Skip to main content

Sonochemical Advanced Oxidation Processes for the Removal of Pharmaceuticals in Wastewater Effluents

  • Chapter
  • First Online:
Removal and Degradation of Pharmaceutically Active Compounds in Wastewater Treatment

Abstract

Pharmaceuticals in wastewater effluents represent a current environmental concern, which demands application of effective processes. In such regard, sonochemical advanced oxidation processes emerge as an attractive alternative, as illustrated herein. This chapter begins presenting some fundamental aspects of sonochemical treatments (e.g. effects of frequency, power and nature of pharmaceutical pollutants). In second place, the transformations of pharmaceuticals are described, considering topics such as the used analytical techniques and structural modifications of pollutants by chemical effects of ultrasound. Then, treatment of diverse wastewater containing pharmaceuticals are shown, paying special attention to degradations in complex matrices, reactors configurations and combination of ultrasound with membrane filtration processes. Final part is dedicated to highlight the key points presented along the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wood RJ, Lee J, Bussemaker MJ (2017) A parametric review of sonochemistry: control and augmentation of sonochemical activity in aqueous solutions. Ultrason Sonochem 38:351–370. https://doi.org/10.1016/j.ultsonch.2017.03.030

    Article  CAS  Google Scholar 

  2. Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ et al (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93:1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059

    Article  CAS  Google Scholar 

  3. Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715. https://doi.org/10.1021/ie010096l

    Article  CAS  Google Scholar 

  4. Riesz P, Berdahl D, Christman CL (1985) Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect 64:233–252. https://doi.org/10.2307/3430013

    Article  CAS  Google Scholar 

  5. McNamara WB, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multi-bubble cavitation. Nature 401:772–775. https://doi.org/10.1038/44536

    Article  CAS  Google Scholar 

  6. Beckett MA, Hua I (2001) Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry. J Phys Chem A 105:3796–3802. https://doi.org/10.1021/jp003226x

    Article  CAS  Google Scholar 

  7. Tran N, Drogui P, Brar SK (2015) Sonochemical techniques to degrade pharmaceutical organic pollutants. Environ Chem Lett 13:251–268. https://doi.org/10.1007/s10311-015-0512-8

    Article  CAS  Google Scholar 

  8. Montoya-Rodríguez DM, Ferraro F, Serna-Galvis EA, Torres-Palma RA (2020) Degradation of the emerging concern pollutant ampicillin in aqueous media by sonochemical advanced oxidation processes – parameters effect, removal of antimicrobial activity and pollutant treatment in hydrolyzed urine. J Environ Manage 261:110224. https://doi.org/10.1016/j.jenvman.2020.110224

    Article  CAS  Google Scholar 

  9. Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990–1003. https://doi.org/10.1016/j.ultsonch.2009.09.005

    Article  CAS  Google Scholar 

  10. Castelo-Grande T, Augusto PA, Barbosa D (2020) Chapter 14 ultrasound-assisted remediation methods. In: The handbook of environmental remediation: classic and modern techniques. The Royal Society of Chemistry, Cambridge, pp 379–409

    Chapter  Google Scholar 

  11. Kang JW, Hung HM, Lin A, Hoffmann MR (1999) Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation: the role of O3, H2O2, frequency, and power density. Environ Sci Technol 33:3199–3205. https://doi.org/10.1021/es9810383

    Article  CAS  Google Scholar 

  12. Serna-Galvis EA, Isaza-Pineda L, Moncayo-Lasso A et al (2019) Comparative degradation of two highly consumed antihypertensives in water by sonochemical process. Determination of the reaction zone, primary degradation products and theoretical calculations on the oxidative process. Ultrason Sonochem 58:104635. https://doi.org/10.1016/j.ultsonch.2019.104635

    Article  CAS  Google Scholar 

  13. Guo W, Wang H, Shi Y, Zhang G (2010) Sonochemical degradation of the antibiotic cephalexin in aqueous solution. Water SA 36:651–654. https://doi.org/10.4314/wsa.v36i5.61998

    Article  CAS  Google Scholar 

  14. Naddeo V, Belgiorno V, Kassinos D et al (2010) Ultrasonic degradation, mineralization and detoxification of diclofenac in water: optimization of operating parameters. Ultrason Sonochem 17:179–185. https://doi.org/10.1016/j.ultsonch.2009.04.003

    Article  CAS  Google Scholar 

  15. Fu H, Suri RPS, Chimchirian RF et al (2007) Ultrasound-induced destruction of low levels of estrogen hormones in aqueous solutions. Environ Sci Technol 41:5869–5874. https://doi.org/10.1021/es0703372

    Article  CAS  Google Scholar 

  16. Naddeo V, Meriç S, Kassinos D et al (2009) Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation. Water Res 43:4019–4027. https://doi.org/10.1016/j.watres.2009.05.027

    Article  CAS  Google Scholar 

  17. Hapeshi E, Achilleos A, Papaioannou A et al (2010) Sonochemical degradation of ofloxacin in aqueous solutions. Water Sci Technol 61:3141–3146. https://doi.org/10.2166/wst.2010.921

    Article  CAS  Google Scholar 

  18. Nejumal KK, Manoj PR, Aravind UK, Aravindakumar CT (2014) Sonochemical degradation of a pharmaceutical waste, atenolol, in aqueous medium. Environ Sci Pollut Res 21:4297–4308. https://doi.org/10.1007/s11356-013-2301-x

    Article  CAS  Google Scholar 

  19. Quesada-Pañate I, Julcour Lebigue C, Jáuregui-Haza U-J et al (2009) Sonolysis of levodopa and paracetamol in aqueous solutions. Ultrason Sonochem 16:610–616. https://doi.org/10.1016/j.ultsonch.2008.11.008

    Article  CAS  Google Scholar 

  20. Vega LP, Soltan J, Peñuela GA (2019) Sonochemical degradation of triclosan in water in a multifrequency reactor. Environ Sci Pollut Res 26:4450–4461. https://doi.org/10.1007/s11356-018-1281-2

    Article  CAS  Google Scholar 

  21. Gogate PR, Shirgaonkar IZ, Sivakumar M et al (2001) Cavitation reactors: efficiency assessment using a model reaction. AICHE J 47:2526–2538. https://doi.org/10.1002/aic.690471115

    Article  CAS  Google Scholar 

  22. Tran N, Drogui P, Zaviska F, Brar SK (2013) Sonochemical degradation of the persistent pharmaceutical carbamazepine. J Environ Manage 131:25–32. https://doi.org/10.1016/j.jenvman.2013.09.027

    Article  CAS  Google Scholar 

  23. Rayaroth MP, Aravind UK, Aravindakumar CT (2016) Degradation of pharmaceuticals by ultrasound-based advanced oxidation process. Environ Chem Lett 14:259–290. https://doi.org/10.1007/s10311-016-0568-0

    Article  CAS  Google Scholar 

  24. Gao YQ, Gao NY, Deng Y et al (2013) Factors affecting sonolytic degradation of sulfamethazine in water. Ultrason Sonochem 20:1401–1407. https://doi.org/10.1016/j.ultsonch.2013.04.007

    Article  CAS  Google Scholar 

  25. Villegas-Guzman P, Silva-Agredo J, Giraldo-Aguirre ALAL et al (2015) Enhancement and inhibition effects of water matrices during the sonochemical degradation of the antibiotic dicloxacillin. Ultrason Sonochem 22:211–219. https://doi.org/10.1016/j.ultsonch.2014.07.006

    Article  CAS  Google Scholar 

  26. Villaroel E, Silva-Agredo J, Petrier C et al (2014) Ultrasonic degradation of acetaminophen in water: effect of sonochemical parameters and water matrix. Ultrason Sonochem 21:1763–1769

    Article  CAS  Google Scholar 

  27. Xiao R, Wei Z, Chen D, Weavers LK (2014) Kinetics and mechanism of sonochemical degradation of pharmaceuticals in municipal wastewater. Environ Sci Technol 48:9675–9683. https://doi.org/10.1021/es5016197

    Article  CAS  Google Scholar 

  28. Xiao R, Diaz-Rivera D, Weavers LK (2013) Factors influencing pharmaceutical and personal care product degradation in aqueous solution using pulsed wave ultrasound. Ind Eng Chem Res 52:2824–2831. https://doi.org/10.1021/ie303052a

    Article  CAS  Google Scholar 

  29. Xiao R, Diaz-Rivera D, He Z, Weavers LK (2013) Using pulsed wave ultrasound to evaluate the suitability of hydroxyl radical scavengers in sonochemical systems. Ultrason Sonochem 20:990–996. https://doi.org/10.1016/j.ultsonch.2012.11.012

    Article  CAS  Google Scholar 

  30. Torres-Palma RA, Serna-Galvis EA (2018) Chapter 7 – sonolysis. In: Ameta SC, Ameta RBT (eds) Advanced oxidation processes for waste water treatment. Academic Press, Cambridge, pp 177–213

    Chapter  Google Scholar 

  31. Suri RPS, Singh TS, Abburi S (2010) Influence of alkalinity and salinity on the sonochemical degradation of estrogen hormones in aqueous solution. Environ Sci Technol 44:1373–1379. https://doi.org/10.1021/es9024595

    Article  CAS  Google Scholar 

  32. Serna-Galvis EA, Montoya-Rodríguez DM, Isaza-Pineda L et al (2018) Sonochemical degradation of antibiotics from representative classes-considerations on structural effects, initial transformation products, antimicrobial activity and matrix. Ultrason Sonochem 50:157–165. https://doi.org/10.1016/j.ultsonch.2018.09.012

    Article  CAS  Google Scholar 

  33. Montoya-Rodríguez DM, Ávila-Torres Y, Serna-Galvis EA, Torres-Palma RA (2020) Data on treatment of nafcillin and ampicillin antibiotics in water by sonochemistry. Data Br 29:105361. https://doi.org/10.1016/j.dib.2020.105361

    Article  Google Scholar 

  34. Méndez-Arriaga F, Torres-Palma R, Pétrier C et al (2008) Ultrasonic treatment of water contaminated with ibuprofen. Water Res 42:4243–4248

    Article  Google Scholar 

  35. Im J-K, Heo J, Boateng LK et al (2013) Ultrasonic degradation of acetaminophen and naproxen in the presence of single-walled carbon nanotubes. J Hazard Mater 254–255:284–292. https://doi.org/10.1016/j.jhazmat.2013.04.001

    Article  CAS  Google Scholar 

  36. Serna-Galvis EA, Silva-Agredo J, Giraldo-Aguirre AL, Torres-Palma RA (2015) Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system. Sci Total Environ 524–525:354–360. https://doi.org/10.1016/j.scitotenv.2015.04.053

    Article  CAS  Google Scholar 

  37. Lastre-Acosta AM, Cruz-González G, Nuevas-Paz L et al (2015) Ultrasonic degradation of sulfadiazine in aqueous solutions. Environ Sci Pollut Res 22:918–925. https://doi.org/10.1007/s11356-014-2766-2

    Article  CAS  Google Scholar 

  38. Carmona E, Picó Y (2018) The use of chromatographic methods coupled to mass spectrometry for the study of emerging pollutants in the environment. Crit Rev Anal Chem 48:305–316. https://doi.org/10.1080/10408347.2018.1430555

    Article  CAS  Google Scholar 

  39. Hernández F, Ibáñez M, Bade R et al (2014) Investigation of pharmaceuticals and illicit drugs in waters by liquid chromatography-high-resolution mass spectrometry. TrAC Trends Anal Chem 63:140–157. https://doi.org/10.1016/j.trac.2014.08.003

    Article  CAS  Google Scholar 

  40. Kosjek T, Heath E (2008) Applications of mass spectrometry to identifying pharmaceutical transformation products in water treatment. TrAC Trends Anal Chem 27:807–820. https://doi.org/10.1016/j.trac.2008.08.014

    Article  CAS  Google Scholar 

  41. Hernández F, Bakker J, Bijlsma L et al (2019) The role of analytical chemistry in exposure science: focus on the aquatic environment. Chemosphere 222:564–583. https://doi.org/10.1016/j.chemosphere.2019.01.118

    Article  CAS  Google Scholar 

  42. Ferrando-Climent L, Gonzalez-Olmos R, Anfruns A et al (2017) Elimination study of the chemotherapy drug tamoxifen by different advanced oxidation processes: transformation products and toxicity assessment. Chemosphere 168:284–292. https://doi.org/10.1016/j.chemosphere.2016.10.057

    Article  CAS  Google Scholar 

  43. Botero-Coy AM, Martínez-Pachón D, Boix C et al (2018) An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Sci Total Environ 642:842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088

    Article  CAS  Google Scholar 

  44. Bussy U, Li K, Li W (2016) Application of liquid chromatography-tandem mass spectrometry in quantitative bioanalyses of organic molecules in aquatic environment and organisms. Environ Sci Pollut Res 23:9459–9479. https://doi.org/10.1007/s11356-016-6433-7

    Article  CAS  Google Scholar 

  45. Gracia-Lor E, Sancho JV, Hernández F (2011) Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1218:2264–2275. https://doi.org/10.1016/j.chroma.2011.02.026

    Article  CAS  Google Scholar 

  46. Gusmaroli L, Insa S, Petrovic M (2018) Development of an online SPE-UHPLC-MS/MS method for the multiresidue analysis of the 17 compounds from the EU “Watch list”. Anal Bioanal Chem 410:4165–4176. https://doi.org/10.1007/s00216-018-1069-8

    Article  CAS  Google Scholar 

  47. Hernández F, Castiglioni S, Covaci A et al (2018) Mass spectrometric strategies for the investigation of biomarkers of illicit drug use in wastewater. Mass Spectrom Rev 37:258–280. https://doi.org/10.1002/mas.21525

    Article  CAS  Google Scholar 

  48. Ibáñez M, Gracia-Lor E, Bijlsma L et al (2013) Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone. J Hazard Mater 260:389–398. https://doi.org/10.1016/j.jhazmat.2013.05.023

    Article  CAS  Google Scholar 

  49. Kim C, Ryu H-D, Chung EG et al (2018) A review of analytical procedures for the simultaneous determination of medically important veterinary antibiotics in environmental water: sample preparation, liquid chromatography, and mass spectrometry. J Environ Manage 217:629–645. https://doi.org/10.1016/j.jenvman.2018.04.006

    Article  CAS  Google Scholar 

  50. Rodriguez-Mozaz S, Vaz-Moreira I, Varela Della Giustina S et al (2020) Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ Int 140:105733. https://doi.org/10.1016/j.envint.2020.105733

    Article  CAS  Google Scholar 

  51. Michael SG, Michael-Kordatou I, Nahim-Granados S et al (2020) Investigating the impact of UV-C/H2O2 and sunlight/H2O2 on the removal of antibiotics, antibiotic resistance determinants and toxicity present in urban wastewater. Chem Eng J 388:124383. https://doi.org/10.1016/j.cej.2020.124383

    Article  CAS  Google Scholar 

  52. Serna-Galvis EA, Silva-Agredo J, Botero-Coy AM et al (2019) Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process. Sci Total Environ 670:623–632. https://doi.org/10.1016/j.scitotenv.2019.03.153

    Article  CAS  Google Scholar 

  53. Serna-Galvis EA, Botero-Coy AM, Martínez-Pachón D et al (2019) Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes. Water Res 154:349–360. https://doi.org/10.1016/j.watres.2019.01.045

    Article  CAS  Google Scholar 

  54. Boix C, Ibáñez M, Sancho JV et al (2015) Fast determination of 40 drugs in water using large volume direct injection liquid chromatography–tandem mass spectrometry. Talanta 131:719–727. https://doi.org/10.1016/j.talanta.2014.08.005

    Article  CAS  Google Scholar 

  55. Kern S, Fenner K, Singer HP et al (2009) Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry. Environ Sci Technol 43:7039–7046. https://doi.org/10.1021/es901979h

    Article  CAS  Google Scholar 

  56. Nurmi J, Pellinen J, Rantalainen A-L (2012) Critical evaluation of screening techniques for emerging environmental contaminants based on accurate mass measurements with time-of-flight mass spectrometry. J Mass Spectrom 47:303–312. https://doi.org/10.1002/jms.2964

    Article  CAS  Google Scholar 

  57. Schollée JE, Schymanski EL, Avak SE et al (2015) Prioritizing unknown transformation products from biologically-treated wastewater using high-resolution mass spectrometry, multivariate statistics, and metabolic logic. Anal Chem 87:12121–12129. https://doi.org/10.1021/acs.analchem.5b02905

    Article  CAS  Google Scholar 

  58. Boix C, Ibáñez M, Bagnati R et al (2016) High resolution mass spectrometry to investigate omeprazole and venlafaxine metabolites in wastewater. J Hazard Mater 302:332–340. https://doi.org/10.1016/j.jhazmat.2015.09.059

    Article  CAS  Google Scholar 

  59. Jaén-Gil A, Buttiglieri G, Benito A et al (2019) Metoprolol and metoprolol acid degradation in UV/H2O2 treated wastewaters: an integrated screening approach for the identification of hazardous transformation products. J Hazard Mater 380:120851. https://doi.org/10.1016/j.jhazmat.2019.120851

    Article  CAS  Google Scholar 

  60. Ibáñez M, Borova V, Boix C et al (2017) UHPLC-QTOF MS screening of pharmaceuticals and their metabolites in treated wastewater samples from Athens. J Hazard Mater 323:26–35. https://doi.org/10.1016/j.jhazmat.2016.03.078

    Article  CAS  Google Scholar 

  61. Cuervo Lumbaque E, Cardoso RM, Dallegrave A et al (2018) Pharmaceutical removal from different water matrixes by Fenton process at near-neutral pH: Doehlert design and transformation products identification by UHPLC-QTOF MS using a purpose-built database. J Environ Chem Eng 6:3951–3961. https://doi.org/10.1016/j.jece.2018.05.051

    Article  CAS  Google Scholar 

  62. Bletsou AA, Jeon J, Hollender J et al (2015) Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. TrAC Trends Anal Chem 66:32–44. https://doi.org/10.1016/j.trac.2014.11.009

    Article  CAS  Google Scholar 

  63. Martínez-Pachón D, Ibáñez M, Hernández F et al (2018) Photo-electro-Fenton process applied to the degradation of valsartan: effect of parameters, identification of degradation routes and mineralization in combination with a biological system. J Environ Chem Eng 6:7302–7311. https://doi.org/10.1016/j.jece.2018.11.015

    Article  CAS  Google Scholar 

  64. Serna-Galvis EA, Silva-Agredo J, Giraldo-Aguirre AL et al (2016) High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water. Ultrason Sonochem 31:276–283. https://doi.org/10.1016/j.ultsonch.2016.01.007

    Article  CAS  Google Scholar 

  65. Jagannathan M, Grieser F, Ashokkumar M (2013) Sonophotocatalytic degradation of paracetamol using TiO2 and Fe3+. Sep Purif Technol 103:114–118. https://doi.org/10.1016/j.seppur.2012.10.003

    Article  CAS  Google Scholar 

  66. Elias MT, Chandran J, Aravind UK, Aravindakumar CT (2019) Oxidative degradation of ranitidine by UV and ultrasound: identification of transformation products using LC-Q-ToF-MS. Environ Chem 16:41–54

    Article  CAS  Google Scholar 

  67. Roudbari A, Rezakazemi M (2018) Hormones removal from municipal wastewater using ultrasound. AMB Express 8:1–8. https://doi.org/10.1186/s13568-018-0621-4

    Article  CAS  Google Scholar 

  68. Arvaniti OS, Frontistis Z, Nika MC et al (2020) Sonochemical degradation of trimethoprim in water matrices: effect of operating conditions, identification of transformation products and toxicity assessment. Ultrason Sonochem 67:105139. https://doi.org/10.1016/j.ultsonch.2020.105139

    Article  CAS  Google Scholar 

  69. Zeng P, Du J, Song Y et al (2015) Efficiency comparison for treatment of amantadine pharmaceutical wastewater by Fenton, ultrasonic, and Fenton/ultrasonic processes. Environ Earth Sci 73:4979–4987. https://doi.org/10.1007/s12665-015-4204-2

    Article  CAS  Google Scholar 

  70. González Labrada K, Alcorta Cuello DR, Saborit Sánchez I et al (2019) Optimization of ciprofloxacin degradation in wastewater by homogeneous sono-Fenton process at high frequency. J Environ Sci Heal A Tox Hazard Subst Environ Eng 53:1139–1148. https://doi.org/10.1080/10934529.2018.1530177

    Article  CAS  Google Scholar 

  71. Rahmani H, Gholami M, Mahvi AH et al (2014) Tinidazole removal from aqueous solution by sonolysis in the presence of hydrogen peroxide. Bull Environ Contam Toxicol 92:341–346. https://doi.org/10.1007/s00128-013-1193-2

    Article  CAS  Google Scholar 

  72. Ghafoori S, Mowla A, Jahani R et al (2015) Sonophotolytic degradation of synthetic pharmaceutical wastewater: statistical experimental design and modeling. J Environ Manage 150:128–137. https://doi.org/10.1016/j.jenvman.2014.11.011

    Article  CAS  Google Scholar 

  73. Naddeo V, Ricco D, Scannapieco D, Belgiorno V (2012) Degradation of antibiotics in wastewater during sonolysis, ozonation, and their simultaneous application: operating conditions effects and processes evaluation. Int J Photoenegy 2012. 624270, 7 p. https://doi.org/10.1155/2012/624270

  74. Naddeo V, Uyguner-Demirel CS, Prado M et al (2015) Enhanced ozonation of selected pharmaceutical compounds by sonolysis. Environ Technol 36:1876–1883. https://doi.org/10.1080/09593330.2015.1014864

    Article  CAS  Google Scholar 

  75. Nachiappan S, Muthukumar K (2013) Treatment of pharmaceutical effluent by ultrasound coupled with dual oxidant system. Environ Technol 34:209–217. https://doi.org/10.1080/09593330.2012.689367

    Article  CAS  Google Scholar 

  76. Sivakumar R, Muthukumar K (2011) Sonochemical degradation of pharmaceutical wastewater. Clean (Weinh) 39:136–141. https://doi.org/10.1002/clen.200900289

    Article  CAS  Google Scholar 

  77. Adityosulindro S, Barthe L, González-Labrada K et al (2017) Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste)water. Ultrason Sonochem 39:889–896

    Article  CAS  Google Scholar 

  78. Mowla A, Mehrvar M, Dhib R (2014) Combination of sonophotolysis and aerobic activated sludge processes for treatment of synthetic pharmaceutical wastewater. Chem Eng J 255:411–423. https://doi.org/10.1016/j.cej.2014.06.064

    Article  CAS  Google Scholar 

  79. Brüggemann H, Köser H, Meyer E, Nguyen T-H (2003) Sonolytic debromination of ambroxol process wastewater. Water Res 37:674–680. https://doi.org/10.1016/S0043-1354(02)00363-9

    Article  Google Scholar 

  80. Pulicharla R, Brar SK, Rouissi T et al (2017) Degradation of chlortetracycline in wastewater sludge by ultrasonication, Fenton oxidation, and ferro-sonication. Ultrason Sonochem 34:332–342. https://doi.org/10.1016/j.ultsonch.2016.05.042

    Article  CAS  Google Scholar 

  81. Monteagudo JM, Durán A, San Martín I (2014) Mineralization of wastewater from the pharmaceutical industry containing chloride ions by UV photolysis of H2O2/Fe(II) and ultrasonic irradiation. J Environ Manage 141:61–69. https://doi.org/10.1016/j.jenvman.2014.03.020

    Article  CAS  Google Scholar 

  82. Naddeo V, Landi M, Scannapieco D, Belgiorno V (2013) Sonochemical degradation of twenty-three emerging contaminants in urban wastewater. Desalin Water Treat 51:6601–6608. https://doi.org/10.1080/19443994.2013.769696

    Article  CAS  Google Scholar 

  83. Yang B, Zuo J, Li P et al (2016) Effective ultrasound electrochemical degradation of biological toxicity and refractory cephalosporin pharmaceutical wastewater. Chem Eng J 287:30–37. https://doi.org/10.1016/j.cej.2015.11.033

    Article  CAS  Google Scholar 

  84. Chandak S, Ghosh PK, Gogate PR (2020) Treatment of real pharmaceutical wastewater using different processes based on ultrasound in combination with oxidants. Process Saf Environ Prot 137:149–157. https://doi.org/10.1016/j.psep.2020.02.025

    Article  CAS  Google Scholar 

  85. Papoutsakis S, Afshari Z, Malato S, Pulgarin C (2015) Elimination of the iodinated contrast agent iohexol in water, wastewater and urine matrices by application of photo-Fenton and ultrasound advanced oxidation processes. J Environ Chem Eng 3:2002–2009. https://doi.org/10.1016/j.jece.2015.07.002

    Article  CAS  Google Scholar 

  86. Ashokkumar M, Lee J, Iida Y et al (2009) The detection and control of stable and transient acoustic cavitation bubbles. Phys Chem Chem Phys 11:10118–10121. https://doi.org/10.1039/B915715H

    Article  CAS  Google Scholar 

  87. Lee J, Yasui K, Tuziuti T et al (2008) Spatial distribution enhancement of sonoluminescence activity by altering sonication and solution conditions. J Phys Chem B 112:15333–15341. https://doi.org/10.1021/jp8060224

    Article  CAS  Google Scholar 

  88. Lee J, Ashokkumar M, Yasui K et al (2011) Development and optimization of acoustic bubble structures at high frequencies. Ultrason Sonochem 18:92–98. https://doi.org/10.1016/j.ultsonch.2010.03.004

    Article  CAS  Google Scholar 

  89. Kanthale P, Ashokkumar M, Grieser F (2008) Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects. Ultrason Sonochem 15:143–150. https://doi.org/10.1016/j.ultsonch.2007.03.003

    Article  CAS  Google Scholar 

  90. Lesko T, Colussi AJ, Hoffmann MR (2006) Sonochemical decomposition of phenol: evidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water. Environ Sci Technol 40:6818–6823. https://doi.org/10.1021/es052558i

    Article  CAS  Google Scholar 

  91. Ashokkumar M, Lee J, Iida Y et al (2010) Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies. ChemPhysChem 11:1680–1684. https://doi.org/10.1002/cphc.200901037

    Article  CAS  Google Scholar 

  92. Nalesso S (2019) Antisolvent and reactive crystallisation under variations of ultrasound parameters: effects and comparisons. University of Surrey, Guildford

    Google Scholar 

  93. Cui M, Jang M, Ibrahim S et al (2014) Arsenite removal using a pilot system of ultrasound and ultraviolet followed by microfiltration. Ultrason Sonochem 21:1527–1534. https://doi.org/10.1016/j.ultsonch.2014.01.001

    Article  CAS  Google Scholar 

  94. Manickam S, Zainal Abidin N, Parthasarathy S et al (2014) Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor. Ultrason Sonochem 21:1519–1526. https://doi.org/10.1016/j.ultsonch.2014.01.002

    Article  CAS  Google Scholar 

  95. Gole VL, Fishgold A, Sierra-Alvarez R et al (2018) Treatment of perfluorooctane sulfonic acid (PFOS) using a large-scale sonochemical reactor. Sep Purif Technol 194:104–110. https://doi.org/10.1016/j.seppur.2017.11.009

    Article  CAS  Google Scholar 

  96. Caretti C, Coppini E, Fatarella E, Lubello C (2011) Membrane filtration and sonication for industrial wastewater reuse. Water Sci Technol 64:2500–2507. https://doi.org/10.2166/wst.2011.800

    Article  CAS  Google Scholar 

  97. Lee J (2016) Importance of sonication and solution conditions on the acoustic cavitation activity BT – handbook of ultrasonics and sonochemistry. Springer, Singapore, pp 137–175

    Google Scholar 

  98. Kimura K, Amy G, Drewes JE et al (2003) Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J Membr Sci 227:113–121. https://doi.org/10.1016/j.memsci.2003.09.005

    Article  CAS  Google Scholar 

  99. Amy G, Kim T-U, Yoon J et al (2005) Removal of micropollutants by NF/RO membranes. Water Supply 5:25–33. https://doi.org/10.2166/ws.2005.0035

    Article  CAS  Google Scholar 

  100. Xu P, Drewes JE, Bellona C et al (2005) Rejection of emerging organic micropollutants in nanofiltration–reverse osmosis membrane applications. Water Environ Res 77:40–48. https://doi.org/10.2175/106143005X41609

    Article  CAS  Google Scholar 

  101. Muthukumaran S, Kentish SE, Stevens GW, Ashokkumar M (2006) Application of ultrasound in membrane separation processes: a review. Rev Chem Eng 22:155–194. https://doi.org/10.1515/REVCE.2006.22.3.155

    Article  CAS  Google Scholar 

  102. Naddeo V, Borea L, Belgiorno V (2015) Sonochemical control of fouling formation in membrane ultrafiltration of wastewater: effect of ultrasonic frequency. J Water Process Eng 8:e92–e97. https://doi.org/10.1016/j.jwpe.2014.12.005

    Article  Google Scholar 

  103. Reuter F, Lauterborn S, Mettin R, Lauterborn W (2017) Membrane cleaning with ultrasonically driven bubbles. Ultrason Sonochem 37:542–560. https://doi.org/10.1016/j.ultsonch.2016.12.012

    Article  CAS  Google Scholar 

  104. Secondes MFN, Naddeo V, Belgiorno V, Ballesteros F (2014) Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation. J Hazard Mater 264:342–349. https://doi.org/10.1016/j.jhazmat.2013.11.039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support provided by the Royal Society (UK) through the project “Sound” methods of remediating emerging contaminants in hospital wastewater (RA4056, ICA\R1\191053) and the financing from COLCIENCIAS through the project No. 111577757323 (Convocatoria 777 de 2017). R.A. Torres-Palma and E.A. Serna-Galvis thank Universidad de Antioquia UdeA for the support provided to their research group through “Programa de Sostenibilidad”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Torres-Palma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serna-Galvis, E.A., Lee, J., Hernández, F., Botero-Coy, A.M., Torres-Palma, R.A. (2020). Sonochemical Advanced Oxidation Processes for the Removal of Pharmaceuticals in Wastewater Effluents. In: Rodriguez-Mozaz, S., Blánquez Cano, P., Sarrà Adroguer, M. (eds) Removal and Degradation of Pharmaceutically Active Compounds in Wastewater Treatment. The Handbook of Environmental Chemistry, vol 108. Springer, Cham. https://doi.org/10.1007/698_2020_665

Download citation

Publish with us

Policies and ethics