F, Wilkinson (2012) Risk: a fundamental barrier to the implementation of low impact design infrastructure for urban stormwater control. J Sustain Dev 5(9). https://doi.org/10.5539/jsd.v5n9p27

  21. Liu J (2018) Green infrastructure for sustainable urban water management: practices of five forerunner cities. Cities 74:126–133. https://doi.org/10.1016/J.CITIES.2017.11.013

    Article  Google Scholar 

  22. Pasquini C, Ziervogel (2013) Facing the heat: barriers to mainstreaming climate change adaptation in local government in the Western Cape

    Google Scholar 

  23. Hawxwell M, Maciulyt E, Sautter D (2019) Municipal governance for nature-based solutions. https://unalab.eu/system/files/2019-10/Municipal_Governance_for_Nature-based_Solutions_2019-10-24_1746.pdf

  24. Wamsler W, Hanson AO, Stålhammar B, Falck G, Oskarsson S, Torffvit Z (2020) Environmental and climate policy integration: targeted strategies for overcoming barriers to nature-based solutions and climate change adaptation. J Clean Prod 247:119154. https://doi.org/10.1016/J.JCLEPRO.2019.119154

    Article  Google Scholar 

  25. Cohen-Schacham E, Walters G, Janzen C, Maginnis S (2016) In: IUCN (ed) Naturebased solutions to address global societal challenges. IUCN, Gland, Switzerland. pp xiii+97

    Google Scholar 

  26. Denjean B, Altamirano MA, Graveline N, Giordano R, van der Keur P, Moncoulon D, Weinberg J, Máñez Costa M, Kozinc Z, Mulligan M, Pengal P, Matthews J, Van Cauwenbergh N, López Gunn E, Bresch DN (2017) Natural assurance scheme: a level playing field framework for Green-Grey infrastructure development. Environ Res 159:24–38. https://doi.org/10.1016/j.envres.2017.07.006

    Article  CAS  Google Scholar 

  27. European Environment Agency (2017) Technical report no 14/2017. Green infrastructure and flood management. Promoting cost-efficient flood risk reduction via green infrastructure solutions

    Google Scholar 

  28. Nesshöver C, Assmuth T, Irvine KN, Rusch GM, Waylen KA, Delbaere B, Haase D, Jones-Walters L, Keune H, Kovacs E, Krauze K, Külvik M, Rey F, van Dijk J, Vistad OI, Wilkinson ME, Wittmer H (2016) The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.11.106

  29. Dong X, Guo H, Zeng S (2017) Enhancing future resilience in urban drainage system: green versus grey infrastructure. Water Res 124:280–289

    Article  CAS  Google Scholar 

  30. World Bank (2017) Implementing nature-based flood protection: principles and implementation guidance. World Bank, Washington

    Book  Google Scholar 

  31. Sayers P, Yuanyuan L, Galloway G, Penning-Rowsell E, Fuxin S, Kang W, Yiwei C, Le Quesn T (2013) Flood risk management, a strategic approach. UNESCO, Paris

    Google Scholar 

  32. Stefanovic M, Gavrilovic Z, Bajcetic R (2014) Local community and torrential flood issues, handbook for local community and civil society organizations. Organization for European Security and Cooperation, Mission to Serbia

    Google Scholar 

  33. Slovic P, Finucane ML, Peters E, MacGregor DG (2004) Risk as analysis and risk as feelings: some thoughts about affect, reason, risk, and rationality. Risk Anal 24:31–322

    Article  Google Scholar 

  34. Boholm Å (2003) The cultural nature of risk: can there be an anthropology of uncertainty? Ethnos 68(2):159–178

    Article  Google Scholar 

  35. Giordano R, D'Agostino D, Apollonio C, Lamaddalena N, Vurro M (2013) Bayesian belief network to support conflict analysis for groundwater protection: the case of the Apulia region. J Environ Manag 115:136–146. https://doi.org/10.1016/j.jenvman.2012.11.011

    Article  Google Scholar 

  36. Bisaro A, Hinkel J (2016) Governance of social dilemmas in climate change adaptation. Nat Clim Change 6(4):354

    Article  Google Scholar 

  37. Ostrom E (2005) Understanding institutional diversity. Princeton University Press, Princeton

    Google Scholar 

  38. Van Loon-Steensma J, Slim PA (2012) The impact of erosion protection by stone dams on salt-marsh vegetation on two Wadden Sea barrier islands. J Coast Res 29(4):783–796

    Google Scholar 

  39. Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plann 97(3):147–155

    Article  Google Scholar 

  40. Rizvi AR (2014) Nature based solutions for human resilience: a mapping analysis of IUCN’s ecosystem-based adaptation projects, IUCN, Geneva. https://portals.iucn.org/library/sites/library/files/documents/Rep-2014-008.pdf

  41. Cohen-Shacham E, Walters G, Janzen C, Maginnis S (2016) Naturebased Solutions to Address Global Societal Challenges, xii, IUCN, Gland, Switzerland

    Google Scholar 

  42. Grothmann T, Reusswig F (2006) People at risk of flooding: why some residents take precautionary action while others do not. Nat Hazards 38:101–120

    Article  Google Scholar 

  43. Renn O (2004) Perception of risks. The Geneva papers on risk and insurance. 29(1):102–114

    Google Scholar 

  44. Frewer L (2004) The public and effective risk communication. Toxicol Lett 149:391–397

    Article  CAS  Google Scholar 

  45. Gavin NT, Leonard-Milsom L, Montgomery J (2011) Climate change, flooding and the media in Britain. Public Understand Sci 20(3):422–438

    Article  Google Scholar 

  46. Kreibich H, Seifert I, Thieken AH et al (2011) Recent changes in flood preparedness of private households and business in Germany. Reg Environ Chang 11:59–71

    Article  Google Scholar 

  47. Lamond JE, Proverbs DG (2009) Resilience to flooding: lessons from international comparison. Urban Des Planning 162(2):63–70

    Article  Google Scholar 

  48. Thieken AH, Kreibich H, Müller M et al (2007) Coping with floods: preparedness, response and recovery of flood-affected residents in Germany in 2002. Hydrol Sci J 52(5):1016–1037

    Article  Google Scholar 

  49. Wachinger G, Renn O, Begg C et al (2013) The risk perception paradox—implications for governance and communication of natural hazards. Risk Anal 33(6):1049–1065

    Article  Google Scholar 

  50. Cologna V, Bark RH, Paavola J (2017) Flood risk perceptions and the UK media: moving beyond “once in a lifetime” to “be prepared” reporting. Clim Risk Manag 17(2017):1–10. https://doi.org/10.1016/j.crm.2017.04.005

    Article  Google Scholar 

  51. Kasperson RE, Renn O, Slovic P et al (1988) The social amplification of risk: a conceptual framework. Risk Anal 8(2):177–187

    Article  Google Scholar 

  52. Kingdon JW (1995) Agendas, alternatives, and public policies. Longman

    Google Scholar 

  53. Moghadas M, Asadzadeh A, Vafeidis A, Fekete A, Kottera T (2019) A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int J Disaster Risk Reduct 35:101069. https://doi.org/10.1016/j.ijdrr.2019.101069

    Article  Google Scholar 

  54. Burton CG (2012) The development of metrics for community resilience to natural disasters, University of South Carolina. https://doi.org/10.1007/s13398-014-0173-7.2

  55. Cutter SL, Burton CG, Emrich CT (2010) Disaster resilience indicators for benchmarking baseline conditions. J Homel Secur Emerg Manag 7(14):1732. https://doi.org/10.2202/1547-7355

    Article  Google Scholar 

  56. Cutter SL, Ash KD, Emrich CT (2014) The geographies of community disaster resilience. Glob Environ Chang 29:65–77. https://doi.org/10.1016/jgloenvcha.2014.08.005

    Article  Google Scholar 

  57. Renschler CS, Frazier E, Arendt L, Cimellaro GP, Reinhorn M, Bruneau M (2010) Community resilience indices are integral of the geospatial - temporal functionality of components, or dimensions, of resilience population –Q. http://www.mceer.buffalo.edu/pdf/report/10-0006.pdf

  58. Asare-Kyei D, Renaud FG, Kloos J, Walz Y, Rhyner J (2017) Development and validation of risk profiles of west African rural communities facing multiple natural hazards. PLoS One 12(3)

    Google Scholar 

  59. Satta A, Puddu M, Venturini S, Giupponi C (2017) Assessment of coastal risks to climate change related impacts at the regional scale: the case of the Mediterranean region. Int J Disast Risk Reduct 24:284–296

    Article  Google Scholar 

  60. Sudmeier-Rieux K (2011) On landslide risk, resilience and vulnerability of mountain communities in central-eastern Nepal, PhD dissertation, University of Lausanne

    Google Scholar 

  61. Fedele G, Locatelli B, Djoudi H (2017) Mechanisms mediating the contribution of ecosystem services to human Well-being and resilience. Ecosyst Serv 28:43–54

    Article  Google Scholar 

  62. Leal Filho W, Modesto F, Nagy GJ, Saroar M, Yannick Toamukum N, Ha’apio M (2018) Fostering coastal resilience to climate change vulnerability in Bangladesh, Brazil, Cameroon and Uruguay: a cross-country comparison, Mitig. Adapt Strategies Glob Change 23(4):579–602

    Google Scholar 

  63. Hewitt K (1997) Regions of risk: a geographical introduction to disasters. Longman, Harlow

    Google Scholar 

  64. Rashed T, Weeks J (2003) Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. Int J Geogr Inf Sci 17(6):547–576

    Article  Google Scholar 

  65. Gari SR, Newton A, Icely JD (2015) A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean Coast Manag 103:63–77. https://doi.org/10.1016/j.ocecoaman.2014.11.013

    Article  Google Scholar 

  66. Menz MHM, Dixon KW, Hobbs RJ (2013) Hurdles and opportunities for landscape scale restoration. Science (80-) 339:526–527. https://doi.org/10.1126/science.1228334

    Article  CAS  Google Scholar 

  67. Svarstad H, Petersen LK, Rothman D, Siepel H, Wätzold F (2008) Discursive biases of the environmental research framework DPSIR. Land Use Policy 25:116–125. https://doi.org/10.1016/j.landusepol.2007.03.005

    Article  Google Scholar 

  68. Tscherning K, Helming K, Krippner B, Sieber S, Paloma SGY (2012) Does researchapplying the DPSIR framework support decision making? Land Use Policy 29:102–110. https://doi.org/10.1016/j.landusepol.2011.05.009

    Article  Google Scholar 

  69. Connop S, Vandergert P, Eisenberg B, Collier MJ, Nash C, Clough J, Newport D (2016) Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure. Environ Sci Pol 62:1–13. https://doi.org/10.1016/j.envsci.2016.01.013

    Article  Google Scholar 

  70. Easterling WE (1997) Why regional studies are needed in the development of fullscale integrated assessment modeling of global change precesses. Global Environ Change 7(4):337–356

    Article  Google Scholar 

  71. Holman IP, Loveland PJ, Nicholls RJ, Shackley S, Berry PM, Rounsevell MDA, Audsley E, Harrison PA, Wood R (2002) REGIS – regional climate change impact response studies in East Anglia and North West England. www.UKCIP.org.uk

  72. Parson EA, Fisher Vanden K (1997) Integrated assessment models of global climate change. Annu Rev Energy Environ 22:589–628

    Article  Google Scholar 

  73. Peirce M (1998) Computer-based models in integrated environmental assessment. A report produced for the European Environment Agency. Technical report no 14

    Google Scholar 

  74. Botzen WJW, Deschenes O, Sanders M (2019) The economic impacts of natural disasters: a review of models and empirical studies. Rev Environ Econ Pol. https://doi.org/10.1093/reep/rez004

  75. Fernández FJ, Blanco M (2015) Modelling the economic impacts of climate change on global and European agriculture. Review of economic structural approaches. Economics 9(2015–10):1–53

    Google Scholar 

  76. Dowlatabadi H (1998) Sensitivity of climate change mitigation estimates to assumptions about technical change. Energy Econ 20(5):473–493

    Article  Google Scholar 

  77. Ward PJ et al (2015) Usefulness and limitations of global flood risk models. Nat Clim Chang 5(8):712–715. https://doi.org/10.1038/nclimate2742

    Article  Google Scholar 

  78. Nordhaus WD (1992) “The ‘DICE’ model: background and structure of a dynamic integrated climate-economy model of the economics of global warming

    Google Scholar 

  79. Nordhaus WD (2017) Revisiting the social cost of carbon. Proc Natl Acad Sci U S A 114(7):1518–1523. https://doi.org/10.1073/pnas.1609244114

    Article  CAS  Google Scholar 

  80. Tol RSJ (2018) The economic impacts of climate change. Rev Environ Econ Pol:4–25. https://doi.org/10.1093/reep/rex027

  81. de Bruin KC, Dellink RB, Tol RSJ (2009) AD-DICE: an implementation of adaptation in the DICE model. Clim Chang 95(1–2):63–81. https://doi.org/10.1007/s10584-008-9535-5

    Article  Google Scholar 

  82. Dumas P, Ha-Duong M (2013) Optimal growth with adaptation to climate change. Clim Chang 117(4):691–710. https://doi.org/10.1007/s10584-012-0601-7

    Article  Google Scholar 

  83. Kuik O (2017) A simple river floods damage model for the fund model. Amsterdam

    Google Scholar 

  84. Anthoff D, Tol RSJ (2014) The climate framework for uncertainty, negotiation and distribution (FUND). technical description, version 3.9, 26. Www.Fund-Model.Org, pp 1–69. http://www.fund-model.org/versions

  85. Ignjacevic P, Botzen WJ, Estrada F, Kuik O, Ward P, Tiggeloven T (2020) CLIMRISK-RIVER: accounting for local river flood risk in estimating the economic cost of climate change. Environ Model Softw 132:104784. https://doi.org/10.1016/j.envsoft.2020.104784

    Article  Google Scholar 

  86. Horita FE, Albuquerque JP, Marchezini V, Mendiondo EM (2016) A qualitative analysis of the early warning process in disaster management. In: Proceedings of the 13th international conference on information systems for crisis response and management (ISCRAM), pp 1–9

    Google Scholar 

  87. Krzhizhanovskaya VV, Shirshov GS, Melnikova NB, Belleman RG, Rusadi FI, Broekhuijsen BJ et al (2011) Flood early warning system: design, implementation and computational modules. Proc Comput Sci 4:106–115

    Article  Google Scholar 

  88. Adeyeye K, Bairi A, Emmitt S, Hyde K (2017) Socially-integrated resilience in building-level water networks using smart microgrid+net. In: 7th international conference on building resilience; using scientific knowledge to inform policy and practice in disaster risk reduction, ICBR2017, 27–29 November 2017, Bangkok, Thailand Procedia Engineering 212(2018): pp 39–46. https://doi.org/10.1016/j.proeng.2018.01.006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Figurek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Figurek, A. (2021). Socio-Economical Aspects of NBS. In: Ferreira, C.S.S., Kalantari, Z., Hartmann, T., Pereira, P. (eds) Nature-Based Solutions for Flood Mitigation. The Handbook of Environmental Chemistry, vol 107. Springer, Cham. https://doi.org/10.1007/698_2021_764

Download citation

Publish with us

Policies and ethics