Skip to main content

Advances in Remote Sensing of Great Lakes Algal Blooms

  • Chapter
  • First Online:
Contaminants of the Great Lakes

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 101))

Abstract

Many regions of the Great Lakes now see recurring cyanobacterial harmful algal blooms (cyanoHABs), with documented repercussions for ecosystem services, public health, and ecosystem integrity. Early detection and comprehensive monitoring of cyanoHABs are fundamental to their effective management and mitigation of detrimental impacts. Satellite remote sensing has provided the means by which algal blooms in the Great Lakes can be observed with unprecedented frequency and spatial coverage. Algorithms have been developed and validated; fully automated data processing streams have been rendered operational; and stakeholders have been engaged in order to develop user-friendly end products. Such products have been integral in providing near-real-time monitoring of bloom conditions, documenting spatiotemporal trends, improving understanding of environmental drivers of blooms, and guiding nutrient management actions. In this chapter we present background information on remote sensing of algal blooms, document the current state of knowledge with a focus on Lake Erie, and discuss remote sensing products available to the Great Lakes community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sydor M, Stortz KR, Swain WR (1978) Identification of contaminants in Lake Superior through Landsat I data. J Great Lakes Res 4(2):142–148

    Article  Google Scholar 

  2. Strong AE (1978) Chemical whitings and chlorophyll distributions in the Great Lakes as viewed by Landsat. Remote Sens Environ 7(1):61–72

    Article  Google Scholar 

  3. Harris GP, Bukata RP, Bruton JE (1974) Satellite observations of water quality. ASCE Trans Eng J 102(3):537–554

    Google Scholar 

  4. Ho JC, Michalak AM (2017) Phytoplankton blooms in Lake Erie impacted by both long-term and springtime phosphorus loading. J Great Lakes Res 43:221–228

    Article  CAS  Google Scholar 

  5. Mckindles K, Frenken T, McKay RM, Bullerjahn GS (2020) Binational efforts addressing cyanobacterial harmful algal blooms in the Great Lakes. In: Crossman J, Weisener C (eds.) Contaminants of the Great Lakes. The handbook of environmental chemistry. Springer, Berlin, Heidelberg

    Google Scholar 

  6. Stumpf RP, Wynne TT, Baker DB, Fahnenstiel GL (2012) Interannual variability of cyanobacterial blooms in Lake Erie. PLoS One 7(8):e42444

    Article  CAS  Google Scholar 

  7. Vanderploeg HA, Liebig JR, Carmichael WW, Agy MA, Johengen TH, Fahnenstiel GL, Nalepa TF (2001) Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic 891 Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can J Fish Aquat Sci 58:1208–1221

    Article  CAS  Google Scholar 

  8. Bridgeman TB, Chaffin JD, Filbrun JE (2013) A novel method for tracking western Lake Erie Microcystis blooms, 2002–2011. J Great Lakes Res 39(1):83–89

    Article  Google Scholar 

  9. Dove A, Chapra SC (2015) Long-term trends of nutrients and trophic response variables for the Great Lakes. Limnol Oceanogr 60:696–721

    Article  CAS  Google Scholar 

  10. Stumpf RP, Johnson LT, Wynne TT, Baker DB (2016) Forecasting annual cyanobacterial bloom biomass to inform management decisions in Lake Erie. J Great Lakes Res 42(6):1174–1183

    Article  CAS  Google Scholar 

  11. Wynne TT, Stumpf RP, Tomlinson MC, Fahnenstiel GL, Dyble J, Schwab DJ, Joshi SJ (2013) Evolution of a cyanobacterial bloom forecast system in western Lake Erie: development and initial evaluation. J Great Lakes Res 39(S1):90–99

    Article  Google Scholar 

  12. Dekker A, Hestir E, Wang M, Matthews M, Spyrakos E (2018) Chapter 6 in: IOCCG (2018). Earth observations in support of global water quality monitoring. In: Greb S, Dekker A, Binding C (eds) IOCCG report series, no. 17. International Ocean Colour Coordinating Group, Dartmouth

    Google Scholar 

  13. Mouw CB, Greb S, Aurin D, DiGiacomo PM, Lee Z, Twardowski M, Binding C, Hu C, Ma R, Moore T, Moses W, Craig SE (2015) Aquatic color radiometry remote sensing of coastal and inland waters: challenges and recommendations for future satellite missions. Remote Sens Environ 160:15–30

    Article  Google Scholar 

  14. Binding CE, Greenberg TA, Watson SB, Rastin S, Gould J (2015) Long term water clarity changes in North America’s Great Lakes from multi-sensor satellite observations. Limnol Oceanogr 60(6):1976–1995

    Article  Google Scholar 

  15. Sayers MJ, Grimm AG, Shuchman RA, Bosse KR, Fahnenstiel GL, Ruberg SA, Leshkevich GA (2019) Satellite monitoring of harmful algal blooms in the Western Basin of Lake Erie: a 20-year time-series. J Great Lakes Res 45(3):508–521

    Article  CAS  Google Scholar 

  16. Wynne TT, Stumpf RP, Briggs TO (2013) Comparing MODIS and MERIS spectral shapes for cyanobacterial bloom detection. Int J Remote Sens 34(19):6668–6678

    Article  Google Scholar 

  17. Zeng C, Binding CE (2019) Simulation of mineral sediment impacts on red-NIR algorithms for inland water chlorophyll retrievals. Remote Sens 11(19):2306

    Article  Google Scholar 

  18. Becker RH, Sultan MI, Boyer GL, Twiss MR, Konopko E (2009) Mapping cyanobacterial blooms in the Great Lakes using MODIS. J Great Lakes Res 35(3):447–453

    Article  CAS  Google Scholar 

  19. Lesht BM, Barbiero RP, Warren GJ (2013) A band-ratio algorithm for retrieving openlake chlorophyll values from satellite observations of the Great Lakes. J Great Lakes Res 39(1):138–152

    Article  CAS  Google Scholar 

  20. Wynne TT, Stumpf RP, Tomlinson MC, Dyble J (2010) Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data. Limnol Oceanogr 55:2025–2036

    Article  Google Scholar 

  21. Shuchman RA, Leshkevich G, Sayers MJ, Johengen TH, Brooks CN, Pozdnyakov D (2013) An algorithm to retrieve chlorophyll, dissolved organic carbon, and suspended minerals from Great Lakes satellite data. J Great Lakes Res 39(S1):14–33

    Article  CAS  Google Scholar 

  22. Sayers M, Fahnenstiel GL, Shuchman RA, Whitley M (2016) Cyanobacteria blooms in three eutrophic basins of the Great Lakes: a comparative analysis using satellite remote sensing. Int J Remote Sens 37(17):4148–4171

    Article  Google Scholar 

  23. Binding CE, Greenberg TA, Bukata RP (2012) An analysis of MODIS-derived algal and mineral turbidity in Lake Erie. J Great Lakes Res 38(1):107–116

    Article  CAS  Google Scholar 

  24. Binding CE, Zastepa A, Zeng C (2019) The impact of phytoplankton community composition on optical properties and satellite observations of the 2017 western Lake Erie algal bloom. J Great Lakes Res 45(3):573–586

    Article  Google Scholar 

  25. Ortiz JD, Witter DL, Ali KA, Fela N, Duff M, Mills L (2013) Evaluating multiple colour-producing agents in case II waters from Lake Erie. Int J Remote Sens 34:8854–8880

    Article  Google Scholar 

  26. Doerffer R, Schiller H (2007) The MERIS case 2 water algorithm. Int J Remote Sens 28(3-4):517–535

    Article  Google Scholar 

  27. O’Reilly JE, Werdell PJ (2019) Chlorophyll algorithms for ocean color sensors – OC4, OC5 & OC6. Remote Sens Environ 229:32–47

    Article  Google Scholar 

  28. Bukata RP, Jerome JH, Kondratyev KY, Pozdnyakov DV (1995) Optical properties and remote sensing of inland and coastal waters. CRC Press, Boca Raton

    Google Scholar 

  29. Budd JW, Warrington DS (2004) Satellite-based sediment and chlorophyll a estimates for Lake Superior. J Great Lakes Res 30:459–466

    Article  Google Scholar 

  30. Witter DL, Ortiz JD, Palm S, Heath RT, Budd JW (2009) Assessing the application of SeaWiFS Ocean color algorithms to Lake Erie. J Great Lakes Res 35(3):361–370

    Article  CAS  Google Scholar 

  31. Ali K, Witter D, Ortiz J (2014) Application of empirical and semi-analytical algorithms to MERIS data for estimating chlorophyll a in case 2 waters of Lake Erie. Environ Earth Sci 71(9):4209–4220

    Article  CAS  Google Scholar 

  32. Gilerson AA, Gitelson AA, Zhou J, Gurlin D, Moses W, Ioannou I, Ahmed SA (2010) Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Opt Express 18(23):24109–24125

    Article  CAS  Google Scholar 

  33. Binding CE, Greenberg TA, McCullough G, Watson SB, Page E (2018) An analysis of satellite-derived chlorophyll and algal bloom indices on Lake Winnipeg. J Great Lakes Res 44(3):436–446

    Article  CAS  Google Scholar 

  34. Wynne TT, Stumpf RP, Tomlinson MC, Warner RA, Tester PA, Dyble J, Fahnenstiel GL (2008) Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. Int J Remote Sens 29(12):3665–3672

    Article  Google Scholar 

  35. Simis SGH, Peters SWM, Gons HJ (2005) Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol Oceanogr 50(1):237–245

    Article  CAS  Google Scholar 

  36. Yacobi YZ, Köhler J, Leunert F, Gitelson A (2015) Phycocyanin-specific absorption coefficient: eliminating the effect of chlorophylls absorption. Limnol Oceanogr Methods 13(4):157–168

    Article  CAS  Google Scholar 

  37. Simis SGH, Ruiz-Verdú A, Domínguez-Gómez JA, Peña-Martinez R, Peters SWM, Gons HJ (2007) Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass. Remote Sens Environ 106(4):414–427

    Article  Google Scholar 

  38. Ruiz-Verdú A, Simis SGH, de Hoyos C, Gons HJ, Peña-Martínez R (2008) An evaluation of algorithms for the remote sensing of cyanobacterial biomass. Remote Sens Environ 112(11):3996–4008

    Article  Google Scholar 

  39. Stumpf RP, Davis TW, Wynne TT, Graham JL, Loftin KA, Johengen TH, Gossiaux D, Palladino D, Burtner A (2016) Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae 54:160–173

    Article  CAS  Google Scholar 

  40. Matthews MW, Bernard S, Robertson L (2012) An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens Environ 124:637–652

    Article  Google Scholar 

  41. Lunetta RS, Schaeffer BA, Stumpf RP, Keith D, Jacobs SA, Murphy MS (2015) Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA. Remote Sens Environ 157:24–34

    Article  Google Scholar 

  42. Tomlinson MC, Stumpf RP, Wynne TT, Dupuy D, Burks R, Hendrickson J, Fulton III RS (2016) Relating chlorophyll from cyanobacteria-dominated inland waters to a MERIS bloom index. Remote Sens Lett 7(2):141–149

    Article  Google Scholar 

  43. Vincent RK, Qin X, McKay RML, Miner J, Czajkowski K, Savino J, Bridgeman T (2004) Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. Remote Sens Environ 89(3):381–392

    Article  Google Scholar 

  44. Ho JC, Stumpf RP, Bridgeman TB, Michalak AM (2017) Using Landsat to extend the historical record of lacustrine phytoplankton blooms: a Lake Erie case study. Remote Sens Environ 191:273–285

    Article  Google Scholar 

  45. Wang G, Lee Z, Mouw C (2017) Multi-spectral remote sensing of phytoplankton pigment absorption properties in cyanobacteria bloom waters: a regional example in the Western Basin of Lake Erie. Remote Sens 9(12):1309

    Article  Google Scholar 

  46. Avouris DM, Ortiz JD (2019) Validation of 2015 Lake Erie MODIS image spectral decomposition using visible derivative spectroscopy and field campaign data. J Great Lakes Res 45(3):466–479

    Article  Google Scholar 

  47. ECCC (2019) https://public.tableau.com/profile/eolakewatch#!/vizhome/EOLakeWatch-ObservationsLacsOT/EOLakeWatch-ObservationsLacsOT

  48. MTRI (2019) https://greatlakesremotesensing.org/

  49. NOAA (2019) https://coastalscience.noaa.gov/research/stressor-impacts-mitigation/hab-monitoring-system/cyanobacteria-algal-bloom-from-satellite-in-western-lake-erie-basin/

  50. Urquhart EA, Schaeffer BA, Stumpf RP, Loftin KA, Werdell PJ (2017) A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing. Harmful Algae 67:144–152

    Article  Google Scholar 

  51. Clark JM, Schaeffer BA, Darling JA, Urquhart EA, Johnston JM, Ignatius A, Myer MH, Loftin KA, Werdell PJ, Stumpf RP (2017) Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking source waters. Ecol Indic 80:84–95

    Article  Google Scholar 

  52. Wynne TT, Stumpf RP (2015) Spatial and temporal patterns in the seasonal distribution of toxic cyanobacteria in western Lake Erie from 2002–2014. Toxins 7(5):1649–1663

    Article  CAS  Google Scholar 

  53. GLWQA, Annex 4 (2015) Recommended phosphorus loading targets for Lake Erie, annex 4 objectives and targets task team final report to the nutrients annex subcommittee, 70 p. http://www.epa.gov/glwqa

  54. Bertani I, Steger CE, Obenour DR, Fahnenstiel GL, Bridgeman TB, Johengen TH, Sayers MJ, Shuchman RA, Scavia D (2017) Tracking cyanobacteria blooms: do different monitoring approaches tell the same story? Sci Total Environ 575:294–308

    Article  CAS  Google Scholar 

  55. Obenour D, Gronewold A, Stow C, Scavia D (2014) Using a Bayesian hierarchical model to improve Lake Erie cyanobacteria bloom forecasts. Water Resour Res 50(10):7847–7860

    Article  Google Scholar 

  56. Soontiens N, Binding C, Fortin V, Mackay M, Rao YR (2019) Algal bloom transport in Lake Erie using remote sensing and hydrodynamic modelling: sensitivity to buoyancy velocity and initial vertical distribution. J Great Lakes Res 45(3):556–572

    Article  CAS  Google Scholar 

  57. Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London

    Book  Google Scholar 

  58. Davis TW, Stumpf R, Bullerjahn GS, McKay RML, Chaffin JD, Bridgeman TB, Winslow C (2019) Science meets policy: a framework for determining impairment designation criteria for large waterbodies affected by cyanobacterial harmful algal blooms. Harmful Algae 81:59–64

    Article  Google Scholar 

  59. Mishra S, Stumpf RP, Schaeffer BA, Werdell PJ, Loftin KA, Meredith A (2019) Measurement of cyanobacterial bloom magnitude using satellite remote sensing. Sci Rep 9:18310

    Article  CAS  Google Scholar 

  60. Kahru M, Savchuk OP, Elmgren R (2007) Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Mar Ecol Prog Ser 343:15–23

    Article  Google Scholar 

  61. Kutser T, Metsamaa L, Strömbeck N, Vahtmäe E (2006) Monitoring cyanobacterial blooms by satellite remote sensing. Estuar Coast Shelf Sci 67:303–312

    Article  Google Scholar 

  62. Reinart A, Kutser T (2006) Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. Remote Sens Environ 102:74–85

    Article  Google Scholar 

  63. Moreno-Ostos E, Cruz-Pizarro L, Basanta A (2009) The influence of wind-induced mixing on the vertical distribution of buoyant and sinking phytoplankton species. Aquat Ecol 43:271–284

    Article  CAS  Google Scholar 

  64. Gordon HR, McCluney WR (1975) Estimation of the depth of sunlight penetration in the sea for remote sensing. Appl Opt 14(2):413–416

    Article  CAS  Google Scholar 

  65. Binding CE, Greenberg TA, Jerome JH, Bukata RP, Letourneau G (2011) An assessment of MERIS algal products during an intense bloom in Lake of the Woods. J Plankton Res 33(5):793–806

    Article  Google Scholar 

  66. Bosse KR, Sayers MJ, Shuchman RA, Fahnenstiel GL, Ruberg SA, Fanslow DL, Stuart DG, Johengen TH, Burtner AM (2019) Spatial-temporal variability of in situ cyanobacteria vertical structure in Western Lake Erie: implications for remote sensing observations. J Great Lakes Res 45(3):480–489

    Article  Google Scholar 

  67. Kutser T, Metsamaa L, Dekker AG (2008) Influence of the vertical distribution of cyanobacteria in the water column on the remote sensing signal. Estuar Coast Shelf Sci 78(4):649–654

    Article  Google Scholar 

  68. Rowe M, Anderson E, Wynne T, Stumpf R, Fanslow D, Kijanka K, Vanderploeg H, Strickler J, Davis T (2016) Vertical distribution of buoyant Microcystis blooms in a Lagrangian particle tracking model for short-term forecasts in Lake Erie. J Geophys Res Oceans 121:5296–5314

    Article  Google Scholar 

  69. Moore TS, Churnside JH, Sullivan JM, Twardowski MS, Nayak AR, McFarland MN, Stockley ND, Gould RW, Johengen TH, Ruberg SA (2019) Vertical distributions of blooming cyanobacteria populations in a freshwater lake from LIDAR observations. Remote Sens Environ 225:347–367

    Article  Google Scholar 

  70. Moore TS, Mouw CB, Sullivan JM, Twardowski MS, Burtner AM, Ciochetto AB, McFarland MN, Nayak AR, Paladino D, Stockley ND, Johengen TH, Yu AW, Ruberg S, Weidemann A (2017) Bio-optical properties of cyanobacteria blooms in western Lake Erie. Front Mar Sci 4(SEP):300

    Article  Google Scholar 

  71. Sayers MJ, Bosse KR, Shuchman RA, Ruberg SA, Fahnenstiel GL, Leshkevich GA, Stuart DG, Johengen TH, Burtner AM, Palladino D (2019) Spatial and temporal variability of inherent and apparent optical properties in western Lake Erie: implications for water quality remote sensing. J Great Lakes Res 45(3):490–507

    Article  CAS  Google Scholar 

  72. Matthews MW, Bernard S (2013) Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of Microcystis aeruginosa. Biogeosciences 10(12):8139–8157

    Article  Google Scholar 

  73. Paerl HW, Ustach JF (1982) Blue-green algal scums: an explanation for their occurrence during freshwater blooms. Limnol Oceanogr 27(2):212–217

    Article  CAS  Google Scholar 

  74. Stomp M, Huisman J, Vörös L, Pick FR, Laamanen M, Haverkamp T, Stal LJ (2007) Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10(4):290–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caren E. Binding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Binding, C.E., Stumpf, R.P., Shuchman, R.A., Sayers, M.J. (2020). Advances in Remote Sensing of Great Lakes Algal Blooms. In: Crossman, J., Weisener, C. (eds) Contaminants of the Great Lakes. The Handbook of Environmental Chemistry, vol 101. Springer, Cham. https://doi.org/10.1007/698_2020_589

Download citation

Publish with us

Policies and ethics