Skip to main content

Removal of Pharmaceutically Active Compounds (PhACs) in Wastewater by Ozone and Advanced Oxidation Processes

  • Chapter
  • First Online:
Removal and Degradation of Pharmaceutically Active Compounds in Wastewater Treatment

Abstract

During the last decades, many water treatment processes have been proposed to deal with the increasing water quality requirements demanded for the urban wastewater effluents (UWWE). Among them, the so-called Advanced Oxidation Processes (AOPs) include a wide range of technologies based on the generation of very reactive and non-selective radical species with a strong oxidation potential that can readily remove not only PhACs but also other organic micropollutants. Together with ozone-based processes, these technologies constitute promising alternatives to be used as final barrier to remove these contaminants before the discharge of the effluents to the environment. This chapter focuses on the processes with higher potential to be implemented at large scale for the removal of PhACs in urban wastewater treatment plants: ozone-based, Fenton, and UV/H2O2 processes. Along the chapter, the fundamentals of these processes are introduced, including some of the more relevant modifications from the basic processes, and the more recent studies about their application for the removal of PhACs from UWWE at pilot and full scale are reviewed. From a scientific and technical point of view, the results from these researches confirm the successful removal of a wide range of PhACs and other micropollutants, although the absolute efficiency depends on the water matrix and the specific substances monitored along the treatment. As final remarks, other aspects are also included, such as the need to control the potential formation of by-products during the process and the required optimization of the processes to become competitive in economic terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glaze WH, Kang JW, Chapin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 9:335–352. https://doi.org/10.1080/01919518708552148

    Article  CAS  Google Scholar 

  2. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59. https://doi.org/10.1016/S0920-5861(99)00102-9

    Article  CAS  Google Scholar 

  3. Parsons S (2004) Advanced oxidation processes for water and wastewater treatment. IWA Publishing, London. https://doi.org/10.2166/9781780403076

    Book  Google Scholar 

  4. Stefan MI (2017) Advanced oxidation processes for water treatment: fundamentals and applications, vol 16. IWA Publishing, London, p 9781780407197. https://doi.org/10.2166/9781780407197

    Book  Google Scholar 

  5. Lado Ribeiro AR, Moreira NFF, Li Puma G, Silva AMT (2019) Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chem Eng J 363:155–173. https://doi.org/10.1016/j.cej.2019.01.080

    Article  CAS  Google Scholar 

  6. Ortiz I, Mosquera A, Lema J, Esplugas S (2015) Advanced technologies for water treatment and reuse. AICHE J 61:3146–3158. https://doi.org/10.1002/aic.15013

    Article  CAS  Google Scholar 

  7. Ahmed MB, Zhou JL, Ngo HH, Guoa W, Thomaidis NS, Xuca J (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater 323:274–298. https://doi.org/10.1016/j.jhazmat.2016.04.045

    Article  CAS  Google Scholar 

  8. Kanakaraju D, Glass BD, Oelgemoller M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Manag 219:189–207. https://doi.org/10.1016/j.jenvman.2018.04.103

    Article  CAS  Google Scholar 

  9. Wang J, Wang S (2016) Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J Environ Manag 182:620–640. https://doi.org/10.1016/j.jenvman.2016.07.049

    Article  CAS  Google Scholar 

  10. Yang Y, Ok YS, Kim K, Kwon EE, Tsang YF (2017) Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ 596–597:303–320. https://doi.org/10.1016/j.scitotenv.2017.04.102

    Article  CAS  Google Scholar 

  11. Langlais B, Reckhow DA, Brink DR (1991) Ozone in water treatment. Application and engineering. Lewis Publishers, Chelsea

    Google Scholar 

  12. Tiwari G, Bose P (2007) Determination of ozone mass transfer coefficient in a tall continuous flow counter-current bubble contactor. Chem Eng J 132(1–3):215–225. https://doi.org/10.1016/j.cej.2006.12.025

    Article  CAS  Google Scholar 

  13. Beltran FJ (2004) Ozone reaction kinetics for water and wastewater systems. CRC Press, Boca Raton. https://doi.org/10.1201/9780203509173

    Book  Google Scholar 

  14. von Sonntag C, von Gunten U (2012) Chemistry of ozone in water and wastewater treatment: from basic principles to applications. IWA Publishing, London. https://doi.org/10.2166/9781780400839

    Book  Google Scholar 

  15. Pocostales JP, Sein MM, Knolle W, von Sonntag C, Schmidt TC (2010) Degradation of ozone-refractory organic phosphates in wastewater by ozone and ozone/hydrogen peroxide (peroxone): the role of ozone consumption by dissolved organic matter. Environ Sci Technol 44:8248–8253. https://doi.org/10.1021/es1018288

    Article  CAS  Google Scholar 

  16. Acero JL, von Gunten U (2000) Influence of carbonate on the ozone/hydrogen peroxide based advanced oxidation process for drinking water treatment. Ozone Sci Eng 22:305–328. https://doi.org/10.1080/01919510008547213

    Article  CAS  Google Scholar 

  17. Lee Y, Gerrity D, Lee M, Bogeat AE, Salhi E, Gamage S, Trenholm RA, Wert EC, Snyder SA, von Gunten U (2013) Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information. Environ Sci Technol 47:5872–5881. https://doi.org/10.1021/es400781r

    Article  CAS  Google Scholar 

  18. Merényi G, Lind J, Naumov S, von Sonntag C (2010) Reaction of ozone with hydrogen peroxide (peroxone process): a revision of current mechanistic concepts based on thermokinetic and quantum-chemical considerations. Environ Sci Technol 44:3505–3507. https://doi.org/10.1021/es100277d

    Article  CAS  Google Scholar 

  19. von Gunten U, Oliveras Y (1997) Kinetics of the reaction between hydrogen peroxide and hypobromous acid: implication on water treatment and natural systems. Water Res 31:900–906. https://doi.org/10.1016/S0043-1354(96)00368-5

    Article  Google Scholar 

  20. Pisarenko AN, Stanford BD, Yan D, Gerrity D, Snyder SA (2012) Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications. Water Res 46:316–326. https://doi.org/10.1016/j.watres.2011.10.021

    Article  CAS  Google Scholar 

  21. Malvestiti JA, Cruz-Alcalde A, López-Vinent N, Dantas RF, Sans C (2019) Catalytic ozonation by metal ions for municipal wastewater disinfection and simultaneous micropollutants removal. Appl Catal B Environ 259:118104. https://doi.org/10.1016/j.apcatb.2019.118104

    Article  CAS  Google Scholar 

  22. Nawrocki J, Kasprzyk-Hordern B (2010) The efficiency and mechanisms of catalytic ozonation. Appl Catal B Environ 99:27–42. https://doi.org/10.1016/j.apcatb.2010.06.033

    Article  CAS  Google Scholar 

  23. Bourgin M, Beck B, Boehler M, Borowska E, Fleiner J, Salhi E, Teichler R, von Gunten U, Siegrist H, Mcardell CS (2018) Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: abatement of micropollutants, formation of transformation products and oxidation by-products. Water Res 129:486–498. https://doi.org/10.1016/j.watres.2017.10.036

    Article  CAS  Google Scholar 

  24. Rizzo L, Malato S, Antakyali D, Beretsou VG, Maja BD, Gernjak W, Heath E, Ivancev-Tumbas I, Karaolia P, Lado AR, Mascolo G, Mcardell CS, Schaar H, Silva AMT, Fatta-Kassinos D (2019) Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci Total Environ 655:986–1008. https://doi.org/10.1016/j.scitotenv.2018.11.265

    Article  CAS  Google Scholar 

  25. Justo A, González O, Aceña J, Pérez S, Barceló D, Sans C, Esplugas S (2013) Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2 and ozone. J Hazard Mat 263:268–274. https://doi.org/10.1016/j.jhazmat.2013.05.030

    Article  CAS  Google Scholar 

  26. Cruz-Alcalde A, Esplugas S, Sans C (2019) Abatement of ozone-recalcitrant micropollutants during municipal wastewater ozonation: kinetic modelling and surrogate-based control strategies. Chem Eng J 360:1092–1100. https://doi.org/10.1016/j.cej.2018.10.206

    Article  CAS  Google Scholar 

  27. Cruz-Alcalde A, Esplugas S, Sans C (2020) Continuous H2O2 addition in peroxone process: performance improvement and modelling in wastewater effluents. J Hazard Mater 387:121993. https://doi.org/10.1016/j.jhazmat.2019.121993

    Article  CAS  Google Scholar 

  28. Lee M, Blum LC, Schmid E, Fenner K, von Gunten U (2017) A computer-based prediction platform for the reaction of ozone with organic compounds in aqueous solution: kinetics and mechanisms. Environ Sci Process Impacts 19:465–476. https://doi.org/10.1039/c6em00584e

    Article  CAS  Google Scholar 

  29. Chon K, Salhi E, von Gunten U (2015) Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents. Water Res 81:388–397. https://doi.org/10.1016/j.watres.2015.05.039

    Article  CAS  Google Scholar 

  30. Cruz-Alcalde A, Esplugas S, Sans C (2020) New insights on the fate of EfOM during ozone application for effective abatement of micropollutants in wastewater effluents. Sep Pur Tech 237:116468. https://doi.org/10.1016/j.seppur.2019.116468

    Article  CAS  Google Scholar 

  31. Federal Office for the Environment (FOEN), Switzerland. https://www.bafu.admin.ch/bafu/en/home.html

  32. Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910. https://doi.org/10.1039/CT8946500899

    Article  CAS  Google Scholar 

  33. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84. https://doi.org/10.1080/10643380500326564

    Article  CAS  Google Scholar 

  34. Sychev AY, Isaak VG (1995) Iron compounds and the mechanisms of the homogeneous catalysis of the activation of O2 and H2O2 and of the oxidation of organic substrates. Russ Chem Rev 64:1105–1129. https://doi.org/10.1070/RC1995v064n12ABEH000195

    Article  Google Scholar 

  35. Bishop DF, Stern G, Fleischmann M, Marshall LS (1968) Hydrogen peroxide catalytic oxidation of refractory organics in municipal wastewaters. Ind Eng Chem Process Des Dev 7:110–117. https://doi.org/10.1021/i260025a022

    Article  CAS  Google Scholar 

  36. Stieber M, Putschew A, Jekel M (2011) Treatment of pharmaceuticals and diagnostic agents using zero-valent iron - kinetic studies and assessment of transformation products assay. Environ Sci Technol 45:4944–4950. https://doi.org/10.1021/es200034j

    Article  CAS  Google Scholar 

  37. Wu J, Wang B, Cagnetta G, Huang J, Wang Y, Deng S, Yua G (2020) Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation. Sep Pur Technol 239:116534. https://doi.org/10.1016/j.seppur.2020.116534

    Article  CAS  Google Scholar 

  38. Clarizia L, Russo D, Di Somma I, Marotta R, Andreozzi R (2017) Homogeneous photo-Fenton processes at near neutral pH: a review. Appl Catal B Environ 209:358–371. https://doi.org/10.1016/j.apcatb.2017.03.011

    Article  CAS  Google Scholar 

  39. Rowe DR, Abdel-Magid IM (1995) Handbook of wastewater reclamation and reuse. CRC Press, p 550

    Google Scholar 

  40. FAO (2003) Users manual for irrigation with treated wastewater. FAO regional Office of the near East, Cairo, Egypt. http://www.fao.org/tempref/GI/Reserved/FTP_FaoRne/morelinks/Publications/English/Usersmanual-en.pdf

  41. Drechsel P, Mara DD, Bartone C, Scheierling SM (2010) Improving wastewater use in agriculture: an emerging priority. World Bank policy research working paper no. 5412, 111 p. https://doi.org/10.1596/1813-9450-5412

  42. Bigda RJ (1995) Consider Fenton’s chemistry for wastewater treatment. Chem Eng Prog 91:62–66

    CAS  Google Scholar 

  43. Krýsová H, Jirkovský J, Krýsa J, Mailhot G, Bolte M (2003) Comparative kinetic study of atrazine photodegradation in aqueous Fe(ClO4)3 solutions and TiO2 suspensions. Appl Catal B Environ 40:1–12. https://doi.org/10.1016/S0926-3373(01)00324-1

    Article  Google Scholar 

  44. Sulzberger B, Laubscher H, Karametaxas G (1994) Photoredox reactions at the surface of iron(III)(hydr-)oxides. In: Helz GR, Zepp RG, Crosby DG (eds) Aquatic and surface photochemistry. Lewis Publishers, Boca Raton, pp 53–74. https://doi.org/10.1201/9781351069847-4

    Chapter  Google Scholar 

  45. Carra I, Malato S, Jiménez M, Maldonado MI, Sánchez Pérez JA (2014) Microcontaminant removal by solar photo-Fenton at natural pH run with sequential and continuous iron additions. Chem Eng J 235:132–140. https://doi.org/10.1016/j.cej.2013.09.029

    Article  CAS  Google Scholar 

  46. Estrada-Arriaga EB, Cortés-Muñoz JE, González-Herrera A, Calderón-Mólgora CG, Rivera-Huerta ML, Ramírez-Camperos E, Montellano-Palacios L, Gelover-Santiago SL, Pérez-Castrejón S, Cardoso-Vigueros L, Martín-Domínguez A, García-Sánchez L (2016) Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico. Sci Total Environ 571:1172–1182. https://doi.org/10.1016/j.scitotenv.2016.07.118

    Article  CAS  Google Scholar 

  47. Soriano-Molina P, Miralles-Cuevas S, Esteban García B, Plaza-Bolaños P, Sánchez Pérez JA (2020) Two strategies of solar photo-Fenton at neutral pH for the simultaneous disinfection and removal of contaminants of emerging concern. Comparative assessment in raceway pond reactors. Catal Today. https://doi.org/10.1016/j.cattod.2019.11.028

  48. FAO (1985) Ayers RS, Westcot DW (eds) Water quality for agriculture. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/3/t0234e/t0234e00.htm

    Google Scholar 

  49. De la Cruz N, Gimenez J, Esplugas S, Grandjean D, de Alencastro LF, Pulgarin C (2012) Degradation of 32 emergent contaminants by UV and neutral photo-Fenton in domestic wastewater effluent previously treated by activated sludge. Water Res 46:1947–1957. https://doi.org/10.1016/j.watres.2012.01.014

    Article  CAS  Google Scholar 

  50. Fukushima M, Tatsumi K (2001) Degradation pathways of pentachlorophenol by photo-Fenton systems in the presence of iron(III), humic acids and hydrogen peroxide. Environ Sci Technol 35:1771–1778. https://doi.org/10.1021/es001088j

    Article  CAS  Google Scholar 

  51. Lipczynska-Kochany E, Kocjany J (2008) Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. Chemosphere 73:745–750. https://doi.org/10.1016/j.chemosphere.2008.06.028

    Article  CAS  Google Scholar 

  52. Lian L, Yao B, Hou S, Fang J, Yan S, Song W (2017) Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents. Environ Sci Technol 51:2954–2962. https://doi.org/10.1021/acs.est.6b05536

    Article  CAS  Google Scholar 

  53. Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229. https://doi.org/10.1016/j.envint.2011.07.012

    Article  CAS  Google Scholar 

  54. Mackulak T, Nagyová K, Faberová M, Grabic R, Koba O, Gál M, Birosová L (2015) Utilization of Fenton-like reaction for antibiotics and resistant bacteria elimination in different parts of WWTP. Environ Toxicol Pharmacol 40:492–497. https://doi.org/10.1016/j.etap.2015.07.002

    Article  CAS  Google Scholar 

  55. Segura Y, Martínez F, Melero JA (2013) Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron. Appl Catal B Environ 136–137:64–69. https://doi.org/10.1016/j.apcatb.2013.01.036

    Article  CAS  Google Scholar 

  56. Zhang Y, Zhou M (2019) A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J Hazard Mater 362:436–450. https://doi.org/10.1016/j.jhazmat.2018.09.035

    Article  CAS  Google Scholar 

  57. Schmidt CK, Fleig M, Sacher F, Brauch HJ (2004) Occurrence of aminopolycarboxylates in the aquatic environment of Germany. Environ Pollut 13:107–124. https://doi.org/10.1016/j.envpol.2004.01.013

    Article  CAS  Google Scholar 

  58. Egli T (2001) Biodegradation of metal-complexing aminopolycarboxylic acids. J Biosci Bioeng 92:89–97. https://doi.org/10.1016/S1389-1723(01)80207-3

    Article  CAS  Google Scholar 

  59. Jaworskal JS, Schowanek D, Feijtel TCJ (1999) Environmental risk assessment for trisodium [s,s]-ethylene diamine disuccinate, a biodegradable chelator used in detergent applications. Chemosphere 38(15):3591–3625. https://doi.org/10.1016/S0045-6535(98)00573-6

    Article  Google Scholar 

  60. Tandy S, Ammann A, Schulin R, Nowack B (2006) Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing. Environ Pollut 142:191–199. https://doi.org/10.1016/j.envpol.2005.10.013

    Article  CAS  Google Scholar 

  61. Vandevivere PC, Saveyn H, Verstraete W, Feijtel TCJ, Schowanek DR (2001) Biodegradation of metal-[S,S]-EDDS complexes. Environ Sci Technol 2001(35):1765–1770. https://doi.org/10.1021/es0001153

    Article  CAS  Google Scholar 

  62. Hernández-Apaolaza L, Lucena JJ (2011) Influence of irradiation time and solution concentration on the photochemical degradation of EDDHA/Fe3+: effect of its photodecomposition products on soybean growth. J Sci Food Agric 91:2024–2030. https://doi.org/10.1002/jsfa.4414

    Article  CAS  Google Scholar 

  63. Huang W, Brigante M, Wu F, Mousty C, Hanna K, Mailhot G (2013) Assessment of the Fe (III)–EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A. Environ Sci Technol 47:1952–1959. https://doi.org/10.1021/es304502y

    Article  CAS  Google Scholar 

  64. Rodríguez-Chueca J, Ormad MP, Mosteo R, Ovelleiro JL (2015) Kinetic modeling of Escherichia coli and Enterococcus sp. inactivation in wastewater treatment by photo-Fenton and H2O2/UV–vis processes. Chem Eng Sci 138:730–740. https://doi.org/10.1016/j.ces.2015.08.051

    Article  CAS  Google Scholar 

  65. Wang WL, Wu QY, Huang N, Xu ZB, Lee MY, Hu HY (2018) Potential risks from UV/H2O2 oxidation and UV photocatalysis: a review of toxic, assimilable, and sensory-unpleasant transformation products. Water Res 141:109–125. https://doi.org/10.1016/j.watres.2018.05.005

    Article  CAS  Google Scholar 

  66. Baxendale JH, Wilson JA (1957) Photolysis of hydrogen peroxide at high light intensities. Trans Faraday Soc 53:344–356. https://doi.org/10.1039/TF9575300344

    Article  CAS  Google Scholar 

  67. Pablos C, Marugán J, van Grieken R, Serrano E (2013) Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2. Water Res 47:1237–1245. https://doi.org/10.1016/j.watres.2012.11.041

    Article  CAS  Google Scholar 

  68. Miklos DB, Hartl R, Michel P, Linden KG, Drewes JE, Hübner W (2018) UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents. Water Res 136:169–179. https://doi.org/10.1016/j.watres.2018.02.044

    Article  CAS  Google Scholar 

  69. Rodríguez-Chueca J, Laski E, García-Cañibano C, Martín de Vidales MJ, Encinas Á, Kuch B, Marugán J (2018) Micropollutants removal by full-scale UV-C/sulfate radical based advanced oxidation processes. Sci Total Environ 630:1216–1225. https://doi.org/10.1016/j.scitotenv.2018.02.279

    Article  CAS  Google Scholar 

  70. Zhang Z, Chuang YH, Szczuka A, Ishida KP, Roback S, Plumlee MH, Mitch WA (2019) Pilot-scale evaluation of oxidant speciation, 1,4-dioxane degradation and disinfection byproduct formation during UV/hydrogen peroxide, UV/free chlorine and UV/chloramines advanced oxidation process treatment for potable reuse. Water Res 164:114939. https://doi.org/10.1016/j.watres.2019.114939

    Article  CAS  Google Scholar 

  71. Wang C, Moore N, Bircher K, Andrews S, Hofmann R (2019) Full-scale comparison of UV/H2O2 and UV/Cl2 advanced oxidation: the degradation of micropollutant surrogates and the formation of disinfection byproducts. Water Res 161:448–458. https://doi.org/10.1016/j.watres.2019.06.033

    Article  CAS  Google Scholar 

  72. Wetterau G, Bruce Chalmers R, Schulz C (2018) Full-scale testing of UV/chlorine for potable reuse. IUVA News 20(3):11–15. https://iuvanews.com/stories/pdf/IUVANews_2018_Quarter3_links-Wetterau.pdf

    Google Scholar 

  73. Matafonova G, Batoev V (2018) Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: a review. Water Res 132:177–189. https://doi.org/10.1016/j.watres.2017.12.079

    Article  CAS  Google Scholar 

  74. Rodríguez-Chueca J, García-Cañibano C, Lepistö RJ, Encinas Á, Pellinen J, Marugán J (2019) Intensification of UV-C tertiary treatment: disinfection and removal of micropollutants by sulfate radical based advanced oxidation processes. J Hazard Mater 372:94–102. https://doi.org/10.1016/j.jhazmat.2018.04.044

    Article  CAS  Google Scholar 

  75. Neta P, Huie RE (1985) Free-radical chemistry of sulfite. Environ Health Perspect 64:209–217. https://doi.org/10.1289/ehp.8564209

    Article  CAS  Google Scholar 

  76. Herrmann H (2007) On the photolysis of simple anions and neutral molecules as sources of O/OH, SOx and Cl in aqueous solution. Phys Chem Chem Phys 9:3935–3964. https://doi.org/10.1039/B618565G

    Article  CAS  Google Scholar 

  77. Cai L, Li L, Yu S, Guo J, Kuppers S, Dong L (2019) Formation of odorous by-products during chlorination of major amino acids in east Taihu Lake: impacts of UV, UV/PS and UV/H2O2 pre-treatments. Water Res 162:427–436. https://doi.org/10.1016/j.watres.2019.07.010

    Article  CAS  Google Scholar 

  78. Qiu W, Zheng M, Sun J, Tian Y, Fang M, Zheng Y, Zhang T, Zheng C (2019) Photolysis of enrofloxacin, pefloxacin and sulfaquinoxaline in aqueous solution by UV/H2O2, UV/Fe(II), and UV/H2O2/Fe(II) and the toxicity of the final reaction solutions on zebrafish embryos. Sci Total Environ 651(1):1457–1468. https://doi.org/10.1016/j.scitotenv.2018.09.315

    Article  CAS  Google Scholar 

  79. Yoon Y, Chung HJ, Di Wen DY, Dodd MC, Hur HG, Lee Y (2017) Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/H2O2. Water Res 123:783–793. https://doi.org/10.1016/j.watres.2017.06.056

    Article  CAS  Google Scholar 

  80. Sarathy SR, Stefan MI, Royce A, Mohseni M (2011) Pilot-scale UV/H2O2 advanced oxidation process for surface water treatment and downstream biological treatment: effects on natural organic matter characteristics and DBP formation potential. Environ Technol 32(15):1709–1718. https://doi.org/10.1080/09593330.2011.553843

    Article  CAS  Google Scholar 

  81. Sichel C, Garcia C, Andre K (2011) Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants. Water Res 45(19):6371–6380. https://doi.org/10.1016/j.watres.2011.09.025

    Article  CAS  Google Scholar 

  82. Lester Y, Ferrer I, Thurman EM, Linden KG (2014) Demonstrating sucralose as a monitor of full-scale UV/AOP treatment of trace organic compounds. J Hazard Mater 280:104–110. https://doi.org/10.1016/j.jhazmat.2014.07.009

    Article  CAS  Google Scholar 

  83. Chu X, Xiao Y, Hu J, Quek E, Xie R, Pang T, Xing Y (2016) Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition. Rev Environ Health 31(1):71–74. https://doi.org/10.1515/reveh-2016-0008

    Article  CAS  Google Scholar 

  84. Miralles-Cuevas S, Darowna D, Wanag A, Mozia S, Malato S, Oller I (2017) Comparison of UV/H2O2, UV/S2O82−, solar/Fe(II)/H2O2 and solar/Fe(II)/S2O82− at pilot plant scale for the elimination of micro-contaminants in natural water: an economic assessment. Chem Eng J 310:514–524. https://doi.org/10.1016/j.cej.2016.06.121

    Article  CAS  Google Scholar 

  85. Sarasidis VC, Plakas KV, Karabelas AJ (2017) Novel water-purification hybrid processes involving in-situ regenerated activated carbon, membrane separation and advanced oxidation. Chem Eng J 328:1153–1163. https://doi.org/10.1016/j.cej.2017.07.084

    Article  CAS  Google Scholar 

  86. Krystynik P, Masin P, Kluson P (2018) Pilot scale application of UV-C/H2O2 for removal of chlorinated ethenes from contaminated groundwater. J Water Supply Res T AQUA 67(4):414–422. https://doi.org/10.2166/aqua.2018.144

    Article  Google Scholar 

  87. Baresel C, Harding M, Junestedt C (2019) Removal of pharmaceutical residues from municipal wastewater using UV/H2O2. IVL Swedish Environmental Research Institute 2019. Report number B 2354. https://sjostad.ivl.se/download/18.2299af4c16c6c7485d05de/1567162616009/B2354%20UV-H2O2%20rapport.pdf

  88. Wünsch R, Plattner J, Cayon D, Eugster F, Gebhardt J, Wülser R, von Guten U, Wintgens T (2019) Surface water treatment by UV/H2O2 with subsequent soil aquifer treatment: impact on micropollutants, dissolved organic matter and biological activity. Environ Sci Water Res Technol 5:1709–1722. https://doi.org/10.1039/C9EW00547A

    Article  Google Scholar 

  89. Wang D, Bolton JR, Andrews SA, Hofmann R (2015) UV/chlorine control of drinking water taste and odour at pilot and full-scale. Chemosphere 136:239–244. https://doi.org/10.1016/j.chemosphere.2015.05.049

    Article  CAS  Google Scholar 

  90. Rodríguez-Chueca J, Varella Della Giustina S, Rocha J, Fernandes T, Pablos C, Encinas A, Barceló D, Rodríguez-Mozaz S, Manaia CM, Marugán J (2019) Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: removal or persistence of antibiotics and antibiotic resistance genes? Sci Total Environ 652:1051–1061. https://doi.org/10.1016/j.scitotenv.2018.10.223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Marugán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marugán, J., Rodríguez-Chueca, J., Esplugas, S., Sans, C., Malato, S. (2020). Removal of Pharmaceutically Active Compounds (PhACs) in Wastewater by Ozone and Advanced Oxidation Processes. In: Rodriguez-Mozaz, S., Blánquez Cano, P., Sarrà Adroguer, M. (eds) Removal and Degradation of Pharmaceutically Active Compounds in Wastewater Treatment. The Handbook of Environmental Chemistry, vol 108. Springer, Cham. https://doi.org/10.1007/698_2020_664

Download citation

Publish with us

Policies and ethics