Skip to main content

Fungal Reactors: A Solution for the Removal of Pharmaceuticals in Urban and Hospital Wastewater

  • Chapter
  • First Online:
Removal and Degradation of Pharmaceutically Active Compounds in Wastewater Treatment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 108))

Abstract

The pharmaceutical occurrence in surface and ground water bodies is due to low efficiency of the wastewater treatment plants in removing those pollutants. Their biological transformation using white-rot fungi has been proposed due to their unspecific intracellular and extracellular oxidoreductase enzymatic systems. This chapter summarizes and analyzes the studies performed on pharmaceuticals removal from urban and hospital wastewater using fungal reactors operating in batch or continuous mode. Due to low fungal growth rate, all reactors are based on the biomass reuse through the retention through the pellet morphology or membrane, or by immobilization on a support. The treatment of real wastewater in non-sterile conditions requires the assessment of effect of the native microorganism on the fungal treatment. The chapter also offers an insight into fungal enzymatic systems, types of reactors, and strategies to reduce bacteria effect and consequently maintaining fungal activity during a continuous treatment during long periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment – a review. Sci Total Environ 429:123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028

    Article  CAS  Google Scholar 

  2. Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M (2015) Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol. https://doi.org/10.1016/j.cbpa.2015.10.018

  3. Nguyen LN, Hai FI, Yang S, Kang J, Leusch FDL, Roddick F, Price WE, Nghiem LD (2013) Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi. Bioresour Technol 148:234–241. https://doi.org/10.1016/j.biortech.2013.08.142

    Article  CAS  Google Scholar 

  4. Tuomela M, Hatakka A (2019) 6.17 – oxidative fungal enzymes for bioremediation. In: Moo-Young M (ed) Comprehensive biotechnology3rd edn. Pergamon, Oxford, pp 224–239. https://doi.org/10.1016/B978-0-444-64046-8.00349-9

    Chapter  Google Scholar 

  5. Schwarze FWMR (2007) Wood decay under the microscope. Fungal Biol Rev. https://doi.org/10.1016/j.fbr.2007.09.001

  6. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33. https://doi.org/10.1007/s002530100745

    Article  CAS  Google Scholar 

  7. Martínez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzym Microb Technol. https://doi.org/10.1016/S0141-0229(01)00521-X

  8. Hammel KE (1995) Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ Health Perspect 105:41–43. https://doi.org/10.2307/3432477

    Article  Google Scholar 

  9. Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-010-2633-0

  10. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466. https://doi.org/10.1016/S0141-0229(01)00528-2

    Article  CAS  Google Scholar 

  11. Gianfreda L, Xu F, Bollag J-M (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–26. https://doi.org/10.1080/10889869991219163

    Article  CAS  Google Scholar 

  12. Tuor U, Winterhalter K, Fiechter A (1995) Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol. https://doi.org/10.1016/0168-1656(95)00042-O

  13. Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martínez MJ, Martínez ÁT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330. https://doi.org/10.1074/jbc.274.15.10324

    Article  CAS  Google Scholar 

  14. Carabajal M, Kellner H, Levin L, Jehmlich N, Hofrichter M, Ullrich R (2013) The secretome of Trametes versicolor grown on tomato juice medium and purification of the secreted oxidoreductases including a versatile peroxidase. J Biotechnol 168:15–23. https://doi.org/10.1016/j.jbiotec.2013.08.007

    Article  CAS  Google Scholar 

  15. Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś-Wasilewska M, Cho N-S, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185. https://doi.org/10.1006/fgbi.1999.1150

    Article  CAS  Google Scholar 

  16. Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol. https://doi.org/10.1038/sj.jim.2900459

  17. Golan-rozen N, Chefetz B, Ben-Ari J, Geva J, Hadar Y (2011) Transformation of the recalcitrant pharmaceutical compound carbamazepine by pleurotus ostreatus: role of cytochrome P450 monooxygenase Anda manganese peroxidase. Environ Sci Technol 45:6800–6805. https://doi.org/10.1021/es200298t

    Article  CAS  Google Scholar 

  18. Marco-Urrea E, Pérez-Trujillo M, Cruz-Morató C, Caminal G, Vicent T (2010) White-rot fungus-mediated degradation of the analgesic ketoprofen and identification of intermediates by HPLC-DAD-MS and NMR. Chemosphere 78:474–481. https://doi.org/10.1016/j.chemosphere.2009.10.009

    Article  CAS  Google Scholar 

  19. Marco-Urrea E, Pérez-Trujillo M, Vicent T, Caminal G (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74:765–772. https://doi.org/10.1016/j.chemosphere.2008.10.040

    Article  CAS  Google Scholar 

  20. Gómez-Toribio V, García-Martín AB, Martínez MJ, Martínez ÁT, Guillén F (2009) Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal. Appl Environ Microbiol 75:3954–3962. https://doi.org/10.1128/AEM.02138-08

    Article  CAS  Google Scholar 

  21. Marco-Urrea E, Radjenović J, Caminal G, Petrović M, Vicent T, Barceló D (2010) Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor. Water Res 44:521–532. https://doi.org/10.1016/j.watres.2009.09.049

    Article  CAS  Google Scholar 

  22. Cruz del Álamo A, Pariente MI, Vasiliadou I, Padrino B, Puyol D, Molina R, Martínez F (2018) Removal of pharmaceutical compounds from urban wastewater by an advanced bio-oxidation process based on fungi Trametes versicolor immobilized in a continuous RBC system. Environ Sci Pollut Res 25:34884–34892. https://doi.org/10.1007/s11356-017-1053-4

    Article  CAS  Google Scholar 

  23. El-Enshasy HA (2007) Filamentous fungal cultures – process characteristics, products, and applications. In: Bioprocessing for value-added products from renewable resources. Elsevier, Amsterdam, pp 225–261. https://doi.org/10.1016/B978-044452114-9/50010-4

    Chapter  Google Scholar 

  24. Rodarte-Morales AI, Feijoo G, Moreira MT, Lema JM (2012) Biotransformation of three pharmaceutical active compounds by the fungus Phanerochaete chrysosporium in a fed batch stirred reactor under air and oxygen supply. Biodegradation 23:145–156. https://doi.org/10.1007/s10532-011-9494-9

    Article  CAS  Google Scholar 

  25. Xin B, Xia Y, Zhang Y, Aslam H, Liu C, Chen S (2012) A feasible method for growing fungal pellets in a column reactor inoculated with mycelium fragments and their application for dye bioaccumulation from aqueous solution. Bioresour Technol 105:100–105. https://doi.org/10.1016/j.biortech.2011.11.062

    Article  CAS  Google Scholar 

  26. Borràs E, Blánquez P, Sarrà M, Caminal G, Vicent T (2008) Trametes versicolor pellets production: low-cost medium and scale-up. Biochem Eng J 42:61–66. https://doi.org/10.1016/j.bej.2008.05.014

    Article  CAS  Google Scholar 

  27. Espinosa-Ortiz EJ, Rene ER, Pakshirajan K, van Hullebusch ED, Lens PNLL (2015) Fungal pelleted reactors in wastewater treatment: applications and perspectives. Chem Eng J 283:553–571. https://doi.org/10.1016/j.cej.2015.07.068

    Article  CAS  Google Scholar 

  28. Nair RB, Lennartsson PR, Taherzadeh MJ (2016) Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia. AMB Express 6:31. https://doi.org/10.1186/s13568-016-0203-2

    Article  CAS  Google Scholar 

  29. Mir-Tutusaus JAJA, Caminal G, Sarrà M (2018) Influence of process variables in a continuous treatment of non-sterile hospital wastewater by Trametes versicolor and novel method for inoculum production. J Environ Manag 212:415–423. https://doi.org/10.1016/j.jenvman.2018.02.018

    Article  CAS  Google Scholar 

  30. Sitanggang AB, Wu H-S, Wang SS, Ho Y-C (2010) Effect of pellet size and stimulating factor on the glucosamine production using Aspergillus sp. BCRC 31742. Bioresour Technol 101:3595–3601. https://doi.org/10.1016/j.biortech.2009.12.084

    Article  CAS  Google Scholar 

  31. Pazouki M, Panda T (2000) Understanding the morphology of fungi. Bioprocess Eng 22:127–143. https://doi.org/10.1007/s004490050022

    Article  CAS  Google Scholar 

  32. Moreira MT, Feijoo G, Lema JM (2003) Fungal bioreactors: applications to white-rot fungi. Rev Environ Sci Biotechnol 2:247–259. https://doi.org/10.1023/B:RESB.0000040463.80808.dc

    Article  CAS  Google Scholar 

  33. Kantarci N, Borak F, Ulgen KO (2005) Bubble column reactors. Process Biochem. https://doi.org/10.1016/j.procbio.2004.10.004

  34. Moreira MT, Sanromán A, Feijoo G, Lema JM (1996) Control of pellet morphology of filamentous fungi in fluidized bed bioreactors by means of a pulsing flow. Application to Aspergillus Niger and Phanerochaete chrysosporium. Enzym Microb Technol 19:261–266. https://doi.org/10.1016/0141-0229(95)00244-8

    Article  CAS  Google Scholar 

  35. Blánquez P, Sarrà M, Vicent T (2008) Development of a continuous process to adapt the textile wastewater treatment by fungi to industrial conditions. Process Biochem 43:1–7. https://doi.org/10.1016/j.procbio.2007.10.002

    Article  CAS  Google Scholar 

  36. Grandclément C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P (2017) From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res 111:297–317. https://doi.org/10.1016/j.watres.2017.01.005

    Article  CAS  Google Scholar 

  37. Song W, Xie B, Huang S, Zhao F, Shi X (2020) Aerobic membrane bioreactors for industrial wastewater treatment. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 129–145. https://doi.org/10.1016/b978-0-12-819809-4.00006-1

    Chapter  Google Scholar 

  38. Thomas O, Thomas MF (2017) Urban wastewater. In: UV-visible spectrophotometry of water and wastewater. Elsevier, Amsterdam, pp 281–315. https://doi.org/10.1016/B978-0-444-63897-7.00009-3

    Chapter  Google Scholar 

  39. Goswami L, Vinoth Kumar R, Borah SN, Arul Manikandan N, Pakshirajan K, Pugazhenthi G (2018) Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: a review. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2018.10.024

  40. Yang S, Hai FI, Nghiem LD, Nguyen LN, Roddick F, Price WE (2013) Removal of bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions. Int Biodeterior Biodegrad 85:483–490. https://doi.org/10.1016/j.ibiod.2013.03.012

    Article  CAS  Google Scholar 

  41. Asif MB, Hai FI, Singh L, Price WE, Nghiem LD (2017) Degradation of pharmaceuticals and personal care products by white-rot fungi—a critical review. Curr Pollut Rep 3:88–103. https://doi.org/10.1007/s40726-017-0049-5

    Article  CAS  Google Scholar 

  42. Nguyen LN, Hai FI, Yang S, Kang J, Leusch FDL, Roddick F, Price WE, Nghiem LD (2014) Removal of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by Trametes versicolor: role of biosorption and biodegradation. Int Biodeterior Biodegrad 88:169–175. https://doi.org/10.1016/j.ibiod.2013.12.017

    Article  CAS  Google Scholar 

  43. Asif MB, Hai FI, Jegatheesan V, Price WE, Nghiem LD, Yamamoto K (2018) Applications of membrane bioreactors in biotechnology processes. In: Current trends and future developments on (bio-) membranes: membrane processes in the pharmaceutical and biotechnological field. Elsevier, Amsterdam, pp 223–257. https://doi.org/10.1016/B978-0-12-813606-5.00008-7

    Chapter  Google Scholar 

  44. Iorhemen O, Hamza R, Tay J (2016) Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: membrane fouling. Membranes (Basel) 6:33. https://doi.org/10.3390/membranes6020033

    Article  CAS  Google Scholar 

  45. Bardi A, Yuan Q, Siracusa G, Becarelli S, Di Gregorio S, Tigini V, Levin DB, Petroni G, Munz G (2019) Stability of fungal biomass continuously fed with tannic acid in a non-sterile moving-packed bed reactor. J Environ Manag 247:67–77. https://doi.org/10.1016/j.jenvman.2019.06.036

    Article  CAS  Google Scholar 

  46. Gao D, Zeng Y, Wen X, Qian Y (2008) Competition strategies for the incubation of white rot fungi under non-sterile conditions. Process Biochem 43:937–944. https://doi.org/10.1016/j.procbio.2008.04.026

    Article  CAS  Google Scholar 

  47. Ehlers GA, Rose PD (2005) Immobilized white-rot fungal biodegradation of phenol and chlorinated phenol in trickling packed-bed reactors by employing sequencing batch operation. Bioresour Technol 96:1264–1275. https://doi.org/10.1016/j.biortech.2004.10.015

    Article  CAS  Google Scholar 

  48. Torán J, Blánquez P, Caminal G (2017) Comparison between several reactors with Trametes versicolor immobilized on lignocellulosic support for the continuous treatments of hospital wastewater. Bioresour Technol 243:966–974. https://doi.org/10.1016/j.biortech.2017.07.055

    Article  CAS  Google Scholar 

  49. Li X, Xu J, de Toledo RA, Shim H, De Toledo RA, Shim H (2015) Enhanced removal of naproxen and carbamazepine from wastewater using a novel countercurrent seepage bioreactor immobilized with Phanerochaete chrysosporium under non-sterile conditions. Bioresour Technol 197:465–474. https://doi.org/10.1016/j.biortech.2015.08.118

    Article  CAS  Google Scholar 

  50. Basak B, Jeon B-HH, Kurade MB, Saratale GD, Bhunia B, Chatterjee PK, Dey A (2019) Biodegradation of high concentration phenol using sugarcane bagasse immobilized Candida tropicalis PHB5 in a packed-bed column reactor. Ecotoxicol Environ Saf 180:317–325. https://doi.org/10.1016/j.ecoenv.2019.05.020

    Article  CAS  Google Scholar 

  51. Kurade MB, Waghmode TR, Xiong JQ, Govindwar SP, Jeon BH (2019) Decolorization of textile industry effluent using immobilized consortium cells in upflow fixed bed reactor. J Clean Prod 213:884–891. https://doi.org/10.1016/j.jclepro.2018.12.218

    Article  CAS  Google Scholar 

  52. Cruz del Álamo A, Pariente MI, Martínez F, Molina R, del Álamo AC, Pariente MI, Martínez F, Molina R (2020) Trametes versicolor immobilized on rotating biological contactors as alternative biological treatment for the removal of emerging concern micropollutants. Water Res 170:115313. https://doi.org/10.1016/j.watres.2019.115313

    Article  CAS  Google Scholar 

  53. Li X, Xu J, de Toledo RA, Shim H (2016) Enhanced carbamazepine removal by immobilized Phanerochaete chrysosporium in a novel rotating suspension cartridge reactor under non-sterile condition. Int Biodeterior Biodegradation 115:102–109. https://doi.org/10.1016/j.ibiod.2016.08.003

    Article  CAS  Google Scholar 

  54. Beltrán-Flores E, Torán J, Caminal G, Blánquez P, Sarrà M (2020) The removal of diuron from agricultural wastewaters by Trametes versicolor immobilized on pinewood in simple channel reactors. Sci Total Environ 728:138414. https://doi.org/10.1016/j.scitotenv.2020.138414

    Article  CAS  Google Scholar 

  55. Gros M, Cruz-Morato C, Marco-Urrea E, Longrée P, Singer H, Sarrà M, Hollender J, Vicent T, Rodriguez-Mozaz S, Barceló D (2014) Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products. Water Res 60:228–241. https://doi.org/10.1016/j.watres.2014.04.042

    Article  CAS  Google Scholar 

  56. Cruz-Morató C, Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D, Marco-Urrea E, Vicent T, Sarrà M (2013) Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res 47:5200–5210. https://doi.org/10.1016/j.watres.2013.06.007

    Article  CAS  Google Scholar 

  57. Badia-Fabregat M, Lucas D, Pereira MA, Alves M, Pennanen T, Fritze H, Rodríguez-Mozaz S, Barceló D, Vicent T, Caminal G (2015) Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment. Appl Microbiol Biotechnol 100:2401–2415. https://doi.org/10.1007/s00253-015-7105-0

    Article  CAS  Google Scholar 

  58. Cruz-Morató C, Lucas D, Llorca M, Rodriguez-Mozaz S, Gorga M, Petrovic M, Barceló D, Vicent T, Sarrà M, Marco-Urrea E, Petrović M, Barceló D, Vicent T, Sarrà M, Marco-Urrea E, Petrovic M, Barceló D, Vicent T, Sarrà M, Marco-Urrea E (2014) Hospital wastewater treatment by fungal bioreactor: removal efficiency for pharmaceuticals and endocrine disruptor compounds. Sci Total Environ 493:365–376. https://doi.org/10.1016/j.scitotenv.2014.05.117

    Article  CAS  Google Scholar 

  59. Ferrando-Climent L, Cruz-Morató C, Marco-Urrea E, Vicent T, Sarrà M, Rodriguez-Mozaz S, Barceló D (2015) Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater. Chemosphere 136:9–19. https://doi.org/10.1016/j.chemosphere.2015.03.051

    Article  CAS  Google Scholar 

  60. Kresinová Z, Linhartová L, Filipová A, Ezechiáš M, Mašín P, Cajthaml T, Křesinová Z, Linhartová L, Filipová A, Ezechiáš M, Mašín P, Cajthaml T (2018) Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor. New Biotechnol 43:53–61. https://doi.org/10.1016/j.nbt.2017.05.004

    Article  CAS  Google Scholar 

  61. Zhang Y, Geißen S-UU (2012) Elimination of carbamazepine in a non-sterile fungal bioreactor. Bioresour Technol 112:221–227. https://doi.org/10.1016/j.biortech.2012.02.073

    Article  CAS  Google Scholar 

  62. Mir-Tutusaus JA, Sarrà M, Caminal G (2016) Continuous treatment of non-sterile hospital wastewater by Trametes versicolor: how to increase fungal viability by means of operational strategies and pretreatments. J Hazard Mater 318:561–570. https://doi.org/10.1016/j.jhazmat.2016.07.036

    Article  CAS  Google Scholar 

  63. Mir-Tutusaus JA, Parladé E, Llorca M, Villagrasa M, Barceló D, Rodriguez-Mozaz S, Martinez-Alonso M, Gaju N, Caminal G, Sarrà M (2017) Pharmaceuticals removal and microbial community assessment in a continuous fungal treatment of non-sterile real hospital wastewater after a coagulation-flocculation pretreatment. Water Res 116:65–75. https://doi.org/10.1016/j.watres.2017.03.005

    Article  CAS  Google Scholar 

  64. Mir-Tutusaus JA, Parladé E, Villagrasa M, Barceló D, Rodríguez-Mozaz S, Martínez-Alonso M, Gaju N, Sarrà M, Caminal G (2019) Long-term continuous treatment of non-sterile real hospital wastewater by Trametes versicolor. J Biol Eng 13:47. https://doi.org/10.1186/s13036-019-0179-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montserrat Sarrà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mir-Tutusaus, J.A., Sarrà, M. (2020). Fungal Reactors: A Solution for the Removal of Pharmaceuticals in Urban and Hospital Wastewater. In: Rodriguez-Mozaz, S., Blánquez Cano, P., Sarrà Adroguer, M. (eds) Removal and Degradation of Pharmaceutically Active Compounds in Wastewater Treatment. The Handbook of Environmental Chemistry, vol 108. Springer, Cham. https://doi.org/10.1007/698_2020_660

Download citation

Publish with us

Policies and ethics