Skip to main content

Dynamics of the Atmospheric Boundary Layer in the Mountain-Valley Relief of Adygea

  • Chapter
  • First Online:
The Republic of Adygea Environment

Abstract

The main part of the territory of the Republic of Adygea is located in the mountain-valley relief. The state of the atmosphere over complex relief is controlled by synoptic-scale processes, mesoscale circulations caused by thermal effects, and turbulent processes. The chapter explores the key features of the structure and dynamics of the atmospheric boundary layer over mountainous terrain. The main features of the mountain-valley circulation, the causes and characteristics of slope and valley winds are presented. Special attention is paid to the Novorossiysk bora and exchange processes over reservoirs. The territory of the Republic of Adygea is unique in terms of the variety of landscapes and can become a good testing ground for a comprehensive study of the features of complex wind circulation and validation of models from eddy-resolving to regional numerical models of weather forecasting. This will contribute not only to improving the quality of weather forecasts and dangerous meteorological phenomena, but also to improving the ecological state of the region through more competent planning of economic activities, taking into account the landscape and climatic features of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bedanokov MK, Berzegova RB, Kuizheva SK (2020) Atmospheric disturbances in the flow of the mountains and the problem of flight safety in the mountains of the republic of Adygea. In: Bedanokov M, Lebedev SA, Kostianoy A (eds) The Republic of Adygea environment. Springer, Berlin. https://doi.org/10.1007/698_2020_494

    Chapter  Google Scholar 

  2. Mihajleva N.Y. (2013) Social'no-ekonomicheskie i ekologicheskie problemy gornyh territorij Severnogo Kavkaza. Izdatelstvo Severo-Osetinskogo gosudarstvenogo universiteta imeni K.L. Hetagurova, Vladikavkaz. 251. (in Russian)

    Google Scholar 

  3. Baklanov AA, Grisogono B, Bornstein R, Mahrt L, Zilitinkevich SS, Taylor P, Larsen SE, Rotach MW, Fernando HJS (2011) The nature, theory, and modeling of atmospheric planetary boundary layers. Bull Am Meteorol Soc 92(2):123–128. https://doi.org/10.1175/2010BAMS2797.1

    Article  Google Scholar 

  4. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land–atmosphere coupling and climate change in Europe. Nature 443(7108):205–209. https://doi.org/10.1038/nature05095

    Article  CAS  Google Scholar 

  5. Tomasi E, Giovannini L, Zardi D, de Franceschi M (2017) Optimization of Noah and Noah_MP WRF land surface schemes in snow-melting conditions over complex terrain. Monthly Weather Rev 145(12):4727–4745. https://doi.org/10.1175/MWR-D-16-0408.1

    Article  Google Scholar 

  6. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, p 670. https://doi.org/10.1007/978-94-009

    Book  Google Scholar 

  7. Rotach MW, Gohm A, Lang MN, Leukauf D, Stiperski I, Wagner JS (2015) On the vertical exchange of heat, mass, and momentum over complex, mountainous terrain. Front Earth Sci 3:1–14. https://doi.org/10.3389/feart.2015.00076

    Article  Google Scholar 

  8. Smith RB (1979) The influence of mountains on the atmosphere. Adv Geophys 21:87–230. https://doi.org/10.1016/S0065-2687(08)60262-9

    Article  Google Scholar 

  9. Markowski P, Richardson Y (2010) Mesoscale meteorology in midlatitudes. Wiley, Hoboken, p 430. https://doi.org/10.1002/9780470682104

    Book  Google Scholar 

  10. Rotach MW, Zardi D (2007) On the boundary-layer structure over highly complex terrain: key findings from MAP. Q J R Meteorol Soc 133(625):937–948. https://doi.org/10.1002/qj.71

    Article  Google Scholar 

  11. De Franceschi M, Zardi D, Tagliazucca M, Tampieri F (2009) Analysis of second-order moments in surface layer turbulence in an Alpine valley. Q J R Meteorol Soc 135(644):1750–1765. https://doi.org/10.1002/qj.506

    Article  Google Scholar 

  12. Zardi D, Whiteman D (2013) Diurnal mountain wind systems. In: Chow F, De Wekker S, Snyder B (eds) Mountain weather research and forecasting: recent progress and current challenges. Springer, Dordrecht, pp 35–119. https://doi.org/10.1007/978-94-007-4098-3_2

    Chapter  Google Scholar 

  13. Schicker I, Arias DA, Seibert P (2016) Influences of updated land-use datasets on WRF simulations for two Austrian regions. Meteorog Atmos Phys 128(3):279–301. https://doi.org/10.1007/s00703-015-0416-y

    Article  Google Scholar 

  14. Laiti L, Zardi D, de Franceschi M, Rampanelli G, Giovannini L (2014) Analysis of the diurnal development of a lake-valley circulation in the Alps based on airborne and surface measurements. Atmos Chem Phys 14(18):9771–9786. https://doi.org/10.5194/acp-14-9771-2014

    Article  CAS  Google Scholar 

  15. Ducrocq V, Braud I, Davolio S, Ferretti R, Flamant C, Jansa A, Kalthoff N, Richard E, Taupier-Letage I, Ayral PA, Belamari S, Berne A, Borga M, Boudevillain B, Bock O, Boichard JL, Bouin MN, Bousquet O, Bouvier C, Chiggiato J, Cimini D, Corsmeier U, Coppola L, Cocquerez P, Defer E, Delanoë J, Di Girolamo P, Doerenbecher A, Drobinski P, Dufournet Y, Fourrié N, Gourley JJ, Labatut L, Lambert D, Le Coz J, Marzano FS, Molinié G, Montani A, Nord G, Nuret M, Ramage K, Rison W, Roussot O, Said F, Schwarzenboeck A, Testor P, Van Baelen J, Vincendon B, Aran M, Tamayo J (2014) HyMeX-SOP1: the field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean. Bull Am Meteorol Soc 95(7):1083–1100. https://doi.org/10.1175/BAMS-D-12-00244.1

    Article  Google Scholar 

  16. Barry RG (1992) Mountain weather and climate. Cambridge University Press, Cambridge, p 506

    Google Scholar 

  17. Chow F, DeWekker S, Snyder B (eds) (2013) Mountain weather research and forecasting: recent progress and current challenges. Springer, Heidelberg, p 760. https://doi.org/10.1007/978-94-007-4098-3

    Book  Google Scholar 

  18. Rotach MW, Stiperski I, Fuhrer O, Goger B, Gohm A, Obleitner F, Rau G, Sfyri E, Vergeiner J (2017) Investigating exchange processes over complex topography: the Innsbruck box (i-box). Bull Am Meteorol Soc 98(4):787–805. https://doi.org/10.1175/BAMS-D-15-00246.1

    Article  Google Scholar 

  19. Medeiros LE, Fitzjarrald DR (2014) Stable boundary layer in complex terrain. Part I: linking fluxes and intermittency to an average stability index. J Appl Meteorol Climatol 53(9):2196–2215. https://doi.org/10.1175/JAMC-D-13-0345.1

    Article  Google Scholar 

  20. Emeis S, Kalthoff N, Adler B, Pardyjak E, Paci A, Junkermann W (2018) High-resolution observations of transport and exchange processes in mountainous terrain. Atmos 9(12):457. https://doi.org/10.3390/atmos9120457

    Article  Google Scholar 

  21. Chow FK, Schär C, Ban N, Lundquist KA, Schlemmer L, Shi X (2019) Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain. Atmos 10(5):274. https://doi.org/10.3390/atmos10050274

    Article  Google Scholar 

  22. Serafin S, Adler B, Cuxart J, De Wekker SF, Gohm A, Grisogono B, Kalthoff N, Kirshbaum DJ, Rotach MW, Schmidli J, Stiperski I (2018) Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmos 9(3):102. https://doi.org/10.3390/atmos9030102

    Article  CAS  Google Scholar 

  23. Foken T (2017) Micrometeorology, 2nd edn. Springer, Berlin, p 362. https://doi.org/10.1007/978-3-642-25440-6

  24. Cuxart J, Conangla L, Jiménez MA (2015) Evaluation of the surface energy budget equation with experimental data and the ECMWF model in the Ebro Valley. J Geophys Res Atmos 120(3):1008–1022. https://doi.org/10.1002/2014JD022296

    Article  Google Scholar 

  25. Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18(6):1351–1367. https://doi.org/10.1890/06-0922.1

    Article  Google Scholar 

  26. Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain MA, Arneth A, Aurela M, Bernhofer C, Cescatti A, Dellwik E, Duce P, Gianelle D, Gorsel E, Kiely G, Knohl A, Margolis H, McCaughey H, Merbold L, Montagnani L, Papale D, Reichstein M, Saunders M, Serrano-Ortiz P, Sottocornola M, Spano D, Vaccari F, Varlagin A (2013) A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agric For Meteorol 171-172:137–152. https://doi.org/10.1016/j.agrformet.2012.11.004

    Article  Google Scholar 

  27. Obukhov AM (1946) Turbulence in a temperature-inhomogeneous atmosphere. Trudy Instituta Teoreticheskoy Geofiziki Akademii nauk SSSR 1:95–115. (in Russian)

    Google Scholar 

  28. Monin AS, Yaglom AM (1965) Statistical fluid mechanics, volume I-II. Nauka, Moscow, p 640. (in Russian)

    Google Scholar 

  29. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the atmospheric surface layer. Trudy Geofizicheskogo Instituta Akademii nauk SSSR 24(151):163–187. (in Russian)

    Google Scholar 

  30. Kantha LH, Clayson CA (2000) Small scale processes in geophysical fluid flows. Academic Press, San Diego, p 750

    Google Scholar 

  31. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, Oxford, p 304. https://doi.org/10.1007/BF00712396

    Book  Google Scholar 

  32. Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, New York, p 393. https://doi.org/10.1017/CBO9780511840524

    Book  Google Scholar 

  33. Nadeau DF, Pardyjak ER, Higgins CW, Parlange MB (2013) Similarity scaling over a steep alpine slope. Bound-Layer Meteorol 147(3):401–419. https://doi.org/10.1007/s10546-012-9787-5

    Article  Google Scholar 

  34. Babic K, Rotach MW, Klaic ZB (2016) Evaluation of local similarity theory in the wintertime nocturnal boundary layer over heterogeneous surface. Agric For Meteorol 228-229:164–179. https://doi.org/10.1016/j.agrformet.2016.07.002

    Article  Google Scholar 

  35. Grachev AA, Leo LS, Di Sabatino S, Fernando HJS, Pardyjak ER, Fairall CW (2016) Structure of turbulence in katabatic flows below and above the wind-speed maximum. Bound-Layer Meteorol 159(3):469–494. https://doi.org/10.1007/s10546-015-0034-8

    Article  Google Scholar 

  36. Stiperski I, Rotach MW (2016) On the measurement of turbulence over complex mountainous terrain. Bound-Layer Meteorol 159(1):97–121. https://doi.org/10.1007/s10546-015-0103-z

    Article  Google Scholar 

  37. Babic N, Vecenaj Z, De Wekker SF (2016) Flux–variance similarity in complex terrain and its sensitivity to different methods of treating non-stationarity. Bound-Layer Meteorol 159(1):123–145. https://doi.org/10.1007/s10546-015-0110-0

    Article  Google Scholar 

  38. Barskov KV, Glazunov AV, Repina IA, Stepanenko VM, Lykossov VN, Mammarella I (2018) On the applicability of similarity theory for the stable atmospheric boundary layer over complex terrain. Izvestiya Atmos Oceanic Phys 54(5):462–471. https://doi.org/10.1134/S0001433818050031

    Article  Google Scholar 

  39. Quan L, Hu F (2009) Relationship between turbulent flux and variance in the urban canopy. Meteorog Atmos Phys 104(1–2):29–36. https://doi.org/10.1007/s00703-008-0012-5

    Article  Google Scholar 

  40. Wood CR, Lacser A, Barlow JF, Padhra A, Belcher SE, Nemitz E, Helfter C, Famulari D, Grimmond CSB (2010) Turbulent flow at 190 m height above London during 2006–2008: a climatology and the applicability of similarity theory. Bound-Layer Meteorol 137(1):77–96. https://doi.org/10.1007/s10546-010-9516-x

    Article  Google Scholar 

  41. Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2015) Similarity theory based on the Dougherty–Ozmidov length scale. Q J R Meteorol Soc 141(690):1845–1856. https://doi.org/10.1002/qj.2488

    Article  Google Scholar 

  42. Rodrigo JS, Anderson PS (2013) Investigation of the stable atmospheric boundary layer at Halley Antarctica. Bound-Layer Meteorol 148(3):517–539. https://doi.org/10.1007/s10546-013-9831-0

    Article  Google Scholar 

  43. Zhao Z, Gao Z, Li D, Bi X, Liu C, Liao F (2013) Scalar flux–gradient relationships under unstable conditions over water in coastal regions. Bound-Layer Meteorol 148(3):495–516. https://doi.org/10.1007/s10546-013-9829-7

    Article  Google Scholar 

  44. Kral ST, Sjöblom A, Nygard T (2014) Observations of summer turbulent surface fluxes in a high Arctic fjord. Q J R Meteorol Soc 140(679):666–675. https://doi.org/10.1002/qj.2167

    Article  Google Scholar 

  45. Grachev AA, Leo LS, Fernando HJ, Fairall CW, Creegan E, Blomquist BW, Christman AJ, Hocut CM (2018) Air–sea/land interaction in the coastal zone. Bound-Layer Meteorol 167(2):181–210. https://doi.org/10.1007/s10546-017-0326-2

    Article  Google Scholar 

  46. Figueroa-Espinoza B, Salles P (2014) Local Monin–Obukhov similarity in heterogeneous terrain. Atmos Sci Lett 15(4):299–306. https://doi.org/10.1002/asl2.503

    Article  Google Scholar 

  47. Panin GN, Bernhofer C (2008) Parametrization of turbulent fluxes over inhomogeneous landscapes. Izvestiya Atmos Oceanic Phys 44(6):701–716. https://doi.org/10.1134/S0001433808060030

    Article  Google Scholar 

  48. Leuning R, van Gorsel E, Massman WJ, Isaac PR (2012) Reflections on the surface energy imbalance problem. Agric For Meteorol 156:65–74. https://doi.org/10.1016/j.agrformet.2011.12.002

    Article  Google Scholar 

  49. Rotach MW, Andretta M, Calanca P, Weigel A, Weiss A (2008) Boundary layer characteristics and turbulent exchange mechanisms in highly complex terrain. Acta Geophys 56(1):194–219. https://doi.org/10.2478/s11600-007-0043-1

    Article  Google Scholar 

  50. Cuxart J, Wrenger B, Martínez-Villagrasa D, Reuder J, Jonassen MO, Jiménez MA, Lothon M, Lohou F, Hartogensis O, Dünnermann J, Conangla L, Garai A (2016) Estimation of the advection effects induced by surface heterogeneities in the surface energy budget. Atmos Chem Phys 16:9489–9504. https://doi.org/10.5194/acp-16-9489-2016

    Article  CAS  Google Scholar 

  51. Wohlfahrt G, Albin H, Niedrist G, Scholz K, Enrico T, Peng Z (2016) On the energy balance closure and net radiation in complex terrain. Agric For Meteorol 226-227:37–49. https://doi.org/10.1016/j.agrformet.2016.05.012

    Article  Google Scholar 

  52. Barskov K, Stepanenko V, Repina I, Artamonov A, Gavrikov A (2019) Two regimes of turbulent fluxes above a frozen small Lake surrounded by Forest. Bound-Layer Meteorol 173(3):311–320. https://doi.org/10.1007/s10546-019-00469-w

    Article  Google Scholar 

  53. Rotach MW, Calanca P, Graziani G, Gurtz J, Steyn DG, Vogt R, Andretta M, Christen A, Cieslik S, Connolly R, De Wekker SFJ, Galmarini S, Kadygrov EN, Kadygrov V, Miller E, Neininger B, Rucker M, van Gorsel E, Weber H, Weiss A, Zappa M (2004) Turbulence structure and exchange processes in an Alpine Valley: the Riviera project. Bull Am Meteorol Soc 85(9):1367–1386. https://doi.org/10.1175/BAMS-85-9-1367

    Article  Google Scholar 

  54. Lampert A, Pätzold F, Jiménez MA, Lobitz L, Martin S, Lohmann G, Canut G, Legain D, Bange J, Martínez-Villagrasa D, Cuxart J (2016) A study of local turbulence and anisotropy during the afternoon and evening transition with an unmanned aerial system and mesoscale simulation. Atmos Chem Phys 16(12):8009–8021. https://doi.org/10.5194/acp-16-8009-2016

    Article  CAS  Google Scholar 

  55. Johansson C, Smedman A-S, Högström U, Brasseur JG, Khanna S (2001) Critical test of the validity of Monin–Obukhov similarity during convective conditions. J Atmos Sci 58(12):1549–1566. https://doi.org/10.1175/1520-0469(2001)058%3C1549:CTOTVO%3E2.0.CO;2

    Article  Google Scholar 

  56. Wilson JD (2008) Monin-Obukhov functions for standard deviations of velocity. Bound-Layer Meteorol 129(3):353–369. https://doi.org/10.1007/s10546-008-9319-5

    Article  Google Scholar 

  57. Carruthers DJ, Hunt JCR (1990) Fluid mechanics of airflow over hills: turbulence, fluxes, and waves in the boundary layer. In: Blumen W (ed) Atmospheric processes over complex terrain. American Meteorological Society, Boston, pp 83–107. https://doi.org/10.1007/978-1-935704-25-6_5

    Chapter  Google Scholar 

  58. Moraes OLL, Acevedo OC, Degrazia GA, Anfossi D, da Silva R, Anabor V (2005) Surface layer turbulence parameters over a complex terrain. Atmos Environ 39(17):3103–3112. https://doi.org/10.1016/j.atmosenv.2005.01.046

    Article  CAS  Google Scholar 

  59. Sfyri E, Rotach M, Stiperski I, Bosveld F, Obleitner F, Lehner M (2018) Scalar-flux similarity in the layer near the surface over mountainous terrain. Bound-Layer Meteorol 169(1):11–46. https://doi.org/10.1007/s10546-018-0365-3

    Article  Google Scholar 

  60. Stiperski I, Calaf M, Rotach MW (2019) Scaling, anisotropy, and complexity in near-surface atmospheric turbulence. J Geophys Res Atmos 124(3):1428–1448. https://doi.org/10.1029/2018JD029383

    Article  Google Scholar 

  61. Medeiros LE, Fitzjarrald DR (2015) Stable boundary layer in complex terrain. Part II: geometrical and sheltering effects on mixing. J Appl Meteorol Climatol 54(1):170–188. https://doi.org/10.1175/JAMC-D-13-0346.1

    Article  Google Scholar 

  62. Karchagina LP, Mamsirov NI, Tuguz RK, Kostina NE (2013) The adaptive-landscape system of agriculture foothill zone of the Republic of Adygea. Magarin O.G, Maikop, p 86. (in Russian)

    Google Scholar 

  63. The Atlas of the Republic of Adygea (2005) Publishing House “Lev Tolstoy”, Maykop, 79 pp. (in Russian)

    Google Scholar 

  64. Burman EA (1969) Local winds. Gidrometeoizdat, Leningrad, p 341. (in Russian)

    Google Scholar 

  65. Gutman LH (1969) Introduction to the nonlinear theory of mesometeorological processes. Gidrometeoizdat, Leningrad, p 295. (in Russian)

    Google Scholar 

  66. Gasanov SS (2009) Structural analysis of high-altitude beitof north caucasus region geosystems, Izvestiya Dagestanskogo gosudarstvennogo pedagogicheskogo universiteta. Yestestvennyye i tochnyye nauki 1(6): 96–103. (in Russian)

    Google Scholar 

  67. Danilova NA (1982) Climatorecreational resources of the North Caucasus. Materialy meteorologicheskikh issledovaniy 5. (in Russian)

    Google Scholar 

  68. Poltraus BV (1972) Foehn of West Caucasus. Meteorol Gidrol 7:57–65. (in Russian)

    Google Scholar 

  69. Noppel H, Fiedler F (2002) Mesoscale heat transport over complex terrain by slope winds–A conceptual model and numerical simulations. Bound-Layer Meteorol 104(1):73–97. https://doi.org/10.1023/A:1015556228119

    Article  Google Scholar 

  70. Kirshbaum DJ (2017) On upstream blocking over heated mountain ridges. Q J R Meteorol Soc 143(702):53–68. https://doi.org/10.1002/qj.2945

    Article  Google Scholar 

  71. Ball FK (1956) The theory of strong katabatic winds. Aust J Phys 9(3):373–386. https://doi.org/10.1071/PH560373

    Article  Google Scholar 

  72. Gutman LN (1983) On the theory of the katabatic slope wind. Tellus A 35(3):213–218. https://doi.org/10.1111/j.1600-0870.1983.tb00198.x

    Article  Google Scholar 

  73. Manins PC, Sawford BL (1979) A model of katabatic winds. J Atmos Sci 36(4):619–630. https://doi.org/10.1175/1520-0469(1979)036%3C0619:AMOKW%3E2.0.CO;2

    Article  Google Scholar 

  74. Prandtl L (1942) Führer durch die Strömungslehre, Vieweg und Sohn. Braunschweig, p 375

    Google Scholar 

  75. Haiden T (2003) On the pressure field in the slope wind layer. J Atmos Sci 60(13):1632–1635. https://doi.org/10.1175/1520-0469(2003)60%3C1632:OTPFIT%3E2.0.CO;2

    Article  Google Scholar 

  76. Monin AS (1948) Model of wind on slope. Trudy Tsentral'nogo instituta prognozov Glavnogo upravleniya Gidrometeorologicheskoy sluzhby 8:35. (in Russian)

    Google Scholar 

  77. Gutman LN, Monin AS (1950) About local winds in mountainous areas. Trudy Tsentral'nogo instituta prognozov Glavnogo upravleniya Gidrometeorologicheskoy sluzhby 21(48). (in Russian)

    Google Scholar 

  78. Gutman LN, Malbakhov VM (1964) On the theory of katabatic winds of Antarctic. Meteorologicheskiye Issledovaniya 9:150–155. (In Russian)

    Google Scholar 

  79. Lykosov VN, Gutman LN (1972) Turbulent boundary layer over an inclined underlying surface. Izvestiya Akademii nauk SSSR Atmos Oceanic Phys 8(8):799–809. (In Russian)

    Google Scholar 

  80. Stiperski I, Kavcic I, Grisogono B, Durran DR (2007) Including Coriolis effects in the Prandtl model for katabatic flow. Q J R Meteorol Soc 133(622):101–106. https://doi.org/10.1002/qj.19

    Article  Google Scholar 

  81. Shapiro A, Fedorovich E (2008) Coriolis effects in homogeneous and inhomogeneous katabatic flows. Q J R Meteorol Soc 134(631):353–370. https://doi.org/10.1002/qj.217

    Article  Google Scholar 

  82. Chernyshev RV, Stepanenko VM, Repina IA (2018) Modelling of katabatic flow on ice slope over Kongsvegen glacier. Protsessy v geosredakh 3(16):1062–1069. (in Russian)

    Google Scholar 

  83. Grisogono B, Oerlemans J (2001) Katabatic flow: analytic solution for gradually varying eddy diffusivities. J Atmos Sci 58(21):3349–3354. https://doi.org/10.1175/1520-0469(2001)058%3C3349:KFASFG%3E2.0.CO;2

    Article  Google Scholar 

  84. Grisogono B, Oerlemans J (2002) Justifying the WKB approximation in pure katabatic flows. Tellus A Dyn Meteorol Oceanogr 54(5):453–462. https://doi.org/10.3402/tellusa.v54i5.12166

    Article  Google Scholar 

  85. Egger J (1981) On the linear two-dimensional theory of thermally induced slope winds. Beitr Phys Atmos 54(4):465–481

    Google Scholar 

  86. Shapiro A, Fedorovich E (2007) Katabatic flow along a differentially cooled sloping surface. J Fluid Mech 571:149–175. https://doi.org/10.1017/S0022112006003302

    Article  Google Scholar 

  87. Shapiro A, Burkholder B, Fedorovich E (2012) Analytical and numerical investigation of two-dimensional katabatic flow resulting from local surface cooling. Bound-Layer Meteorol 145(1):249–272. https://doi.org/10.1007/s10546-011-9685-2

    Article  Google Scholar 

  88. Kondo H (1984) The difference of the slope wind between day and night. J Meteorol Soc Jpn Ser II 62(2):224–233. https://doi.org/10.2151/jmsj1965.62.2_224

    Article  Google Scholar 

  89. Burkholder B, Shapiro A, Fedorovich E (2009) Katabatic flow induced by a cross-slope band of surface cooling. Acta Geophys 57(4):923–949. https://doi.org/10.2478/s11600-009-0025-6

    Article  Google Scholar 

  90. Fedorovich E, Shapiro A (2017) Oscillations in Prandtl slope flow started from rest. Q J R Meteorol Soc 143(703):670–677. https://doi.org/10.1002/qj.2955

    Article  Google Scholar 

  91. Zammett RJ, Fowler AC (2007) Katabatic winds on ice sheets: a refinement of the Prandtl model. J Atmos Sci 64(7):2707–2716. https://doi.org/10.1175/JAS3960.1

    Article  Google Scholar 

  92. Zardi D, Serafin S (2015) An analytic solution for time-periodic thermally driven slope flows. Q J R Meteorol Soc 141(690):1968–1974. https://doi.org/10.1002/qj.2485

    Article  Google Scholar 

  93. Ye ZJ, Segal M, Pielke RA (1987) Effects of atmospheric thermal stability and slope steepness on the development of daytime thermally induced upslope flow. J Atmos Sci 44(22):3341–3354. https://doi.org/10.1175/1520-0469(1987)044%3C3341:EOATSA%3E2.0.CO;2

    Article  Google Scholar 

  94. Giometto MG, Grandi R, Fang J, Monkewitz PA, Parlange MB (2017) Katabatic flow: a closed-form solution with spatially-varying eddy diffusivities. Bound-Layer Meteorol 162(2):307–317. https://doi.org/10.1007/s10546-016-0196-z

    Article  Google Scholar 

  95. Schumann U (1990) Large-eddy simulation of the up-slope boundary layer. Q J R Meteorol Soc 116(493):637–670. https://doi.org/10.1002/qj.49711649307

    Article  Google Scholar 

  96. Vergeiner I, Dreiseitl E (1987) Valley winds and slope winds – observations and elementary thoughts. Meteorog Atmos Phys 36(1–4):264–286. https://doi.org/10.1007/BF01045154

    Article  Google Scholar 

  97. Enger L, Korasin D, Yang X (1993) A numerical study of boundary-layer dynamics in a mountain valley. Bound-Layer Meteorol 66(4):357–394. https://doi.org/10.1007/BF00712729

    Article  Google Scholar 

  98. Schmidli J (2013) Daytime heat transfer processes over mountainous terrain. J Atmos Sci 70(12):4041–4066. https://doi.org/10.1175/JAS-D-13-083.1

    Article  Google Scholar 

  99. Kuwagata T, Kondo J (1989) Observation and modeling of thermally induced upslope flow. Bound-Layer Meteorol 49(3):265–293. https://doi.org/10.1007/BF00120973

    Article  Google Scholar 

  100. Leukauf D, Gohm A, Rotach MW (2016) Quantifying horizontal and vertical tracer mass fluxes in an idealized valley during daytime. Atmos Chem Phys 16(20):13049–13066. https://doi.org/10.5194/acp-16-13049-2016

    Article  CAS  Google Scholar 

  101. Kamenetsky ES, Radiono AA (1999) Aerodynamics of mountain valleys with varying cross sections. Bound-Layer Meteorol 91(2):191–197. https://doi.org/10.1023/A:1001863929405

    Article  Google Scholar 

  102. Stiperski I, Holtslag AA, Lehner M, Hoch SW, Whiteman CD (2020) On the turbulence structure of deep katabatic flows on a gentle mesoscale slope. Q J R Meteorol Soc 146(728):1206–1231. https://doi.org/10.1002/qj.3734

    Article  Google Scholar 

  103. Giometto MG, Katul GG, Fang J, Parlange MB (2017) Direct numerical simulation of turbulent slope flows up to Grashof number Gr=2.1x1011. J Fluid Mech 829:589–620. https://doi.org/10.1017/jfm.2017.372

    Article  CAS  Google Scholar 

  104. Axelsen S, Dop H (2009) Large-eddy simulation of katabatic winds. Part 1: comparison with observations. Acta Geophys 57:803–836. https://doi.org/10.2478/s11600-009-0041-6

    Article  Google Scholar 

  105. Leukauf D, Gohm A, Rotach MW, Wagner JS (2015) The impact of the temperature inversion breakup on the exchange of heat and mass in an idealized valley: sensitivity to the radiative forcing. J Appl Meteorol Climatol 54(11):2199–2216. https://doi.org/10.1175/JAMC-D-15-0091.1

    Article  Google Scholar 

  106. Hocut C, Liberzon D, Fernando H (2015) Separation of upslope flow over a uniform slope. J Fluid Mech 775:266–287. https://doi.org/10.1017/jfm.2015.298

    Article  Google Scholar 

  107. Khanna S, Brasseur JG (1997) Analysis of Monin–Obukhov similarity from large-eddy simulation. J Fluid Mech 345:251–286. https://doi.org/10.1017/S0022112097006277

    Article  Google Scholar 

  108. Crook NA, Tucker DF (2005) Flow over heated terrain. Part I: linear theory and idealized numerical simulations. Mon Weather Rev 133(9):2552–2564. https://doi.org/10.1175/MWR2964.1

    Article  Google Scholar 

  109. Kirshbaum DJ (2013) On thermally forced circulations over heated terrain. J Atmos Sci 70(6):1690–1709. https://doi.org/10.1175/JAS-D-12-0199.1

    Article  Google Scholar 

  110. Kirshbaum DJ, Wang CC (2014) Boundary layer updrafts driven by airflow over heated terrain. J Atmos Sci 71(4):1425–1442. https://doi.org/10.1175/JAS-D-13-0287.1

    Article  Google Scholar 

  111. Serafin S, Zardi D (2011) Daytime development of the boundary layer over a plain and in a valley under fair weather conditions: a comparison by means of idealized numerical simulations. J Atmos Sci 68(9):2128–2141. https://doi.org/10.1175/2011JAS3610.1

    Article  Google Scholar 

  112. Schmidli J, Rotunno R (2012) Influence of the valley surroundings on valley wind dynamics. J Atmos Sci 69(2):561–577. https://doi.org/10.1175/JAS-D-11-0129.1

    Article  Google Scholar 

  113. Giovannini L, Laiti L, Serafin S, Zardi D (2017) The thermally driven diurnal wind system of the Adige Valley in the Italian Alps. Q J R Meteorol Soc 143(707):2389–2402. https://doi.org/10.1002/qj.3092

    Article  Google Scholar 

  114. Whiteman CD (2000) Mountain meteorology. Fundamentals and applications. Oxford University Press, Oxford, p 355

    Book  Google Scholar 

  115. Schmidli J, Rotunno R (2015) The quasi-steady state of the valley wind system. Front Earth Sci 3:79. https://doi.org/10.3389/feart.2015.00079

    Article  Google Scholar 

  116. Nickus U, Vergeiner I (1984) The thermal structure of the Inn Valley atmosphere. Arch Meteorol Geophys Bioclimatol Ser A 33(2–3):199–215. https://doi.org/10.1007/BF02257725

    Article  Google Scholar 

  117. Wagner JS, Gohm A, Rotach MW (2015) Influence of along-valley terrain heterogeneity on exchange processes over idealized valleys. Atmos Chem Phys 15(12):6589–6603. https://doi.org/10.5194/acp-15-6589-2015

    Article  CAS  Google Scholar 

  118. Rampanelli G, Zardi D, Rotunno R (2004) Mechanisms of up-valley winds. J Atmos Sci 61(24):3097–3111. https://doi.org/10.1175/JAS-3354.1

    Article  Google Scholar 

  119. Schmidli J, Rotunno R (2010) Mechanisms of along-valley winds and heat exchange over mountainous terrain. J Atmos Sci 67(9):3033–3047. https://doi.org/10.1175/2010JAS3473.1

    Article  Google Scholar 

  120. Wagner JS, Gohm A, Rotach MW (2015) The impact of valley geometry on daytime thermally driven flows and vertical transport processes. Q J R Meteorol Soc 141(690):1780–1794. https://doi.org/10.1002/qj.2481

    Article  Google Scholar 

  121. Weigel AP, Chow FK, Rotach MW, Street RL, Xue M (2006) High-resolution large-eddy simulations of flow in a steep alpine valley. Part II: flow structure and heat budgets. J Appl Meteorol Climatol 45(1):87–107. https://doi.org/10.1175/JAM2323.1

    Article  Google Scholar 

  122. Giovannini L, Zardi D, de Franceschi M (2011) Analysis of the urban thermal fingerprint of the city of Trento in the Alps. J Appl Meteorol Climatol 50(5):1145–1162. https://doi.org/10.1175/2010JAMC2613.1

    Article  Google Scholar 

  123. Giovannini L, Zardi D, de Franceschi M, Chen F (2014) Numerical simulations of boundary-layer processes and urban-induced alterations in an alpine valley. Int J Climatol 34(4):1111–1131. https://doi.org/10.1002/joc.3750

    Article  Google Scholar 

  124. Rendón AM, Salazar JF, Palacio CA, Wirth V, Brötz B (2014) Effects of urbanization on the temperature inversion breakup in a mountain valley with implications for air quality. J Appl Meteorol Climatol 53(4):840–858. https://doi.org/10.1175/JAMC-D-13-0165.1

    Article  Google Scholar 

  125. Rendón AM, Salazar JF, Palacio CA, Wirth V (2015) Temperature inversion breakup with impacts on air quality in urban valleys influenced by topographic shading. J Appl Meteorol Climatol 54(2):302–321. https://doi.org/10.1175/JAMC-D-14-0111.1

    Article  Google Scholar 

  126. Vergeiner I (1987) An elementary valley wind model. Meteorog Atmos Phys 36(1–4):255–263. https://doi.org/10.1007/BF01045153

    Article  Google Scholar 

  127. Egger J (1987) Simple models of the valley-plain circulation part II: flow resolving model. Meteorog Atmos Phys 36(1–4):243–254. https://doi.org/10.1007/BF01045152

    Article  Google Scholar 

  128. Egger J (1990) Thermally forced flows: theory. In: Atmospheric processes over complex terrain. American Meteorological Society, Boston, pp 43–58. https://doi.org/10.1007/978-1-935704-25-6_3

    Chapter  Google Scholar 

  129. Zängl G (2004) A reexamination of the valley wind system in the alpine Inn Valley with numerical simulations. Meteorog Atmos Phys 87(4):241–256. https://doi.org/10.1007/s00703-003-0056-5

    Article  Google Scholar 

  130. Gohm A, Harnisch F, Vergeiner J, Obleitner F, Schnitzhofer R, Hansel A, Fix A, Neininger B, Emeis S, Schäfer K (2009) Air pollution transport in an alpine valley: results from airborne and ground-based observations. Bound-Layer Meteorol 131(3):441–463. https://doi.org/10.1007/s10546-009-9371-9

    Article  Google Scholar 

  131. Laiti L, Zardi D, de Franceschi M, Rampanelli G (2013) Residual kriging analysis of airborne measurements: application to the mapping of atmospheric boundary-layer thermal structures in a mountain valley. Atmos Sci Lett 14(2):79–85. https://doi.org/10.1002/asl2.420

    Article  Google Scholar 

  132. Mikhailov VI, Zorin VY, Kapochkina MB (2015) On the vulnerability of the Russian fleet and high risks for cargo flows through the ports of Anapa, Novorossiysk, Tuapse. Sci J 4(1(9)):31–34. https://doi.org/10.15587/2313-8416.2015.40916. (in Russian)

    Article  Google Scholar 

  133. Vasiliev AA (1965) Rump of helicopters on the Black Sea coast of the Caucasus with bora-type winds. Trudy Tsentral'nogo instituta prognozov Glavnogo upravleniya Gidrometeorologicheskoy sluzhby 146:11–20. (in Russian)

    Google Scholar 

  134. Sukhanov SI, Druzhevskiy SA (2005) Analysis of synoptic conditions of the Novorossiysk bora in December 2002. Navigatsiya i gidrografiya 20-21:87–97. (in Russian)

    Google Scholar 

  135. Shigin VV (2006) Victims of the Novorossisk fighting. Voyenno-istoricheskiy zhurnal 10:65–67. (in Russian)

    Google Scholar 

  136. Gusev A (1959) Novorossiysk bora. Trudy Morskogo gidrofizicheskogo instituta Akademii nauk SSSR 14:140. (in Russian)

    Google Scholar 

  137. Ivanov AY, Antonyuk AY (2013) Anomalously strong bora events over the Black Sea studied using satellite imagery. Issledovaniye Zemli iz kosmosa 1:32–43. https://doi.org/10.7868/S0205961413010028. (in Russian)

    Article  Google Scholar 

  138. Wrangel FF (1876) Novorossiysk bora and its theory. Tipografiya Yu.G. Reno, Nikolayev, 17 pp. (in Russian)

    Google Scholar 

  139. Arndt AO (1913) About the Novorossiysk bora. Zapiski po gidrografii 36:267–277. (in Russian)

    Google Scholar 

  140. But IV (1938) Novorossiysk bora. (in Russian)

    Google Scholar 

  141. Korostelev NA (1904) Novorossiysk bora. Zapiski Imperatorskoy Akademii nauk 15(2). (in Russian)

    Google Scholar 

  142. Semenov EK, Sokolikhina NN, Sokolikhina EV (2013) Meteorological and synoptic aspects of the formation and evolution of the Novorossiysk bora. Russ Meteorol Hydrol 38(10):661–668. https://doi.org/10.3103/S1068373913100026

    Article  Google Scholar 

  143. Masterskikh MA, Bel'skaya NN, Mineyeva MN (1973) Forecast of the frontal Novorossiysk bora and other similar physical and geographical areas (methodological instructions). Gidrometizdat, Moscow, p 20. (in Russian)

    Google Scholar 

  144. Gutman LN, Frankl FI (1960) Bora hydrodynamic model. Akademii nauk SSSR 30(3):23–37. (in Russian)

    Google Scholar 

  145. Blinov DV, Perov VL, Peskov BE, Rivin GS (2013) Extreme bora of February 7-8, 2012, in the area of Novorossiysk and its forecast with the COSMO-Ru model, Vestnik Moskovskogo Universiteta. Seria 5, Geografia 4, pp 36–43. (in Russian)

    Google Scholar 

  146. Gavrikov AV, Ivanov AY (2015) Anomalously strong bora over the Black Sea: observations from space and numerical modeling. Izvestiya Atmos Oceanic Phys 51(5):546–556. https://doi.org/10.1134/S0001433815050059

    Article  Google Scholar 

  147. Efimov VV, Barabanov VS (2013) Simulation of bora in Novorossiysk. Russ Meteorol Hydrol 38(3):171–176. https://doi.org/10.3103/S1068373913030059

    Article  Google Scholar 

  148. Efimov VV, Barabanov VS (2013) Gustiness of the Novorossiysk bora. Russ Meteorol Hydrol 38(12):840–845. https://doi.org/10.3103/S1068373913120054

    Article  Google Scholar 

  149. Toropov PA, Shestakova AA (2014) Quality assessment of Novorossiysk bora simulation by the WRF-ARW model. Russ Meteorol Hydrol 39(7):458–467. https://doi.org/10.3103/S1068373914070048

    Article  Google Scholar 

  150. Shestakova AA, Moiseenko KB, Toropov PA (2015) Hydrodynamic aspects of the Novorossiysk bora episodes in 2012–2013. Izvestiya Atmos Oceanic Phys 51(5):534–545. https://doi.org/10.1134/S0001433815040118

    Article  Google Scholar 

  151. Repina IA (2008) “Wind, wind – all over God's light ...” On the nature of katabatic winds, Pririoda 5, 36–43. (in Russian)

    Google Scholar 

  152. Ivanov AY (2008) Bora in Novorossiysk: a look from space. Issledovaniye Zemli iz kosmosa 2:68–83. (in Russian)

    Google Scholar 

  153. Alpers W, Ivanov AY, Dagestad KF (2010) Observation of local wind fields and cyclonic atmospheric eddies over the eastern Black Sea using Envisat synthetic aperture radar images. Issledovaniye Zemli iz kosmosa 5:46–58

    Google Scholar 

  154. Alpers W, Ivanov A, Horstmann J (2009) Observations of bora events over the Adriatic Sea and Black Sea by spaceborne synthetic aperture radar. Mon Weather Rev 137(3):1150–1161. https://doi.org/10.1175/2008MWR2563.1

    Article  Google Scholar 

  155. Grisogono B, Belusic D (2009) A review of recent advances in understanding the meso and microscale properties of the severe Bora wind. Tellus A Dyna Meteorol Oceanogr 61(1):1–16. https://doi.org/10.1111/j.1600-0870.2007.00369.x

    Article  Google Scholar 

  156. Lepri P, Vecenaj Z, Kozmar H, Grisogono B (2017) Bora wind characteristics for engineering applications. Wind Struct 24:579–611. https://doi.org/10.12989/was.2017.24.6.579

    Article  Google Scholar 

  157. Yoshino M (1976) Local wind bora. University of Tokyo Press, Tokyo, p 289

    Google Scholar 

  158. Belušić D, Žagar M, Grisogono B (2007) Numerical simulation of pulsations in the bora wind. Q J R Meteorol Soc 133(627):1371–1388. https://doi.org/10.1002/qj.129

    Article  Google Scholar 

  159. Toropov PA, Myslenkov SA, Shestakova AA (2012) Numerical simulation of Novorossiysk bora and related wind waves using the WRF-ARW and SWAN models. Russ J Earth Sci 12(6):ES6001. https://doi.org/10.2205/2012ES000524

    Article  Google Scholar 

  160. Klemp JB, Lilly DK (1975) The dynamics of wave-induced downslope winds. J Atmos Sci 32(2):320–339. https://doi.org/10.1175/1520-0469(1975)032%3C0320:TDOWID%3E2.0.CO;2

    Article  Google Scholar 

  161. Peltier WR, Clark TL (1983) Nonlinear mountain waves in two and three spatial dimensions. Q J R Meteorol Soc 109(461):527–548. https://doi.org/10.1002/qj.49710946106

    Article  Google Scholar 

  162. Kozhevnikov VN (1999) Perturbations of the atmosphere when flowing around mountains. Nauchnyy mir, Moscow, p 159. (in Russian)

    Google Scholar 

  163. Berzegova RB, Kozhevnikov VN, Bedanokov MK, Repina IA (2019). Energy modeling of Novorossiysk bora. In: IOP conference series: earth and environmental science. Institute of Physics Publishing, 231(1). https://doi.org/10.1088/1755-1315/231/1/012010

  164. Kozhevnikov VN, Berzegova RB, Bedanokov MK (2020) Modeling of the Novorossiysk bora. Part 1. Atmospheric disturbances over the mountains of Novorossiysk. Russ J Earth Sci 20:ES1001. https://doi.org/10.2205/2019ES000684

    Article  Google Scholar 

  165. Kozhevnikov VN, Berzegova RB, Bedanokov MK (2020) Modeling of the Novorossiysk bora. Part 2. Energetics of the atmosphere at the Novorossiysk bora. Russ J Earth Sci 20:ES1002. https://doi.org/10.2205/2019ES000685

    Article  Google Scholar 

  166. Long RR (1954) Some aspects of the flow of stratified fluids: II. Experiments with a two-fluid system. Tellus 6(2):97–115. https://doi.org/10.1111/j.2153-3490.1954.tb01100.x

    Article  Google Scholar 

  167. Klemp JB, Durran DR (1987) Numerical modelling of bora winds. Meteorog Atmos Phys 36(1–4):215–227. https://doi.org/10.1007/BF01045150

    Article  Google Scholar 

  168. Durran DR (1986) Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J Atmos Sci 43(21):2527–2543. https://doi.org/10.1175/1520-0469(1986)043%3C2527:ALADWP%3E2.0.CO;2

    Article  Google Scholar 

  169. Gill AE (1982) Atmosphere-Ocean dynamics. Academic Press, San Diego, p 680

    Google Scholar 

  170. Steinacker R (1984) Area-height distribution of a valley and its relation to the valley wind. Beiträge zur Physik der Atmosphäre 57(1):64–71

    Google Scholar 

  171. Weigel AP, Rotach MW (2004) Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley. Q J R Meteorol Soc 130(602):2605–2627. https://doi.org/10.1256/qj.03.214

    Article  Google Scholar 

  172. Khodayar S, Kalthoff N, Fiebig-Wittmaack M, Kohler M (2008) Evolution of the atmospheric boundary-layer structure of an arid Andes valley. Meteorog Atmos Phys 99(3–4):181–198. https://doi.org/10.1007/s00703-007-0274-3

    Article  Google Scholar 

  173. Serafin S, Zardi D (2010) Daytime heat transfer processes related to slope flows and turbulent convection in an idealized mountain valley. J Atmos Sci 67(11):3739–3756. https://doi.org/10.1175/2010JAS3428.1

    Article  Google Scholar 

  174. Fast JD, Zhong S (1998) Meteorological factors associated with inhomogeneous ozone concentrations within the Mexico City basin. J Geophys Res Atmos 103(D15):18927–18946. https://doi.org/10.1029/98JD01725

    Article  CAS  Google Scholar 

  175. Lu R, Turco RP (1994) Air pollutant transport in a coastal environment. Part I: two-dimensional simulations of sea-breeze and mountain effects. J Atmos Sci 51(15):2285–2308. https://doi.org/10.1175/1520-0469(1994)051%3C2285:APTIAC%3E2.0.CO;2

    Article  Google Scholar 

  176. Kalthoff N, Adler B, Wieser A, Kohler M, Träumner K, Handwerker J, Corsmeier U, Khodayar S, Lambert D, Kopmann A, Kunka N, Dick G, Ramatschi M, Wickert J, Kottmeier C (2013) KITcube–a mobile observation platform for convection studies deployed during HyMeX. Meteorol Z 22(6):633–647. https://doi.org/10.1127/0941-2948/2013/0542

    Article  Google Scholar 

  177. Panosetti D, Böing S, Schlemmer L, Schmidli J (2016) Idealized large-eddy and convection-resolving simulations of moist convection over mountainous terrain. J Atmos Sci 73(10):4021–4041. https://doi.org/10.1175/JAS-D-15-0341.1

    Article  Google Scholar 

  178. Langhans W, Schmidli J, Fuhrer O, Bieri S, Schär C (2013) Long-term simulations of thermally driven flows and orographic convection at convection-parameterizing and cloud-resolving resolutions. J Appl Meteorol Climatol 52(6):1490–1510. https://doi.org/10.1175/JAMC-D-12-0167.1

    Article  Google Scholar 

  179. Adler B, Kalthoff N (2014) Multi-scale transport processes observed in the boundary layer over a mountainous island. Bound-Layer Meteorol 153(3):515–537. https://doi.org/10.1007/s10546-014-9957-8

    Article  Google Scholar 

  180. Lang MN, Gohm A, Wagner JS (2015) The impact of embedded valleys on daytime pollution transport over a mountain range. Atmos Chem Phys 15(12):11981–11998. https://doi.org/10.5194/acp-15-11981-2015

    Article  CAS  Google Scholar 

  181. Adler B, Kalthoff N, Kohler M, Handwerker J, Wieser A, Corsmeier U, Kottmeier C, Lambert D, Bock O (2016) The variability of water vapour and pre-convective conditions over the mountainous island of Corsica. Q J R Meteorol Soc 142:335–346. https://doi.org/10.1002/qj.2545

    Article  Google Scholar 

  182. De Wekker SFJ, Godwin KS, Emmitt GD, Greco S (2012) Airborne Doppler lidar measurements of valley flows in complex coastal terrain. J Appl Meteorol Climatol 51(8):1558–1574. https://doi.org/10.1175/JAMC-D-10-05034.1

    Article  Google Scholar 

  183. Arritt RW, Wilczak JM, Young GS (1992) Observations and numerical modeling of an elevated mixed layer. Mon Weather Rev 120(12):2869–2880. https://doi.org/10.1175/1520-0493(1992)120%3C2869:OANMOA%3E2.0.CO;2

    Article  Google Scholar 

  184. Wagner JS, Gohm A, Rotach MW (2014) The impact of horizontal model grid resolution on the boundary layer structure over an idealized valley. Mon Weather Rev 142(9):3446–3465. https://doi.org/10.1175/MWR-D-14-00002.1

    Article  Google Scholar 

  185. De Wekker SFJ, Steyn DG, Fast JD, Rotach MW, Zhong S (2005) The performance of RAMS in representing the convective boundary layer structure in a very steep valley. Environ Fluid Mech 5(1–2):35–62. https://doi.org/10.1007/s10652-005-8396-y

    Article  Google Scholar 

  186. Zilitinkevich SS (2013) Atmospheric turbulence and planetary boundary layers. FIZMATLIT, Moscow, p 256. (in Russian)

    Google Scholar 

  187. Kossmann M, Vögtlin R, Corsmeier U, Vogel B, Fiedler F, Binder HJ, Kalthoff N, Beyrich F (1998) Aspects of the convective boundary layer structure over complex terrain. Atmos Environ 32(7):1323–1348. https://doi.org/10.1016/S1352-2310(97)00271-9

    Article  CAS  Google Scholar 

  188. Arduini G, Staquet C, Chemel C (2016) Interactions between the nighttime valley-wind system and a developing cold-air pool. Bound-Layer Meteorol 161(1):49–72. https://doi.org/10.1007/s10546-016-0155-8

    Article  Google Scholar 

  189. Arduini G, Chemel C, Staquet C (2017) Energetics of deep alpine valleys in pooling and draining configurations. J Atmos Sci 74(7):2105–2124. https://doi.org/10.1175/JAS-D-16-0139.1

    Article  Google Scholar 

  190. Cuxart J (2008) Nocturnal basin low-level jets: an integrated study. Acta Geophys 56(1):100–113. https://doi.org/10.2478/s11600-007-0042-2

    Article  Google Scholar 

  191. Martínez D, Jiménez MA, Cuxart J, Mahrt L (2010) Heterogeneous nocturnal cooling in a large basin under very stable conditions. Bound-Layer Meteorol 137(1):97–113. https://doi.org/10.1007/s10546-010-9522-z

    Article  Google Scholar 

  192. De Wekker SFJ, Whiteman CD (2006) On the time scale of nocturnal boundary layer cooling in valleys and basins and over plains. J Appl Meteorol Climatol 45(6):813–820. https://doi.org/10.1175/JAM2378.1

    Article  Google Scholar 

  193. Dorninger M, Whiteman CD, Bica B, Eisenbach S, Pospichal B, Steinacker R (2011) Meteorological events affecting cold-air pools in a small basin. J Appl Meteorol Climatol 50(11):2223–2234. https://doi.org/10.1175/2011JAMC2681.1

    Article  Google Scholar 

  194. Cuxart J, Jiménez MA (2007) Mixing processes in a nocturnal low-level jet: an LES study. J Atmos Sci 64(5):1666–1679. https://doi.org/10.1175/JAS3903.1

    Article  Google Scholar 

  195. Banta RM, Pichugina YL, Newsom RK (2003) Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J Atmos Sci 60(20):2549–2555. https://doi.org/10.1175/1520-0469(2003)060%3C2549:RBLJPA%3E2.0.CO;2

    Article  Google Scholar 

  196. Scheffknecht P, Serafin S, Grubišic V (2017) A long-lived supercell over mountainous terrain. Q J R Meteorol Soc 143(709):2973–2986. https://doi.org/10.1002/qj.3127

    Article  Google Scholar 

  197. Williamson CE, Saros JE, Vincent WF, Smold JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54(6part2):2273–2282. https://doi.org/10.4319/lo.2009.54.6_part_2.2273

    Article  Google Scholar 

  198. Tremblay A, Varfalvy L, Roehm C, Garneau M (2005) Greenhouse gas emissions: fluxes and processes, hydroelectric reservoirs and natural environments. In: Environmental science series. Springer, New York, p 732. https://doi.org/10.1007/978-3-540-26643-3

    Chapter  Google Scholar 

  199. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–185. https://doi.org/10.1007/s10021-006-9013-8

    Article  CAS  Google Scholar 

  200. Melnikova TN (2015) Monitoring of reservoirs in the Republic of Adygea. Int J Exp Educ 10(Part 1):53–54. (in Russian)

    Google Scholar 

  201. Fedorov YA, Tambieva NS, Garkusha DN, Khoroshevskaya VO (2007) Methane in aquatic ecosystems Rostov-na-Donu. ROSTIZDAT, Moscow, 330 pp. (in Russian)

    Google Scholar 

  202. Lima I, Ramos F, Bambace L, Rosa R (2008) Methane emissions from large dams as renewable energy resources: a developing nation perspective. Mitig Adapt Strateg Glob Chang 13(2):193–206. https://doi.org/10.1007/s11027-007-9086-5

    Article  Google Scholar 

  203. Louis VL, Kelly CA, Duchemin E, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50(9):766–775. https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2

    Article  Google Scholar 

  204. Gavrilovsky DV (2015) Ecological problems of the Tsimlyansk reservoir, Novaya nauka: Teoreticheskiy i prakticheskiy vzglyad, (6 part 2), pp 17–19. (in Russian)

    Google Scholar 

  205. Zaytseva NV (2014) The problem of development of blue-green algae in the Votkinsky and Izhevsk reservoirs. Modern scientific researches and innovations 6. (in Russian)

    Google Scholar 

  206. Grechushnikova MG, Repina IA, Stepanenko VM, Kazantsev VS, Artamonov AY, Lomov VA (2019) Methane emission from the surface of the Mozhaisk Valley-type reservoir. Geogr Nat Resour 40(3):247–255. https://doi.org/10.1134/S1875372819030077

    Article  Google Scholar 

  207. Grechushnicova MG, Repina IA, Stepanenko VM, Kazantsev VS, Artamonov AY, Varentsov MI, Lomova DV, Molkov AA, Kapustin IA (2018) Spatio-temporal change of methane distribution and emission in reservoirs with different water residence coefficient. Izvestiya Russkogo Geograficheskogo Obshestva 150(5):14–33. (in Russian)

    Google Scholar 

  208. Rosa LP, Dos Santos MA, Matvienko B, Dos Santos EO, Sikar E (2004) Greenhouse gas emissions from hydroelectric reservoirs in tropical regions. Clim Chang 66(1–2):9–21. https://doi.org/10.1023/B:CLIM.0000043158.52222.ee

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the RFBR grant 20-05-00834 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina А. Repina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Repina, I.А., Shestakova, A.А., Bedanokov, M.K., Berzegova, R.B., Lebedev, S.A. (2021). Dynamics of the Atmospheric Boundary Layer in the Mountain-Valley Relief of Adygea. In: Bedanokov, M.K., Lebedev, S.A., Kostianoy, A.G. (eds) The Republic of Adygea Environment. The Handbook of Environmental Chemistry, vol 106. Springer, Cham. https://doi.org/10.1007/698_2021_733

Download citation

Publish with us

Policies and ethics