Skip to main content

Adsorptive Removal of Pharmaceutically Active Compounds from Wastewater

  • Chapter
  • First Online:
Removal and Degradation of Pharmaceutically Active Compounds in Wastewater Treatment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 108))

Abstract

This chapter provides some fundamental aspects on adsorption of pharmaceutically active compounds in wastewater treatment scenarios, with a strong focus on actual practicality and the most recent scientific output. It discusses the key properties of adsorbing substances and adsorbent materials impacting the associated removals. The text demonstrates how adverse competitive effects by dissolved organic matter substantially impact adsorption of targeted compounds. This chapter further highlights possibilities for efficiently exploiting the available capacities of powdered and granular adsorbents. It introduces several practical and easily applicable means for prediction of the occurring adsorptive processes. In addition, the text provides some insights into available adsorbents and new material developments, comparing their advantages, downsides, and overall potentials for successful application. The last section gives a short overview on the associated environmental impacts and costs of adsorptive stages when installed on wastewater treatment plants. The conclusion summarizes the main findings and relates them to open research questions and additional future needs beyond strictly scientific disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reemtsma T, Weiss S, Mueller J, Petrovic M, Gonzalez S, Barcelo D et al (2006) Polar pollutants entry into the water cycle by municipal wastewater: a European perspective. Environ Sci Technol 40(17):5451–5458

    CAS  Google Scholar 

  2. Schulze S, Zahn D, Montes R, Rodil R, Quintana JB, Knepper TP et al (2019) Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Res 153:80–90

    CAS  Google Scholar 

  3. Swiss Confederation (2016) Verordnung des UVEK zur Überprüfung des Reinigungseffekts von Massnahmen zur elimination von organischen Spurenstoffen bei Abwasserreinigungsanlagen (ordinance of the UVEK on the review of purification effects by measures for the elimiation of organic micro-pollutants in wastewater treatment plants). Document number 814.201.231. https://www.admin.ch/opc/de/classified-compilation/20160123/index.html

  4. European Commission (2018) Watch list of substances for Union-wide monitoring in the field of water policy. Document number 32018D0840. http://data.europa.eu/eli/dec_impl/2018/840/oj

  5. Blair B, Nikolaus A, Hedman C, Klaper R, Grundl T (2015) Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere 134:395–401

    CAS  Google Scholar 

  6. Eggen RIL, Hollender J, Joss A, Scharer M, Stamm C (2014) Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol 48(14):7683–7689

    CAS  Google Scholar 

  7. Ruff M, Mueller MS, Loos M, Singer HP (2015) Quantitative target and systematic non-target analysis of polar organic micro-pollutants along the river Rhine using high-resolution mass-spectrometry – identification of unknown sources and compounds. Water Res 87:145–154

    CAS  Google Scholar 

  8. McCance W, Jones OAH, Edwards M, Surapaneni A, Chadalavada S, Currell M (2018) Contaminants of emerging concern as novel groundwater tracers for delineating wastewater impacts in urban and peri-urban areas. Water Res 146:118–133

    CAS  Google Scholar 

  9. Reemtsma T, Berger U, Arp HPH, Gallard H, Knepper TP, Neumann M et al (2016) Mind the gap: persistent and Mobile organic compounds water contaminants that slip through. Environ Sci Technol 50(19):10308–10315

    CAS  Google Scholar 

  10. Worch E (2012) Adsorption Technology in Water Treatment – fundamentals, processes, and modeling. De Gruyter, Berlin

    Google Scholar 

  11. Zietzschmann F, Altmann J, Ruhl AS, Dünnbier U, Dommisch I, Sperlich A et al (2014) Estimating organic micro-pollutant removal potential of activated carbons using UV absorption and carbon characteristics. Water Res 56:48–55

    CAS  Google Scholar 

  12. Mailler R, Gasperi J, Coquet Y, Deshayes S, Zedek S, Cren-Olive C et al (2015) Study of a large scale powdered activated carbon pilot: removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water Res 72:315–330

    CAS  Google Scholar 

  13. Altmann J, Ruhl AS, Zietzschmann F, Jekel M (2014) Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment. Water Res 55:185–193

    CAS  Google Scholar 

  14. de Ridder DJ, Villacorte L, Verliefde AR, Verberk JQ, Heijman SG, Amy GL, van Dijk JC (2010) Modeling equilibrium adsorption of organic micropollutants onto activated carbon. Water Res 44(10):3077–3086

    Google Scholar 

  15. Zietzschmann F, Dittmar S, Splettstößer L, Hunsicker J, Dittmann D, Meinel F et al (2019) Fast empirical lab method for performance projections of large-scale powdered activated carbon re-circulation plants. Chemosphere 215:563–573

    CAS  Google Scholar 

  16. Wang J, Wang S (2016) Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J Environ Manag 182:620–640

    CAS  Google Scholar 

  17. Radovic LR, Silva IF, Ume JI, Menéndez JA, Leon CALY, Scaroni AW (1997) An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons. Carbon 35(9):1339–1348

    CAS  Google Scholar 

  18. Ling Y, Alzate-Sánchez DM, Klemes MJ, Dichtel WR, Helbling DE (2020) Evaluating the effects of water matrix constituents on micropollutant removal by activated carbon and β-cyclodextrin polymer adsorbents. Water Res 173:115551

    CAS  Google Scholar 

  19. Dittmar S, Zietzschmann F, Mai M, Worch E, Jekel M, Ruhl AS (2018) Simulating effluent organic matter competition in micropollutant adsorption onto activated carbon using a surrogate competitor. Environ Sci Technol 52(14):7859–7866

    CAS  Google Scholar 

  20. Bandosz TJ, Ania CO, Dfaz JAMN, Beguin F, Choma J, Ingaki M et al (2006) Activated carbon surfaces in environmental remediation. Elsevier, Amsterdam

    Google Scholar 

  21. Kilduff JE, Karanfil T, Chin YP, Weber WJ (1996) Adsorption of natural organic polyelectrolytes by activated carbon: a size-exclusion chromatography study. Environ Sci Technol 30(4):1336–1343

    CAS  Google Scholar 

  22. Ding L, Snoeyink VL, Marinas BJ, Yue ZR, Economy J (2008) Effects of powdered activated carbon pore size distribution on the competitive adsorption of aqueous atrazine and natural organic matter. Environ Sci Technol 42(4):1227–1231

    CAS  Google Scholar 

  23. Ji LL, Liu FL, Xu ZY, Zheng SR, Zhu DQ (2010) Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro- and mesoporous carbons. Environ Sci Technol 44(8):3116–3122

    CAS  Google Scholar 

  24. Piai L, Dykstra JE, Adishakti MG, Blokland M, Langenhoff AAM, van der Wal A (2019) Diffusion of hydrophilic organic micropollutants in granular activated carbon with different pore sizes. Water Res 162:518–527

    CAS  Google Scholar 

  25. U.S. National Library of Medicine (2020) ChemIDplus advanced. https://chem.nlm.nih.gov/chemidplus/. Accessed 28 May 2020

  26. Aschermann G, Schröder C, Zietzschmann F, Jekel M (2019) Organic micropollutant desorption in various water matrices – activated carbon pore characteristics determine the reversibility of adsorption. Chemosphere 237:124415

    CAS  Google Scholar 

  27. Pelekani C, Snoeyink VL (1999) Competitive adsorption in natural water: role of activated carbon pore size. Water Res 33(5):1209–1219

    CAS  Google Scholar 

  28. Nowotny N, Epp B, von Sonntag C, Fahlenkamp H (2007) Quantification and modeling of the elimination behavior of ecologically problematic wastewater micropollutants by adsorption on powdered and granulated activated carbon. Environ Sci Technol 41(6):2050–2055

    CAS  Google Scholar 

  29. Bonvin F, Jost L, Randin L, Bonvin E, Kohn T (2016) Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent. Water Res 90:90–99

    CAS  Google Scholar 

  30. Takaesu H, Matsui Y, Nishimura Y, Matsushita T, Shirasaki N (2019) Micro-milling super-fine powdered activated carbon decreases adsorption capacity by introducing oxygen/hydrogen-containing functional groups on carbon surface from water. Water Res 155:66–75

    CAS  Google Scholar 

  31. Kah M, Sigmund G, Xiao F, Hofmann T (2017) Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Res 124:673–692

    CAS  Google Scholar 

  32. Salame II, Bandosz TJ (2001) Surface chemistry of activated carbons: combining the results of temperature-programmed desorption, boehm, and potentiometric titrations. J Colloid Interf Sci 240(1):252–258

    CAS  Google Scholar 

  33. Nielsen L, Biggs MJ, Skinner W, Bandosz TJ (2014) The effects of activated carbon surface features on the reactive adsorption of carbamazepine and sulfamethoxazole. Carbon 80:419–432

    CAS  Google Scholar 

  34. Tran NH, Reinhard M, Gin KY-H (2018) Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res 133:182–207

    CAS  Google Scholar 

  35. Graham MR, Summers RS, Simpson MR, MacLeod BW (2000) Modeling equilibrium adsorption of 2-methylisoborneol and geosmin in natural waters. Water Res 34(8):2291–2300

    CAS  Google Scholar 

  36. Zietzschmann F, Aschermann G, Jekel M (2016) Comparing and modeling organic micro-pollutant adsorption onto powdered activated carbon in different drinking waters and WWTP effluents. Water Res 102:190–201

    CAS  Google Scholar 

  37. Najm IN, Snoeyink VL, Richard Y (1991) Effect of initial concentration of a Soc in natural-water on its adsorption by activated carbon. J Am Water Works Ass 83(8):57–63

    CAS  Google Scholar 

  38. Summers RS, Haist B, Koehler J, Ritz J, Zimmer G, Sontheimer H (1989) The influence of background organic-matter on Gac adsorption. J Am Water Works Ass 81(5):66–74

    CAS  Google Scholar 

  39. Rabolt B (1988) Untersuchungen zur konkurrierenden adsorption von Mikroverunreinigungen und natürlichen organischen Wasserinhaltsstoffen. Doctoral Dissertation, Technische Universität Dresden, Dresden

    Google Scholar 

  40. Streicher J, Ruhl AS, Gnirss R, Jekel M (2016) Where to dose powdered activated carbon in a wastewater treatment plant for organic micro-pollutant removal. Chemosphere 156:88–94

    CAS  Google Scholar 

  41. Kilduff JE, Karanfil T, Weber WJ (1996) Competitive interactions among components of humic acids in granular activated carbon adsorption systems: effects of solution chemistry. Environ Sci Technol 30(4):1344–1351

    CAS  Google Scholar 

  42. Li QL, Snoeyink VL, Mariaas BJ, Campos C (2003) Elucidating competitive adsorption mechanisms of atrazine and NOM using model compounds. Water Res 37(4):773–784

    CAS  Google Scholar 

  43. Pignatello JJ, Kwon S, Lu YF (2006) Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environ Sci Technol 40(24):7757–7763

    CAS  Google Scholar 

  44. Yu ZR, Peldszus S, Huck PM (2008) Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound – naproxen, carbamazepine and nonylphenol – on activated carbon. Water Res 42(12):2873–2882

    CAS  Google Scholar 

  45. Nam SW, Choi DJ, Kim SK, Her N, Zoh KD (2014) Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. J Hazard Mater 270:144–152

    CAS  Google Scholar 

  46. Dittmar S, Ruhl AS, Jekel M (2017) Untersuchung von Modellstoffen zur simulation der Adsorptionskonkurrenz in gereinigten Abwässern (Model substances for simulating competitive adsorption in treated wastewaters). Vom Wasser 115(2):45–47. In German

    Google Scholar 

  47. Hertkorn N, Frommberger M, Witt M, Koch BP, Schmitt-Kopplin P, Perdue EM (2008) Natural organic matter and the event horizon of mass spectrometry. Anal Chem 80(23):8908–8919

    CAS  Google Scholar 

  48. Matilainen A, Gjessing ET, Lahtinen T, Hed L, Bhatnagar A, Sillanpaa M (2011) An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 83(11):1431–1442

    CAS  Google Scholar 

  49. Zietzschmann F, Mitchell R-L, Jekel M (2015) Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in adsorption onto powdered activated carbon. Water Res 84:153–160

    CAS  Google Scholar 

  50. Aschermann G, Neubert L, Zietzschmann F, Jekel M (2019) Impact of different DOM size fractions on the desorption of organic micropollutants from activated carbon. Water Res 161:161–170

    CAS  Google Scholar 

  51. Li QL, Snoeyink VL, Marinas BJ, Campos C (2003) Pore blockage effect of NOM on atrazine adsorption kinetics of PAC: the roles of PAC pore size distribution and NOM molecular weight. Water Res 37(20):4863–4872

    CAS  Google Scholar 

  52. Kennedy AM, Summers RS (2015) Effect of DOM size on organic micropollutant adsorption by GAC. Environ Sci Technol 49(11):6617–6624

    CAS  Google Scholar 

  53. Wang Q, Zietzschmann F, Yu J, Hofman R, An W, Yang M, Rietveld LC (2020) Projecting competition between 2-methylisoborneol and natural organic matter in adsorption onto activated carbon from ozonated source waters. Water Res 173:115574

    CAS  Google Scholar 

  54. Zietzschmann F, Worch E, Altmann J, Ruhl AS, Sperlich A, Meinel F, Jekel M (2014) Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater. Water Res 65:297–306

    CAS  Google Scholar 

  55. Zietzschmann F, Müller J, Sperlich A, Ruhl AS, Meinel F, Altmann J, Jekel M (2014) Rapid small-scale column testing of granular activated carbon for organic micro-pollutant removal in treated domestic wastewater. Water Sci Technol 70(7):1271–1278

    CAS  Google Scholar 

  56. Al Mardini F, Legube B (2010) Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon. Part 3: competition with natural organic matter. J Hazard Mater 182(1–3):10–17

    Google Scholar 

  57. Huber SA, Balz A, Abert M, Pronk W (2011) Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography – organic carbon detection – organic nitrogen detection (LC-OCD-OND). Water Res 45(2):879–885

    CAS  Google Scholar 

  58. Knappe DRU, Matsui Y, Snoeyink VL, Roche P, Prados MJ, Bourbigot MM (1998) Predicting the capacity of powdered activated carbon for trace organic compounds in natural waters. Environ Sci Technol 32(11):1694–1698

    CAS  Google Scholar 

  59. Rossner A, Snyder SA, Knappe DRU (2009) Removal of emerging contaminants of concern by alternative adsorbents. Water Res 43(15):3787–3796

    CAS  Google Scholar 

  60. Kovalova L, Knappe DRU, Lehnberg K, Kazner C, Hollender J (2013) Removal of highly polar micropollutants from wastewater by powdered activated carbon. Environ Sci Pollut R 20(6):3607–3615

    CAS  Google Scholar 

  61. Matsui Y, Fukuda Y, Inoue T, Matsushita T (2003) Effect of natural organic matter on powdered activated carbon adsorption of trace contaminants: characteristics and mechanism of competitive adsorption. Water Res 37(18):4413–4424

    CAS  Google Scholar 

  62. Zietzschmann F, Stützer C, Jekel M (2016) Granular activated carbon adsorption of organic micro-pollutants in drinking water and treated wastewater – aligning breakthrough curves and capacities. Water Res 92:180–187

    CAS  Google Scholar 

  63. Corwin CJ, Summers RS (2011) Adsorption and desorption of trace organic contaminants from granular activated carbon adsorbers after intermittent loading and throughout backwash cycles. Water Res 45(2):417–426

    CAS  Google Scholar 

  64. Mailler R, Gasperi J, Coquet Y, Bulete A, Vulliet E, Deshayes S et al (2016) Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale. Sci Total Environ 542:983–996

    CAS  Google Scholar 

  65. Jiang N, Shang R, Heijman SGJ, Rietveld LC (2018) High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review. Water Res 144:145–161

    CAS  Google Scholar 

  66. Elsevier (2020) Scopus document search. https://www.scopus.com. Accessed 28 May 2020

  67. Statista (2020) Market volume of activated carbon worldwide in 2016 and 2021. Statista GmbH. https://www.statista.com/statistics/963555/global-market-volume-activated-carbon/. Accessed 16 May 2020

  68. Danish M, Ahmad T (2018) A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sust Energ Rev 87:1–21

    CAS  Google Scholar 

  69. Silva CP, Jaria G, Otero M, Esteves VI, Calisto V (2018) Waste-based alternative adsorbents for the remediation of pharmaceutical contaminated waters: has a step forward already been taken? Bioresour Technol 250:888–901

    CAS  Google Scholar 

  70. Quesada HB, Baptista ATA, Cusioli LF, Seibert D, de Oliveira BC, Bergamasco R (2019) Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere 222:766–780

    CAS  Google Scholar 

  71. Tran HN, Nguyen HC, Woo SH, Nguyen TV, Vigneswaran S, Hosseini-Bandegharaei A et al (2019) Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: a comprehensive and critical review. Crit Rev Environ Sci Technol 49(23):2155–2219

    CAS  Google Scholar 

  72. Tan XF, Liu SB, Liu YG, Gu YL, Zeng GM, Hua XJ et al (2017) Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresour Technol 227:359–372

    CAS  Google Scholar 

  73. Benstoem F, Becker G, Firk J, Kaless M, Wuest D, Pinnekamp J, Kruse A (2018) Elimination of micropollutants by activated carbon produced from fibers taken from wastewater screenings using hydrothermal carbonization. J Environ Manag 211:278–286

    CAS  Google Scholar 

  74. Shimabuku KK, Kearns JP, Martinez JE, Mahoney RB, Moreno-Vasquez L, Summers RS (2016) Biochar sorbents for sulfamethoxazole removal from surface water, stormwater, and wastewater effluent. Water Res 96:236–245

    CAS  Google Scholar 

  75. Thompson KA, Shimabuku KK, Kearns JP, Knappe DRU, Summers RS, Cook SM (2016) Environmental comparison of biochar and activated carbon for tertiary wastewater treatment. Environ Sci Technol 50(20):11253–11262

    CAS  Google Scholar 

  76. Kearns JP, Wellborn LS, Summers RS, Knappe DRU (2014) 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data. Water Res 62:20–28

    CAS  Google Scholar 

  77. Rocha LS, Pereira D, Sousa É, Otero M, Esteves VI, Calisto V (2020) Recent advances on the development and application of magnetic activated carbon and char for the removal of pharmaceutical compounds from waters: a review. Sci Total Environ 718:137272

    CAS  Google Scholar 

  78. Li SJ, Han KH, Li JX, Li M, Lu CM (2017) Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater 243:291–300

    CAS  Google Scholar 

  79. Schneidermann C, Jackel N, Oswald S, Giebeler L, Presser V, Borchardt L (2017) Solvent-free Mechanochemical synthesis of nitrogen-doped Nanoporous carbon for electrochemical energy storage. ChemSusChem 10(11):2416–2424

    CAS  Google Scholar 

  80. de Sousa DNR, Insa S, Mozeto AA, Petrovic M, Chaves TF, Fadini PS (2018) Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere 205:137–146

    Google Scholar 

  81. Jiang N, Erdős M, Moultos OA, Shang R, Vlugt TJH, Heijman SGJ, Rietveld LC (2020) The adsorption mechanisms of organic micropollutants on high-silica zeolites causing S-shaped adsorption isotherms: an experimental and Monte Carlo simulation study. Chem Eng J 389:123968

    CAS  Google Scholar 

  82. Thiebault T (2020) Raw and modified clays and clay minerals for the removal of pharmaceutical products from aqueous solutions: state of the art and future perspectives. Crit Rev Environ Sci Technol 50(14):1451–1514

    CAS  Google Scholar 

  83. Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble beta-cyclodextrin-epichlorohydrin polymers. Prog Polym Sci 38(2):344–368

    CAS  Google Scholar 

  84. Sikder MT, Rahman MM, Jakariya M, Hosokawa T, Kurasaki M, Saito T (2019) Remediation of water pollution with native cyclodextrins and modified cyclodextrins: a comparative overview and perspectives. Chem Eng J 355:920–941

    CAS  Google Scholar 

  85. Zhang X, Bai RB (2003) Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules. J Colloid Interface Sci 264(1):30–38

    CAS  Google Scholar 

  86. Tian C, Zhao J, Ou X, Wan J, Cai Y, Lin Z et al (2018) Enhanced adsorption of p-Arsanilic acid from water by amine-modified UiO-67 as examined using extended X-ray absorption fine structure, X-ray photoelectron spectroscopy, and density functional theory calculations. Environ Sci Technol 52(6):3466–3475

    CAS  Google Scholar 

  87. Meng Z, Chen W, Mulchandani A (2005) Removal of estrogenic pollutants from contaminated water using molecularly imprinted polymers. Environ Sci Technol 39(22):8958–8962

    CAS  Google Scholar 

  88. Metzger S, Alt K, Benstoem F, Biebersdorf N, Boehler M, Bornemann C et al (2019) Aktivkohleeinsatz auf kommunalen Kläranlagen zur Spurenstoffentfernung (Activated carbon application on municipal wastewater treatment plants for trace compound removal). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA), Hennef (Germany). (In German)

    Google Scholar 

  89. Boehler M, Zwickenpflug B, Hollender J, Ternes T, Joss A, Siegrist H (2012) Removal of micropollutants in municipal wastewater treatment plants by powder-activated carbon. Water Sci Technol 66(10):2115–2121

    CAS  Google Scholar 

  90. Altmann J, Sperlich A, Jekel M (2015) Integrating organic micropollutant removal into tertiary filtration: combining PAC adsorption with advanced phosphorus removal. Water Res 84:58–65

    CAS  Google Scholar 

  91. Loewenberg J, Zenker A, Krahnstover T, Boehler M, Baggenstos M, Koch G, Wintgens T (2016) Upgrade of deep bed filtration with activated carbon dosage for compact micropollutant removal from wastewater in technical scale. Water Res 94:246–256

    Google Scholar 

  92. Altmann J, Ruhl AS, Sauter D, Pohl J, Jekel M (2015) How to dose powdered activated carbon in deep bed filtration for efficient micropollutant removal. Water Res 78:9–17

    CAS  Google Scholar 

  93. Meinel F, Zietzschmann F, Ruhl AS, Sperlich A, Jekel M (2016) The benefits of powdered activated carbon recirculation for micropollutant removal in advanced wastewater treatment. Water Res 91:97–103

    CAS  Google Scholar 

  94. Nicolet L, Rott U (1999) Recirculation of powdered activated carbon for the adsorption of dyes in municipal wastewater treatment plants. Water Sci Technol 40(1):191–198

    CAS  Google Scholar 

  95. Karelid V, Larsson G, Bjorlenius B (2017) Effects of recirculation in a three-tank pilot-scale system for pharmaceutical removal with powdered activated carbon. J Environ Manag 193:163–171

    Google Scholar 

  96. Krahnstöver T, Wintgens T (2018) Separating powdered activated carbon (PAC) from wastewater – technical process options and assessment of removal efficiency. J Environ Chem Eng 6(5):5744–5762

    Google Scholar 

  97. Nakazawa Y, Matsui Y, Hanamura Y, Shinno K, Shirasaki N, Matsushita T (2018) Minimizing residual black particles in sand filtrate when applying super-fine powdered activated carbon: coagulants and coagulation conditions. Water Res 147:311–320

    CAS  Google Scholar 

  98. Ando N, Matsui Y, Kurotobi R, Nakano Y, Matsushita T, Ohno K (2010) Comparison of natural organic matter adsorption capacities of super-powdered activated carbon and powdered activated carbon. Water Res 44(14):4127–4136

    CAS  Google Scholar 

  99. Loewenberg J, Zenker A, Baggenstos M, Koch G, Kazner C, Wintgens T (2014) Comparison of two PAC/UF processes for the removal of micropollutants from wastewater treatment plant effluent: process performance and removal efficiency. Water Res 56:26–36

    Google Scholar 

  100. Hernandez LA, Harriott P (1976) Regeneration of powdered active carbon in fluidized bed. Environ Sci Technol 10(5):454–456

    CAS  Google Scholar 

  101. Salvador F, Martin-Sanchez N, Sanchez-Hernandez R, Sanchez-Montero MJ, Izquierdo C (2015) Regeneration of carbonaceous adsorbents. Part II: chemical, microbiological and vacuum regeneration. Microporous Mesoporous Mater 202:277–296

    CAS  Google Scholar 

  102. Reungoat J, Pic JS, Manéro MH, Debellefontaine H (2007) Adsorption of nitrobenzene from water onto high silica zeolites and regeneration by ozone. Sep Sci Technol 42(7):1447–1463

    CAS  Google Scholar 

  103. Quinlivan PA, Li L, Knappe DRU (2005) Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Res 39(8):1663–1673

    CAS  Google Scholar 

  104. Li L, Quinlivan PA, Knappe DRU (2005) Predicting adsorption isotherms for aqueous organic micropollutants from activated carbon and pollutant properties. Environ Sci Technol 39(9):3393–3400

    CAS  Google Scholar 

  105. Worch E (2010) Competitive adsorption of micropollutants and NOM onto activated carbon: comparison of different model approaches. J Water Supply Res Technol 59(5):285–297

    CAS  Google Scholar 

  106. Bahr C, Schumacher J, Ernst M, Luck F, Heinzmann B, Jekel M (2007) SUVA as control parameter for the effective ozonation of organic pollutants in secondary effluent. Water Sci Technol 55(12):267–274

    CAS  Google Scholar 

  107. Ziska AD, Park M, Anumol T, Snyder SA (2016) Predicting trace organic compound attenuation with spectroscopic parameters in powdered activated carbon processes. Chemosphere 156:163–171

    CAS  Google Scholar 

  108. Zietzschmann F, Altmann J, Hannemann C, Jekel M (2015) Lab-testing, predicting, and modeling multi-stage activated carbon adsorption of organic micro-pollutants from treated wastewater. Water Res 83:52–60

    CAS  Google Scholar 

  109. Altmann J, Zietzschmann F, Geiling EL, Ruhl AS, Sperlich A, Jekel M (2015) Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater. Chemosphere 125:198–204

    CAS  Google Scholar 

  110. Rößler A, Metzger S (2016) Application of SAC(254) measurement for the assessment of micropollutant removal in the adsorptive treatment stage of a municipal wastewater treatment plant. Water Pract Technol 11(2):503–515

    Google Scholar 

  111. Altmann J, Massa L, Sperlich A, Gnirss R, Jekel M (2016) UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon. Water Res 94:240–245

    CAS  Google Scholar 

  112. Kennedy AM, Reinert AM, Knappe DRU, Ferrer I, Summers RS (2015) Full- and pilot-scale GAC adsorption of organic micropollutants. Water Res 68:238–248

    CAS  Google Scholar 

  113. Benstoem F, Nahrstedt A, Boehler M, Knopp G, Montag D, Siegrist H, Pinnekamp J (2017) Performance of granular activated carbon to remove micropollutants from municipal wastewater-A meta-analysis of pilot- and large-scale studies. Chemosphere 185:105–118

    CAS  Google Scholar 

  114. Meinel F, Ruhl AS, Sperlich A, Zietzschmann E, Jekel M (2015) Pilot-scale investigation of micropollutant removal with granular and powdered activated carbon. Water Air Soil Pollut 226(1)

    Google Scholar 

  115. Crittenden JC, Reddy PS, Arora H, Trynoski J, Hand DW, Perram DL, Summers RS (1991) Predicting Gac performance with rapid small-scale column tests. J Am Water Works Ass 83(1):77–87

    CAS  Google Scholar 

  116. Schimmelpfennig S, Sperlich A (2011) FAST – fixed-bed adsorption simulation tool 2.1beta. Berlin, Germany. http://www.fast-software.de/

  117. Altmann J, Rehfeld D, Träder K, Sperlich A, Jekel M (2016) Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal. Water Res 92:131–139

    CAS  Google Scholar 

  118. Crittenden JC, Trussell RR, Hand DW, Howe KJ, Tchobanoglous G (2012) MWH’s water treatment – principles and design, 3rd edn. Wiley, Hoboken (acid-free paper)

    Google Scholar 

  119. Nahrstedt A, Rohn A, Alt K, Wu X, Schlösser F, Schröder K-H (2016) Mikroschadstoffelimination mittels granulierter Aktivkohle im Ablauf der Kläranlage Gütersloh-Putzhagen – Kurzbericht (micropollutant elimination by granular activated carbon in the effluent of WWTP Gütersloh-Putzhagen – short report). IWW Rheinisch-Westfälisches Institut für Wasserforschung gemeinnützige GmbH. In German

    Google Scholar 

  120. Wunderlin P, Meier A, Grelot J (2017) Elimination von Mikroverunreinigungen auf ARA: Aktueller Stand der Verfahren und künftige Entwicklungen. Aqua Gas 11:60–70. In German

    Google Scholar 

  121. Hertel M, Maurer P, Steinmetz H (2014) Auswahl und Überprüfung granulierter Aktivkohlen (GAK) für den Einsatz in kontinuierlich gespülten Filtern (selection and screening of granular activated carbons for application in continuously backwashed filters). Wasser Abfall 16(11):40–45. In German

    CAS  Google Scholar 

  122. Bourgin M, Beck B, Boehler M, Borowska E, Fleiner J, Salhi E et al (2018) Evaluation of a full-scale wastewater, treatment plant upgraded with ozonation and biological post-treatments: abatement of micropollutants, formation of transformation products and oxidation by-products. Water Res 129:486–498

    CAS  Google Scholar 

  123. Bornemann C, Hachenberg M, Kazner C, Herr J, Jagemann P, Lyko S et al (2012) Ertüchtigung kommunaler Kläranlagen, insbesondere kommunaler Flockungsfiltrationsanlagen durch den Einsatz von Aktivkohle – MICROFlock; Abschlussbericht (upgrading municipal wastewater treatment plants, especially flocculation filters, by activated carbon; final report). RWTH Aachen. In German

    Google Scholar 

  124. Salvador F, Martin-Sanchez N, Sanchez-Hernandez R, Sanchez-Montero MJ, Izquierdo C (2015) Regeneration of carbonaceous adsorbents. Part I: thermal regeneration. Microporous Mesoporous Mater 202:259–276

    CAS  Google Scholar 

  125. Ruhl AS, Zietzschmann F, Altmann J, Meinel F, Sperlich A, Jekel M (2015) Stratification of granular activated carbon filters for advanced wastewater treatment. Water Air Soil Pollut 226(11)

    Google Scholar 

  126. Anumol T, Sgroi M, Park M, Roccaro P, Snyder SA (2015) Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates. Water Res 76:76–87

    CAS  Google Scholar 

  127. Freihardt J, Jekel M, Ruhl AS (2017) Comparing test methods for granular activated carbon for organic micropollutant elimination. J Environ Chem Eng 5(3):2542–2551

    CAS  Google Scholar 

  128. Kennedy AM, Reinert AM, Knappe DRU, Summers RS (2017) Prediction of full-scale GAC adsorption of organic micropollutants. Environ Eng Sci 34(7):496–507

    CAS  Google Scholar 

  129. Summers RS, Kim SM, Shimabuku K, Chae SH, Corwin CJ (2013) Granular activated carbon adsorption of MIB in the presence of dissolved organic matter. Water Res 47(10):3507–3513

    CAS  Google Scholar 

  130. Worch E (2008) Fixed-bed adsorption in drinking water treatment: a critical review on models and parameter estimation. J Water Supply Res Technol 57(3):171–183

    CAS  Google Scholar 

  131. Schideman LC, Marinas BJ, Snoeyink VL, Campos C (2006) Three-component competitive adsorption model for fixed-bed and moving-bed granular activated carbon adsorbers. Part I. Model development. Environ Sci Technol 40(21):6805–6811

    CAS  Google Scholar 

  132. de Ridder DJ, McConville M, Verliefde ARD, van der Aa LTJ, Heijman SGJ, Verberk JQJC et al (2009) Development of a predictive model to determine micropollutant removal using granular activated carbon. Drink Water Eng Sci 2(2):57–62

    Google Scholar 

  133. Liang CH, Chiang PC, Chang EE (2007) Modeling the behaviors of adsorption and biodegradation in biological activated carbon filters. Water Res 41(15):3241–3250

    CAS  Google Scholar 

  134. VSA (2020) VSA-plattform “Verfahrenstechnik Mikroverunreinigungen”. Verband Schweizer Abwasser- und Gewässerschutzfachleute. https://www.micropoll.ch. Accessed 30 May 2020

  135. KomS (2020) Micropollutants Competence Centre BW. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA). https://koms-bw.de/en. Accessed 30 May 2020

  136. Mousel D, Palmowski L, Pinnekamp J (2017) Energy demand for elimination of organic micropollutants in municipal wastewater treatment plants. Sci Total Environ 575:1139–1149

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Zietzschmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zietzschmann, F. (2020). Adsorptive Removal of Pharmaceutically Active Compounds from Wastewater. In: Rodriguez-Mozaz, S., Blánquez Cano, P., Sarrà Adroguer, M. (eds) Removal and Degradation of Pharmaceutically Active Compounds in Wastewater Treatment. The Handbook of Environmental Chemistry, vol 108. Springer, Cham. https://doi.org/10.1007/698_2020_687

Download citation

Publish with us

Policies and ethics