Skip to main content

Removal and Degradation of Pharmaceutically Active Compounds (PhACs) in Wastewaters by Solar Advanced Oxidation Processes

  • Chapter
  • First Online:
Removal and Degradation of Pharmaceutically Active Compounds in Wastewater Treatment

Abstract

Most advanced oxidation processes (AOPs) are based on combination of oxidants, catalysts and radiation. Main disadvantages of these processes are their high energy consumption and operation costs. The use of solar radiation could be a way to overcome these drawbacks, but only two processes fit with this approach: heterogeneous photocatalysis with semiconductors and homogeneous photocatalysis through photo-Fenton-like processes. Solar AOPs (SAOPs) present special interest for the degradation of pharmaceutically active compounds (PhACs) as they can be easily adapted to comply with fundamental principles of green chemistry. This chapter states the main concepts of (1) solar semiconductor photocatalysis including its management with specific solar photoreactors; (2) solar photo-Fenton processes application, with special emphasis in circumneutral pH operation, for PhAC elimination; (3) optimized treatment validation under actual conditions with sensitive and selective analytical approaches; and (4) finally photoreactor modelling as a key tool to integrate the effect of temperature, PhAC concentration and radiation absorption in kinetics for a proper prediction of treated volume of water per unit of photoreactor surface and time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gogate PR, Pandit AB (2004) A review of imperative technologies for WW treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551. https://doi.org/10.1016/S1093-0191(03)00032-7

    Article  CAS  Google Scholar 

  2. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59. https://doi.org/10.1016/j.cattod.2009.06.018

    Article  CAS  Google Scholar 

  3. Glaze W, Kang JW, Chapin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 9:335–352. https://doi.org/10.1080/01919518708552148

    Article  CAS  Google Scholar 

  4. Ahmed MM, Chiron S (2014) Solar photo-Fenton like using persulphate for carbamazepine removal from domestic WW. Water Res 48:229–236. https://doi.org/10.1016/j.watres.2013.09.033

    Article  CAS  Google Scholar 

  5. Dillert R, Cassano AE, Goslich R, Bahnemann D (1999) Large scale studies in solar catalytic WW treatment. Catal Today 54:267–282

    Article  CAS  Google Scholar 

  6. Malato S, Blanco J, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B Environ 37:1–15

    Article  CAS  Google Scholar 

  7. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312. https://doi.org/10.1039/b918763b

    Article  CAS  Google Scholar 

  8. Collins TJ (1997) In green chemistry, Macmillan encyclopedia of chemistry, vol 2. Simon and Schuster, Macmillan, New York, pp 691–697

    Google Scholar 

  9. Bauer R, Waldner G, Fallmann H, Hager S, Klare M, Krutzler T (1999) The photo-Fenton reaction and the TiO2/UV process for waste water treatment-novel developments. Catal Today 53:131–144

    Article  CAS  Google Scholar 

  10. Giménez J, Esplugas S, Malato S, Peral J (2019) Economic assessment and possible industrial application of a (photo) catalytic process: a case study. In: Marci G, Palmisano L (eds) Heterogeneous photocatalysis: relationships with heterogeneous catalysis and perspectives. Elsevier, Amsterdam, pp 235–267

    Chapter  Google Scholar 

  11. Muñoz I, Peral J, Ayllón JA, Malato S, Passarinho P, Domènech X (2006) Life cycle assessment of a coupled solar photocatalytic-biological process for WW treatment. Water Res 40:3533–3540

    Article  Google Scholar 

  12. Giménez J, Bayarri B, González O, Malato S, Peral J, Esplugas S (2015) Advanced oxidation processes at laboratory scale: environmental and economic impacts. ACS Sustain Chem Eng 3:3188–3196. https://doi.org/10.1021/acssuschemeng.5b00778

    Article  CAS  Google Scholar 

  13. Gallego-Schmid A, Tarpani RRZ, Miralles-Cuevas S, Cabrera-Reina A, Malato S, Azapagic A (2020) Environmental assessment of solar photo-Fenton processes in combination with nanofiltration for the removal of micro-contaminants from real. Sci Total Environ 650:2210–2220. https://doi.org/10.1016/j.scitotenv.2018.09.361

    Article  CAS  Google Scholar 

  14. Cabrera Reina A, Miralles-Cuevas S, Cornejo L, Pomares L, Polo J, Oller I, Malato S (2020) The influence of location on solar photo-Fenton: process performance, photoreactor scaling-up and treatment cost. Renew Energy 145:1890–1900

    Article  CAS  Google Scholar 

  15. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  16. Borgarello E, Kiwi J, Pelizzetti E, Visca M, Grätzel M (1981) Photochemical cleavage of water by photocatalysis. Nature 289(5794):158–160

    Article  CAS  Google Scholar 

  17. Herrmann JM, Disdier J, Mozzanega MN, Pichat P (1979) Heterogeneous photocatalysis: in situ photoconductivity study of TiO2 during oxidation of isobutane into acetone. J Catal 60(3):369–377

    Article  CAS  Google Scholar 

  18. Ollis DF, Al-Ekabi H (eds) (1993) Photocatalytic purification and treatment of water and air. Elsevier, New York. https://doi.org/10.1016/j.apcatb.2012.05.036

    Book  Google Scholar 

  19. Marcí G, Palmisano L (eds) (2019) Heterogeneous photocatalysis. Relationships with homogeneous catalysis and perspectives. Elsevier, Amsterdam

    Google Scholar 

  20. Awfa D, Ateia M, Johnson MS, Yoshimura C (2018) Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: a critical review of recent literature. Water Res 142:26–45. https://doi.org/10.1016/j.watres.2018.05.036

    Article  CAS  Google Scholar 

  21. Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater Sci Semicond Process 42:2–14. https://doi.org/10.1016/j.mssp.2015.07.052

    Article  CAS  Google Scholar 

  22. Kumar A, Khan M, He J, Lo IMC (2020) Recent developments and challenges in practical application of visible-light-driven TiO2-based heterojunctions for PPCP degradation: a critical review. Water Res 170:115356. https://doi.org/10.1016/j.watres.2019.115356

    Article  CAS  Google Scholar 

  23. Frank SN, Bard AJ (1977) Heterogeneous Photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J Phys Chem 81(15):1484–1488

    Article  CAS  Google Scholar 

  24. Fujihira M, Satoh Y, Osa T (1981) Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature 293(5829):206–208

    Article  CAS  Google Scholar 

  25. Ollis DF, Pelizzetti E, Serpone N (1991) Photocatalyzed destruction of water contaminants. Environ Sci Technol 25(9):1522–1529

    Article  CAS  Google Scholar 

  26. Curcó D, Giménez J, Marco P (1996) Photocatalytic degradation of phenol: comparison between pilot plant scale and laboratory results. Sol Energy 56(5):387–400

    Article  Google Scholar 

  27. Malato S, Blanco J, Richter C, Curcó D, Giménez J (1997) Low-concentrating CPC collectors for photocatalytic water detoxification. Comparison with a medium concentrating solar collector. Water Sci Technol 35(4):157–164

    Article  CAS  Google Scholar 

  28. Matthews RW, McEvoy SR (1992) Destruction of phenol in water with sun, sand, and photocatalysis. Sol Energy 49(6):507–513

    Article  CAS  Google Scholar 

  29. Pelizzetti E, Carlin V, Minero C, Pramauro E, Vincenti M (1992) Degradation pathways of atrazine under solar light and in the presence of TiO2 colloidal particles. Sci Total Environ 123–124:161–169

    Article  Google Scholar 

  30. Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, Albanis T (2006) Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B Environ 67:197–205. https://doi.org/10.1016/j.apcatb.2006.04.021

    Article  CAS  Google Scholar 

  31. Molinari R, Pirillo F, Loddo V, Palmisano L (2006) Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catal Today 118:205–213. https://doi.org/10.1016/j.cattod.2005.11.091

    Article  CAS  Google Scholar 

  32. Méndez-Arriaga F, Maldonado MI, Giménez J, Esplugas S, Malato S (2009) Abatement of ibuprofen by solar photocatalysis process: enhancement and scale up. Catal Today 144:112–116. https://doi.org/10.1016/j.cattod.2009.01.028

    Article  CAS  Google Scholar 

  33. Pérez-Estrada L, Malato S, Agüera A, Fernández-Alba AR (2007) Degradation of dipyrone and its main intermediates by solar AOPs identification of intermediate products and toxicity assessment. Catal Today 129:207–214. https://doi.org/10.1016/j.cattod.2007.08.008

    Article  CAS  Google Scholar 

  34. Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC technical report). Pure Appl Chem 73(4):627–637

    Article  CAS  Google Scholar 

  35. Lado Ribeiro AR, Moreira NFF, Li Puma G, Silva AMT (2019) Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chem Eng J 363:155–173. https://doi.org/10.1016/j.cej.2019.01.080

    Article  CAS  Google Scholar 

  36. Acosta-Herazo R, Monterroza-Romero J, Mueses MA, Machuca-Martinez F, Li Puma G (2016) Coupling the six flux absorption-scattering model to the Henyey-Greenstein scattering phase function: evaluation and optimization of radiation absorption in solar heterogeneous photoreactors. Chem Eng J 302:86–96. https://doi.org/10.1016/j.cej.2016.04.127

    Article  CAS  Google Scholar 

  37. Cassano AE, Alfano OM (2000) Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal Today 58(2–3):167–197. https://doi.org/10.1016/S0920-5861(00)00251-0

    Article  CAS  Google Scholar 

  38. Curcó D, Giménez J, Addardak A, Cervera-March S, Esplugas S (2002) Effects of radiation absorption and catalyst concentration on the photocatalytic degradation of pollutants. Catal Today 76:177–188. https://doi.org/10.1016/S0920-5861(02)00217-1

    Article  Google Scholar 

  39. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84. https://doi.org/10.1080/10643380500326564

    Article  CAS  Google Scholar 

  40. Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling-an overview. RSC Adv 2:6380–6388. https://doi.org/10.1039/C2RA20340E

    Article  CAS  Google Scholar 

  41. Oppenländer T (2003) Photochemical purification of water and air: advanced oxidation processes (AOPs)-principles, reaction mechanisms, reactor concepts. Wiley, Weinheim. https://doi.org/10.1002/9783527610884

    Book  Google Scholar 

  42. Clarizia L, Russo D, di Somma I, Marotta R, Andreozzi R (2017) Homogeneous photo-Fenton processes at near neutral pH: a review. Appl Catal B Environ 209:358–371. https://doi.org/10.1016/j.apcatb.2017.03.011

    Article  CAS  Google Scholar 

  43. Bui XT, Vo TPT, Ngo HH, Guo WS, Nguyen TT (2016) Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci Total Environ 563-564:1050–1067. https://doi.org/10.1016/j.scitotenv.2016.04.191

    Article  CAS  Google Scholar 

  44. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during WW treatment. Sci Total Environ 473:619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065

    Article  CAS  Google Scholar 

  45. Pal A, Gin KY-H, Lin AY-C, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069. https://doi.org/10.1016/j.scitotenv.2010.09.026

    Article  CAS  Google Scholar 

  46. Patel M, Kumar R, Kishor K, Mlsna T, Pittman CUJ, Mohan D (2019) Pharmaceuticals of Emerging Concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299

    Article  CAS  Google Scholar 

  47. Alharbi SK, Price WE (2017) Degradation and fate of pharmaceutically active contaminants by advanced oxidation processes. Curr Pollut Rep 3:268–280. https://doi.org/10.1007/s40726-017-0072-6

    Article  CAS  Google Scholar 

  48. Rizzo L, Malato S, Antakyali D, Beretsou VG, Đolić MB, Gernjak W, Heath E, Ivancev-Tumbas I, Karaolia P, Lado Ribeiro AR, Mascolo G, McArdell CS, Schaar H, Silva AMT, Fatta-Kassinos D (2019) Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban WW. Sci Total Environ 655:986–1008. https://doi.org/10.1016/j.scitotenv.2018.11.265

    Article  CAS  Google Scholar 

  49. Rodríguez-Narváez O, Rodríguez OM, Peralta-Hernández JM, Goonetilleke A, Bandala E (2017) Treatment technologies for emerging contaminants in water: a review. Chem Eng J 323:361–380. https://doi.org/10.1016/j.cej.2017.04.106

    Article  CAS  Google Scholar 

  50. De Luca A, Dantas RF, Esplugas S (2014) Assessment of iron chelates efficiency for photo-Fenton at neutral pH. Water Res 61:232–242. https://doi.org/10.1016/j.watres.2014.05.033

    Article  CAS  Google Scholar 

  51. Zhan Y, Zhou M (2019) A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J Hazard Mater 362:436–450. https://doi.org/10.1016/j.jhazmat.2018.09.035

    Article  CAS  Google Scholar 

  52. Klamerth N, Malato S, Maldonado MI, Agüera A, Fernández-Alba AR (2011) Modified photo-Fenton for degradation of emerging contaminants in municipal WW effluents. Catal Today 161:241–246. https://doi.org/10.1021/es903455p

    Article  CAS  Google Scholar 

  53. Durán A, Montegudo JM, San Martín I (2018) Operation costs of the solar photo-catalytic degradation of pharmaceuticals in Water: a mini-review. Chemosphere 211:482–488. https://doi.org/10.3390/nano9091194

    Article  CAS  Google Scholar 

  54. Huang W, Brigante M, Wu F, Hanna K, Mailhot G (2012) Development of a new homogenous photo-Fenton process using Fe(III)-EDDS complexes. J Photochem Photobiol A Chem 239:17–23. https://doi.org/10.1021/es304502y

    Article  CAS  Google Scholar 

  55. De la Obra I, Ponce-Robles L, Miralles-Cuevas S, Oller I, Malato S, Sánchez Pérez JA (2017) Microcontaminant removal in secondary effluents by solar photo-Fenton at circumneutral pH in raceway pond reactors. Catal Today 287:10–14. https://doi.org/10.1016/j.cattod.2016.12.028

    Article  CAS  Google Scholar 

  56. Klamerth N, Malato S, Agüera A, Fernández-Alba A (2013) Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in WW treatment plant effluents: a comparison. Water Res 47:833–840. https://doi.org/10.1016/j.watres.2012.11.008

    Article  CAS  Google Scholar 

  57. Zhang G, Ji S, Xi B (2006) Feasibility study of treatment of amoxicillin wastewater with a combination of extraction, Fenton oxidation and reverse osmosis. Desalination 196(1–3):32–42. https://doi.org/10.1016/j.desal.2005.11.018

  58. Miralles-Cuevas S, Oller I, Sánchez-Pérez JA, Malato S (2014b) Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH. Water Res 64:23–31. https://doi.org/10.1016/j.watres.2014.06.032

    Article  CAS  Google Scholar 

  59. Miralles-Cuevas S, Oller I, Ruiz Aguirre A, Sánchez Pérez JA, Malato Rodríguez S (2014a) Removal of pharmaceuticals at microg L-1 by combined nanofiltration and mild solar photo-Fenton. Chem Eng J 239:68–74. https://doi.org/10.1016/j.cej.2013.10.047

    Article  CAS  Google Scholar 

  60. Trovó AG, Pupo Nogueira RF, Agüera A, Fernandez-Alba AR, Malato S (2011) Degradation of the antibiotic amoxicillin by photo-Fenton process – chemical and toxicological assessment. Water Res 45:1394–1402. https://doi.org/10.1016/j.watres.2010.10.029

    Article  CAS  Google Scholar 

  61. Ballesteros SG, Costante M, Vicente R, Mora M, Amat AM, Arques A, Einschlag FSG (2017) Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study. Photochem Photobiol Sci 16:38–45. https://doi.org/10.1039/C6PP00236F

    Article  CAS  Google Scholar 

  62. Papoutsakis S, Pulgarin C, Oller I, Sánchez-Moreno R, Malato S (2016) Enhancement of the Fenton and photo-Fenton processes by components found in WW from the industrial processing of natural products: the possibilities of cork boiling WW reuse. Chem Eng J 304:890–896. https://doi.org/10.1016/j.cej.2016.07.021

    Article  CAS  Google Scholar 

  63. Ruíz-Delgado A, Roccamante MA, Oller I, Agüera A, Malato S (2019) Natural chelating agents from olive mill WW to enable photo-Fenton-like reactions at natural pH. Catal Today 328:281–285. https://doi.org/10.1016/j.cattod.2018.10.051

    Article  CAS  Google Scholar 

  64. Wu Y, Brigante M, Dong M, De Sainte-Claire P, Mailhot G (2014) Toward a better understanding of Fe(III)–EDDS photochemistry: theoretical stability calculation and experimental investigation of 4-tert-butylphenol degradation. J Phys Chem A 118:396–403. https://doi.org/10.1021/jp409043e

    Article  CAS  Google Scholar 

  65. Vandevivere PC, Saveyn H, Verstraete W, Feijtel TCJ, Schowanek DR (2001) Biodegradation of metal-[S,S]-EDDS. Complexes. Environ Sci Technol 35:1765–1770. https://doi.org/10.1021/es0001153

    Article  CAS  Google Scholar 

  66. Gutierrez-Mata AG, Velazquez-Martínez S, Álvarez-Gallegos A, Ahmadi M, Hernández-Pérez JA, Ghanbari F, Silva-Martínez S (2017) Recent overview of solar Photocatalysis and solar photo-Fenton processes for WW treatment. Hindawi Int J Photoenergy:27. https://doi.org/10.1155/2017/8528063

  67. Souza BM, Marinho BA, Moreira FC, Dezotti MW, Boaventura RAR, Vilar VJP (2017) Photo-Fenton oxidation of 3-amino-5-methylisoxazole: a by-product from biological breakdown of some pharmaceutical compounds. Environ Sci Pollut Res 24:6195–6204. https://doi.org/10.1007/s11356-015-5690-1

    Article  CAS  Google Scholar 

  68. Ahmed MM, Brienza M, Goetz V, Chiron S (2014) Solar photo-Fenton using peroxymonosulfate for organic micropollutants removal from domestic WW: comparison with heterogeneous TiO2 photocatalysis. Chemosphere 117:252–256. https://doi.org/10.1016/j.chemosphere.2014.07.046

    Article  CAS  Google Scholar 

  69. Mirzaei A, Chen Z, Haghighat F, Yerushalmi L (2017) Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes- a review. Chemosphere 174:665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019

    Article  CAS  Google Scholar 

  70. Costa EP, Roccamante M, Amorim CC, Oller I, Sánchez Pérez JA, Malato S (2020) New trend on open solar photoreactors to treat micropollutants by photo-Fenton at circumneutral pH: increasing optical pathway. Chem Eng J 385:123982. https://doi.org/10.1016/j.cej.2019.123982

    Article  CAS  Google Scholar 

  71. Cuervo Lumbaque E, Araújo DS, Klein TM, Lopes-Tiburtius ER, Argüello J, Sirtori C (2019) Solar photo-Fenton-like process at neutral pH: Fe(III)-EDDS complex formation and optimization of experimental conditions for degradation of pharmaceuticals. Catal Today 328:259–266. https://doi.org/10.1016/j.cattod.2019.01.006

    Article  CAS  Google Scholar 

  72. Koltsakidou Α, Antonopoulou M, Sykiotou M, Εvgenidou Ε, Konstantinou I, Lambropoulou D (2017) Photo-Fenton and Fenton-like processes for the treatment of the antineoplastic drug 5-fluorouracil under simulated solar radiation. Environ Sci Pollut Res 24:4791–4800. https://doi.org/10.1007/s11356-016-8138-3

    Article  CAS  Google Scholar 

  73. Alalm MG, Tawfik A, Ookawara S (2015) Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation. J Environ Chem Eng 3:46–51. https://doi.org/10.1016/j.jece.2014.12.009

    Article  CAS  Google Scholar 

  74. Malato S, Blanco J, Maldonado MI, Fernandez-Ibañez P, Alarcon D, Collares M, Farinha J, Correia J (2004) Engineering of solar photocatalytic collectors. Sol Energy 77:513–524

    Article  Google Scholar 

  75. Hinojosa Guerra MM, Oller Alberola I, Malato Rodriguez S, Agüera López A, Acevedo Merino A, Quiroga Alonso JM (2019) Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process. Water Res 156:232–240. https://doi.org/10.1016/j.watres.2019.02.055

    Article  CAS  Google Scholar 

  76. Ioannou-Ttofa L, Raj S, Prakash H, Fatta-Kassinos D (2019) Solar photo-Fenton oxidation for the removal of ampicillin, total cultivable and resistant E. coli and ecotoxicity from secondary-treated WW effluents. Chem Eng J 355:91–102. https://doi.org/10.1016/j.cej.2018.08.057

    Article  CAS  Google Scholar 

  77. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  78. Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    Article  Google Scholar 

  79. Soriano-Molina P, Plaza-Bolaños P, Lorenzo A, Agüera A, García-Sánchez JL, Malato S, Sánchez Pérez JA (2019) Assessment of solar raceway pond reactors for removal of contaminants of emerging concern by photo-Fenton at circumneutral pH from very different municipal WW effluents. Chem Eng J 366:141–149. https://doi.org/10.1016/j.cej.2019.02.074

    Article  CAS  Google Scholar 

  80. Miralles-Cuevas S, Oller I, Agüera A, Ponce-Robles L, Sánchez Pérez JA, Malato S (2015) Removal of microcontaminants from MWTP effluents by combination of membrane technologies and solar photo-Fenton at neutral pHs. Catal Today 252:78–83. https://doi.org/10.1016/j.cattod.2014.11.015

    Article  CAS  Google Scholar 

  81. Miralles-Cuevas S, Oller I, Agüera A, Sánchez Pérez JA, Malato S (2017) Strategies for reducing cost by using solar photo-Fenton treatment combined with nanofiltration to remove microcontaminants in real municipal effluents: Toxicity and economic assessment. Chem Eng J 318:161–170. https://doi.org/10.1016/j.cej.2016.06.031

    Article  CAS  Google Scholar 

  82. Della-Flora A, Wilde ML, Pinto IDF, Lima ÉC, Sirtori C (2020) Degradation of the anticancer drug flutamide by solar photo-Fenton treatment at near-neutral pH: identification of transformation products and in silico (Q)SAR risk assessment. Environ Res 183:109223. https://doi.org/10.1016/j.envres.2020.109223

    Article  CAS  Google Scholar 

  83. De Melo Santos MM, da Silva TD, de Lucena ALA, Napoleão DC, Duarte MMMB (2020) Degradation of Ketoprofen, Tenoxicam, and meloxicam drugs by photo-assisted peroxidation and photo-Fenton processes: identification of intermediates and toxicity study. Water Air Soil Pollut 231:35. https://doi.org/10.1007/s11270-020-4401-9

    Article  CAS  Google Scholar 

  84. Majumder A, Gupta B, Gupta AK (2019) Pharmaceutically active compounds in aqueous environment: a status, toxicity and insights of remediation. Environ Res 176:108542. https://doi.org/10.1016/j.envres.2019.108542

    Article  CAS  Google Scholar 

  85. Ioannou-Ttofa L, Foteinis S, Chatzisymeon E, Michael-Kordatou I, Fatta-Kassinos D (2017) Life cycle assessment of solar-driven oxidation as a polishing step of secondary-treated urban effluents. J Chem Technol Biotechnol 92:1315–1327. https://doi.org/10.1002/jctb.5126

    Article  CAS  Google Scholar 

  86. Salazar LM, Grisales CM, Garcia DP (2019) How does intensification influence the operational and environmental performance of photo-Fenton processes at acidic and circumneutral pH. Environ Sci Pollut Res 26:4367–4380. https://doi.org/10.1007/s11356-018-2388-1

    Article  CAS  Google Scholar 

  87. Tarpani RRZ, Azapagic A (2018) Life cycle environmental impacts of advanced WW treatment techniques for removal of pharmaceuticals and personal care products (PPCPs). J Environ Manag 215:258–272. https://doi.org/10.1016/j.jenvman.2018.03.047

    Article  CAS  Google Scholar 

  88. Klamerth N, Malato S, Agüera A, Fernández-Alba AR, Mailhot G (2012) Treatment of municipal WW treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection. Environ Sci Technol 46:2885–2892. https://doi.org/10.1021/es204112d

    Article  CAS  Google Scholar 

  89. Rosal R, Rodríguez A, Perdigón-Melón JA, Petre A, García-Calvo E, Gómez MJ, Agüera A, Fernández-Alba AR (2010) Occurrence of emerging pollutants in urban WW and their removal through biological treatment followed by ozonation. Water Res 44:578–588. https://doi.org/10.1016/j.watres.2009.07.004

    Article  CAS  Google Scholar 

  90. Campos-Mañas MC, Plaza-Bolaños P, Sánchez-Pérez JA, Malato S, Agüera A (2017) Fast determination of pesticides and other contaminants of emerging concern in treated WW using direct injection coupled to highly sensitive ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1507:84–94. https://doi.org/10.1016/j.chroma.2017.05.053

    Article  CAS  Google Scholar 

  91. Maia AS, Paíga P, Delerue-Matos C, Castro PML, Tiritan ME (2020) Quantification of fluoroquinolones in WWs by liquid chromatography-tandem mass spectrometry. Environ Pollut 259:113927. https://doi.org/10.1016/j.envpol.2020.113927

    Article  CAS  Google Scholar 

  92. González-Antuña A, Domínguez-Romero JC, García-Reyes JF, Rodríguez-González P, Centineoc G, García Alonso JI, Molina-Díaz A (2013) Overcoming matrix effects in electrospray: quantitation of β–agonists in complex matrices by isotope dilution liquid chromatography–mass spectrometry using singly 13C-labeled analogues. J Chromatogr A 1288:40–47. https://doi.org/10.1016/j.chroma.2013.02.074

    Article  CAS  Google Scholar 

  93. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J (2014) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 48:2097–2098. https://doi.org/10.1021/es5002105

    Article  CAS  Google Scholar 

  94. Bletsou AA, Jeon J, Hollender J, Archontaki E, Thomaidis NS (2015) Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. TrAC Trends Anal Chem 66:32e44. https://doi.org/10.1016/j.trac.2014.11.009

    Article  CAS  Google Scholar 

  95. Kyoto University (2018) Pathpred: pathway prediction server [WWW document]. https://www.genome.jp/tools/pathpred

  96. EAWAG (2018) EAWAG-BBD pathway prediction system [WWW document]. http://eawag-bbd.ethz.ch/predict

  97. Jaén-Gil A, Buttiglieri G, Benito A, Gonzalez-Olmos R, Barceló D, Rodríguez-Mozaz S (2019) Metoprolol and metoprolol acid degradation in UV/H2O2 treated WWs: an integrated screening approach for the identification of hazardous transformation products. J Hazard Mater 380:120851. https://doi.org/10.1016/j.jhazmat.2019.120851

    Article  CAS  Google Scholar 

  98. Schenone AV, Conte LO, Botta MA, Alfano OM (2015) Modeling and optimization of photo-Fenton degradation of 2,4-D using ferrioxalate complex and response surface methodology (RSM). J Environ Manag 155:177–183. https://doi.org/10.1016/j.jenvman.2015.03.028

    Article  CAS  Google Scholar 

  99. Rivas G, Carra I, García Sánchez JL, Casas López JL, Malato S, Sánchez Pérez JA (2015) Modelling of the operation of raceway pond reactors for micropollutant removal by solar photo-Fenton as a function of photon absorption. Appl Catal B Environ 178:210–217. https://doi.org/10.1016/j.apcatb.2014.09.015

    Article  CAS  Google Scholar 

  100. Giannakis S, Hendaoui I, Rtimi S, Fürbringer JM, Pulgarin C (2017) Modeling and treatment optimization of pharmaceutically active compounds by the photo-Fenton process: the case of the antidepressant venlafaxine. J Environ Chem Eng 5:818–828. https://doi.org/10.1016/j.jece.2016.12.050

    Article  CAS  Google Scholar 

  101. Cassano AE, Martin CA, Brandi RJ, Alfano OM (1995) Photoreactor analysis and design: fundamentals and applications. Ind Eng Chem Res 34:2155–2201. https://doi.org/10.1021/ie00046a001

    Article  CAS  Google Scholar 

  102. Conte LO, Schenone AV, Alfano OM (2016) Photo-Fenton degradation of the herbicide 2,4-D in aqueous medium at pH conditions close to neutrality. J Environ Manag 170:60–69. https://doi.org/10.1016/j.jenvman.2016.01.002

    Article  CAS  Google Scholar 

  103. Brandi RJ, Citroni MA, Alfano OM, Cassano AE (2003) Absolute quantum yields in photocatalytic slurry reactors. Chem Eng Sci 58:979–985. https://doi.org/10.1016/S0009-2509(02)00638-3

    Article  CAS  Google Scholar 

  104. Andreozzi R, D’Apuzzo A, Marotta R (2000) A kinetic model for the degradation of benzothiazole by Fe3+-photo-assisted Fenton process in a completely mixed batch reactor. J Hazard Mater 80:241–257. https://doi.org/10.1016/S0304-3894(00)00308-3

    Article  CAS  Google Scholar 

  105. Conte LO, Farias J, Albizzati ED, Alfano OM (2012) Photo-Fenton degradation of the herbicide 2,4-dichlorophenoxyacetic acid in laboratory and solar pilot-plant reactors. Ind Eng Chem Res 51:4181–4191. https://doi.org/10.1021/ie2023228

    Article  CAS  Google Scholar 

  106. Cabrera Reina A, Santos-Juanes L, García Sánchez JL, Casas López JL, Maldonado Rubio MI, Li Puma G, Sánchez Pérez JA (2015) Modelling the photo-Fenton oxidation of the pharmaceutical paracetamol in water including the effect of photon absorption (VRPA). Appl Catal B Environ 166–167:295–301. https://doi.org/10.1016/j.apcatb.2014.11.023

    Article  CAS  Google Scholar 

  107. Audino F, Conte LO, Schenone AV, Pérez-Moya M, Graells M, Alfano OM (2018) A kinetic study for the Fenton and photo-Fenton paracetamol degradation in an annular photoreactor. Environ Sci Pollut Res 26(5):4312–4323. https://doi.org/10.1007/s11356-018-3098-4

    Article  CAS  Google Scholar 

  108. Sánchez Pérez JA, Soriano-Molina P, Rivas G, García Sánchez JL, Casas López JL, Fernández SJM (2017) Effect of temperature and photon absorption on the kinetics of micropollutant removal by solar photo-Fenton in raceway pond reactors. Chem Eng J 310:464–472. https://doi.org/10.1016/j.cej.2016.06.055

    Article  CAS  Google Scholar 

  109. Conte LO, Schenone AV, Giménez BN, Alfano OM (2019) Photo-Fenton degradation of a herbicide (2,4-D) in groundwater for conditions of natural pH and presence of inorganic anions. J Hazard Mater 372:113–120. https://doi.org/10.1016/j.jhazmat.2018.04.013

    Article  CAS  Google Scholar 

  110. Soriano Molina P, García Sánchez JL, Malato S, Plaza-Bolaños P, Agüera A, Sánchez Pérez JA (2019) On the design and operation of solar photo-Fenton open reactors for the removal of contaminants of emerging concern from WWTP effluents at neutral pH. Appl Catal B Environ 256:117801. https://doi.org/10.1016/j.apcatb.2019.117801

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I. Oller and S. Malato wish to thank the Spanish Ministry of Economy and Competitiveness for funding under the ECOSAFEFARMING Project (International Joint Programming Actions, reference: PCIN-2017-005) and 2016 Water and FACCE JPIs Joint Call. J. Giménez wish to thank the Spanish Ministry of Economy and Competitiveness (project CTQ2017-86466-R, MINECO/FEDER, UE) and AGAUR-Generalitat de Catalunya (project 2017SGR-131) for funds received. A. Agüera and J.A. Sánchez Pérez wish to thank contribution of the LIFE ULISES project funded by the European Union under the LIFE Financial Programme Grant Agreement No. LIFE18 ENV/ES/000165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixto Malato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malato, S., Giménez, J., Oller, I., Agüera, A., Sánchez Pérez, J.A. (2020). Removal and Degradation of Pharmaceutically Active Compounds (PhACs) in Wastewaters by Solar Advanced Oxidation Processes. In: Rodriguez-Mozaz, S., Blánquez Cano, P., Sarrà Adroguer, M. (eds) Removal and Degradation of Pharmaceutically Active Compounds in Wastewater Treatment. The Handbook of Environmental Chemistry, vol 108. Springer, Cham. https://doi.org/10.1007/698_2020_688

Download citation

Publish with us

Policies and ethics